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Abstract

As applications of productivity of coreflective classes of topological spaces, the following results will be proved: (1) Characters
of points of BN\ N are not smaller than any submeasurable cardinal less or equal to 2%. (2) If « is a submeasurable cardinal and S
is a sequential fan with ¥ many spines then the tightness of the x-power of S is equal to «. In fact, a little more general results are
proved.
© 2007 Elsevier B.V. All rights reserved.
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It was proved in [9] that the productivity numbers of coreflective classes of topological spaces are, in addition to 2,
w and oo, precisely the submeasurable cardinals. We shall now briefly describe the concepts used in this result.
A real-valued function p defined on all subsets of « is a submeasure if

(1) @) =0;
(2) u(A) < u(B) whenever A C B C k;
3) n(AUB) < u(A) 4+ n(B) forevery A, B C k.

An uncountable cardinal « is called submeasurable if there is a nonzero k-continuous submeasure y defined on
all subsets of « and vanishing on singletons (if, moreover, u(k) = 1, u will be called normalized). Equivalently,
an uncountable cardinal « is submeasurable, if there is a noncontinuous k-continuous real-valued function defined
on 2“. The k-continuity means that the map preserves convergence of nets of length less than «. For submeasures this
means that u(Ay,) — 0 whenever {Ay}, is a decreasing family of subsets of « indexed by A < « and having empty
intersection (or, equivalently, the submeasure is sequentially continuous and « -additive on null sets).

We recall that the first submeasurable cardinal is the least sequential cardinal. Every real-measurable cardinal is
submeasurable. A submeasurable cardinal is either not larger than 2“ or is 2-measurable. See [1,8] for more details.
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A coreflective class of topological spaces is a class that contains a nonvoid space and is closed under quotients
and disjoint sums. The productivity of a coreflective class C of topological spaces is the smallest cardinal x such that
X* ¢ C for some X € C; if there is no such « (i.e., C is productive) then its productivity number is denoted by oo
(a symbol larger than any cardinal number). A class is called k-productive if k is not bigger than its productivity.

1. k-productive classes

In this section, ¥ will stand for a submeasurable cardinal and p for a normalized submeasure on « that is
k-continuous and vanishes at singletons. Although some of the next concepts and results depend, in addition to «,
also on u, we believe there can be no misunderstanding when we omit i from notations.

Generalizing an example from [4] to submeasurable cardinals, it was shown in [9] that the following class Cy , is
k-productive and coreflective:

Ck = {X; for every family G = {G,: « € k} of open sets in X and
for every r €10, 1] the set G, = {x € X: ufa: x ¢ G4} <r} is open}.

The set {«: x ¢ G} will be denoted by Ay.
It may be difficult to imagine what C, looks like. The next characterization may help.

Proposition 1. C, coincides with the class
{X; ifx € P C X and {Uy) is a family of neighborhoods of x, then for every s > 0

there exists S C « such that u(k \ S) <s and P N ﬂ U, # VJ}.
N

Proof. Suppose first that X belongs to the class defined in Proposition 1. Let {G, }, be a family of open sets in X and
r €]0, 1]. If G, is not open, there is some x € G- N X \ G,. It follows that £ (A,) < r and one can choose s > 0 such
that u(Ay) +s <r. Define Uy = Gy if @ ¢ Ay and Uy = X if @ € A,.. By the assumption on X there is a set S C k
with u(k \ §) < s and there is some y € (g Uy \ G,. For this point y, the inclusion

{a; y¢ Ga} Cla; x € Ga}U(k\S)

implies 1(Ay) < r, which contradicts y ¢ G,.

Conversely, assume that X € C,. Take x € P C X, a family {Uy} of open neighborhoods of x and s > 0. The
set U, is open and contains x. Thus there is some y € P NU;. It is easy to show that y € P N ﬂK\AV U, and, since
1(Ay) < s, our space X belongs to the requested class from our proposition. O

One can see from the proof that for T;-spaces X and x € P \ P it s possible to require the intersections P N[ s Ua
to be infinite sets. Indeed, in the last paragraph of the proof, the intersections P N, (for any r > 0) must be infinite if
X is a Ty-space and x € P \ P. So one can find different y, € P N U, and then {y,}, C P N ﬂK\UA‘_n Uy; clearly,
w(lJAy,) <s.

Another observation is that C, are hereditary classes.

The characterizing property of C, from the last proposition can be reformulated as follows:

For every family {G 4}« of open subsets of X and any r > 0 it holds

(G« CIntU{ﬂGa; S Cx, u(S) <r}.
K Kk\S

It is easy to see that if X € C; and {U,}, is a monotone family of neighborhoods of some x € X, then ﬂK U, is
a neighborhood of x.
If « is 2-measurable, then C, can be described as
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{X cifxePc Xand {Uq}i is a family of neighborhoods of x, then there exists

ScKsmhmmuw\sy=0mdpm(]Ua¢@}
S

In accordance with [4] we denote by A @ 1, for an infinite cardinal X, the space A + 1 of ordinals less or equal to A
where all the ordinals less than X are isolated and the point A has the usual order neighborhoods. Then A & 1 € C, iff
cf(A) # k. We believe it is clear how to define D & 1 for directed ordered sets D.

2. Characters of ultrafilters

Recall that a space X is said to be generated by a class P of nets if it belongs to the coreflective hull of the class
{P&1; PeP} ie.,closures in X are formed by adding (iteratedly) limits of nets from P.

Proposition 2. If the topology of X is generated by nets of length less than k then X € Cy.

Proof. It suffices to show that every space P @ 1 belongs to C,, where P is a net of length less than «. Denote by oo
the unique accumulation point of P @ 1. Take a family {G}, of open sets in P & 1, a number r > 0 and assume that
o0 € G,. Thus u{a; oo ¢ Gy} < r and we can find an s > 0 such that u{a; co ¢ G4} + s < r. We must prove that
there is a p € P such that the whole interval [ p, oo] is a part of G, .

If oo € G, then [p,, 00] C G, for some p, € P. Take a family {H,} of open sets defined as follows:

P®1, ifoodGy:
7| [pa,00], otherwise.

Denote now A, = {a; p ¢ Hy}. If p < g then A, D A, and the net {A,; p € P} converges to ¥ in the usual
convergence of subsets of « (i.e., in 2*). Consequently, by the «-continuity of u, the net {it(A,); p € P} converges
to 0. So, there is some p € P with £(A,) < s. It is easy to see that [p, 0o] C Hy foreverya ek \ A.

Now, the set {a; 00 ¢ Gy} U A, has the p-value less than r and for each o € « not belonging to that set we have
[p,o0] C Gy, which means [p, 0] C G,. O

Corollary 3. If characters of all points of X are less than k then X € Cy.

For a free ultrafilter u on N denote by N,, the subspace N U {u} of the Cech-Stone compactification S(N).

For the proof of the main result of this section we need a combinatorial result (stated in Proposition 5) based on
Theorem 3.4 from [10]: Every uniformly exhaustive submeasure is equivalent to a measure. The quoted paper deals
with submeasures on Boolean algebras; equivalence of submeasures w, v means that ©(A,) — 0 iff v(A,;) — O;
a submeasure p is uniformly exhaustive if for every ¢ > 0O there is n € N such that every disjoint collection of n
members from the algebra contains a member of submeasure at most ¢.

We do not need that result in its full generality and state here a special case convenient for our purpose:

Proposition 4. If « is submeasurable and not real-measurable then it bears a normalized k-continuous submeasure
vanishing on singletons having an additional property k has a decomposition to n sets of submeasure 1 for every
natural n,

Proof. Since « is not real-measurable, a corresponding submeasure p on k cannot be equivalent to a measure in
the above sense. By the quoted Theorem 3.4 from [10], u is not uniformly exhaustive and, thus, there exists some
& > 0 such that for any n € N one can find a disjoint collection of n subsets of « each having its submeasure at
least ¢ (enlarging a member of the collection, we may assume that the collection is a cover of «). The submeasure
min{1, u/e} satisfies the required properties. O

The next proposition is known for measures.
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Proposition 5. If k is a submeasurable cardinal less or equal to 2, then there exists a normalized x-continuous
submeasure (L on k vanishing at singletons such that for every s € (0, 1) one can find a sequence {A,} of subsets of k
having the properties

(1) w(Ap) 2172, u(c \ Ay) > 1/2 for all n;
(2) for every infinite K C N and choice B, = A, or B, =« \ A, for n € K one has u({U,,cx Bn \ [ ek Bn) = 5.

Proof. It suffices to prove the result for the choice B, = A, in the condition (2). Indeed, the choice B, =« \ A, gives
the same set | ,,cx Bn \ [ ),cx Bn as the choice B, = A,; in general case, one of those possibilities appears infinitely
many times (say, forn € L) and (J,.c; Bu \ ez Bn CUnek Ba \ ek Bn-

If u is real-measurable, then a p-independent system {A,} works. Since u is not 2-measurable, every A C k can
be decomposed into two sets with measure equal to /(A)/2. So, « has such a decomposition A}, A}, the set A}
has such a decomposition A%, A%, the set Aé has such a decomposition A_Z, Ai, and so on. One gets decompositions

{Af?},-gzk of measures 2%, It suffices to put A, = U?:ll A%, Then for every infinite K C N one has p(,cx Bn) =1,
M(ﬂneK B,) =0 for any choice of B, to be A, or « \ A,. The result follows.

Assume now that « is submeasurable and nonreal-measurable. According to Proposition 4 there is a normalized
k-continuous submeasure (4 on « vanishing on singletons such that for every n € N one can find a decomposition
{DY,..., Dy} of k with u(D}") =1 for all possible n, i.

Suppose that there is an infinite set K1 C N and a sequence i, < n,n € K1, such that

u( U D} \ m D;fl)<s.

nek nek

nek

We may assume that i, = 1 for all n € K. Denote ﬂnekl D} = Py (then pu(Py) > 1 —5).
Take Q1 =« \ P; and decompositions D,% of Q1 defined for n € K as

n
’Drllz{Dg,..., ZI,DZU<Q1\UD?)}
i=2

Now, u(D) =1 forany D € D,i. If again there is an infinite subset K> of K| and a choice of members D,, of D,ll such
that ;L(UneK2 D, \ﬁneK2 D,) < s we get in a similar way the sets P, C Q| with u(P2) > 1 —s,aset Q2 =01\ P>
with ©(Q2) = 1 and decompositions Dﬁ, n € K> such that each member of any of those decompositions has -
submeasure 1.

In case the described process is infinite, the constructed sets P, are disjoint and @ (P,) > 1 — s > 0, which con-
tradicts the sequential continuity of w. So, after finitely many steps the process must finish and one gets a set Oy of
cardinality x and decompositions D,, n € K. The restriction of x to Q gives a normalized submeasure on « and
any choice of A, from Dy, n € K; gives a requested sequence. 0O

The next result was proved in [4] for real-measurable cardinals using a p-independent system. Our previous Propo-
sition 5 allows to prove it for submeasurable cardinals, too.

Theorem 6. If u is a free ultrafilter on N and « is a submeasurable cardinal less or equal to 2%, then N, ¢ C, for
a convenient submeasure (L On K.

Proof. To prove N,, ¢ C,, we shall use Proposition 1. We can find a submeasure & on « and a sequence {A,} of
subsets of k having the properties described in Proposition 5 for s = 1/4. Define U, € u to be either {n; o € A,} or
{n; a ¢ A,} depending on which of both sets belongs to u. Take any S C « with u(S) < 1/4 and let ({Uy; « ¢ S}
contains an infinite set K C N. Then S D UneK A\ ﬂneK A, and, so, u(S) > 1/4, which contradicts our choice of S.
Consequently, intersections [ |{Uy; « ¢ S} are finite whenever w(S) < 1/4. According the remark about T-spaces
following Proposition 1, the proof is finished. O

Corollary 7. If u is a free ultrafilter on N and « is a submeasurable cardinal less or equal to 2%, then x (N,) > k.
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Corollary 8. If a nontrivial net in N converges in BN then its lenght must be at least sup{x < 2%; k submeasurable}.

Proof. If « is submeasurable and u € BN \ N then N, ¢ C, and, thus, N,, cannot be generated by nets having length
less than k. Therefore, there exists a set A C N with u € A (i.e., A € u) such that no net in A of length less than «
converges to u. It is easy to see (by taking a convenient bijection of N onto A) that no net in N of length less than «
convergesto u. O

Compare the last Corollary with the fact that SN \ N always contains a nontrivial converging net of length w; (see
[2,12]).

3. Tightness of products of fans

Tightness of a point x € A with respect to a set A in a space X is ¢ (x, A) =min{|B|; B C A, x € B}. Tightness of
the whole space X is supremum of all #(x, A), where x € ACX.

It follows from Theorem 6 that C, need not contain all spaces having tightness less than «. Nevertheless, that may
happen only when « < 2%:

Proposition 9. If k is 2-measurable and P = | J{A; A € [P1=} for every P C X, then X € Cy.

Proof. Suppose X has the property from the assertion. If x € P then x € A for some A C P with |A| < k. Since « is
a strongly inaccessible cardinal, the character of x with respect to A is less than x and, hence, there is a net of length
less than « in A converging to x. By Proposition 2 we have X € C,. O

If one defines 7(X) < « if t(x, A) < k for every A C X, x € A, then the previous proposition says that X € C,
provided 7(X) < « (we say in this case that small tightness of X is less than «). Proposition 9 does not characterize
C, since the class contains arbitrarily large spaces A @ 1, but it has a partial conversion valid for any submeasurable
cardinal:

Proposition 10. If X € C, and A C X is a sum of an increasing family {Ay )}, then A = U, Aq.

Proof. Suppose the situation from the assertion. For x € A \ U A, it suffices to take U, = X \ A, as a family of
neighborhoods of x that does not satisfy the characterization of Theorem 1. O

Corollary 11. If X € C, and A C X is of cardinality k then every x € A belongs to the closure of some subset of A of
cardinality less than k.

In other words, if X € C, and |X| =, then #(X) < «.

Let us recall that a general fan S({A¢},) is a quotient of a disjoint sum [ J, (Ao @ 1), where the accumulation points
of Ly @ 1 are sewed together. The space S({w},) is called the sequential fan with A many spines. If A < « and all
Aq < k we shall call S({Ay}5) a k-fan. By the previous investigation, every x-fan belongs to Cy.

Many papers are devoted to situations when a product of fans increases tightness (see e.g., [3,5,6,11,13] in which
one can find other references). We are in a different position, namely we show a situation when the tightness of
products of fans cannot increase:

Theorem 12. Small tightness of finite products of k-fans is less than k.
Proof. Use Corollary 11. O

Tightness of finite products of x-fans may be (and probably is) equal to «. Nevertheless, e.g. for S = S({w},) with
the accumulation point oo, there is no subset A C (S \ {oo})? of cardinality « such that (oo, o0) € A and (00, 00) ¢ B
forevery B C A, |B| <«.

Since tightness of products of x-many spaces is determined by tightness of finite subproducts if not greater than «,
we get the following assertion.
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Corollary 13. Tightness of a product of k-many k-fans is k.

A space X is said to be A-collectionwise Hausdorff, if for any closed discrete subset A of X with |A| < A there is
a disjoint collection {U,} 4 of neighborhoods of points of A. The concept <X-collectionwise Hausdorff space should
be clear. By [7], every <A-collectionwise Hausdorff space having character less than A is A-collectionwise Hausdorff
provided A is weakly compact. Submeasurable cardinals need not be weakly compact if they are not 2-measurable and
so the following modification of the quoted Fleissner’s result describes other situations.

Proposition 14. If « is submeasurable, then every <k -collectionwise Hausdorff space that has point characters less
than « is k-collectionwise Hausdorff.

Proof. It is proved in [5] that every first countable <k -collectionwise Hausdorff space is «-collectionwise Hausdorff
iff (S ({a)},()Q) < k. The proof can be easily extended to point-characters less than « instead of first countability and
to k-fans. Then the assertion of proposition follows from Theorem 12. 0O

There are some results asserting that a product of two sequential fans of cardinalities at most « has tightness
provided some conditions are fulfilled (see, e.g., [3-6,11,13]). So, if x is submeasurable, the conditions cannot be
fulfilled. The next Proposition comprises several such conditions. In some cases, the nonvalidity of conditions may
be easy to prove directly without using previous Theorem 12, nevertheless it may be worth to summarize them as
consequences of properties of C,. For definitions of the concepts and symbols used in the next proposition see the
papers cited above.

Proposition 15. Let k be an uncountable submeasurable cardinal. Then

(1) Every monotone k-family is extendible to (k + 1)-family.

(2) (k) does not hold.

(3) E(x) does not hold.

(4) Cardinal b is not submeasurable.

(5) There are no (k, L)-good sets for A < k in the sense of Brendle and LaBerge from [3].
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