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Abstract. We investigate some numerical characteristics of Toeplitz operators

including the numerical range, maximal numerical range and maximal Berezin set.

Further, we establish an inequality for the Berezin number of an arbitrary operator

on the Hardy–Hilbert space of the unit disc.
Keywords: Berezin symbol; Berezin number; Maximal numerical range; Maximal
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1. INTRODUCTION

In this article we investigate the so-called maximal numerical range in the sense of
Stampfli [14] for some Toeplitz operators. We introduce the notion of maximal Berezin
set for operators on a reproducing kernel Hilbert space (RKHS) and study some of its
properties for the Toeplitz operators on the Hardy spaceH2ðDÞ. In particular, we focus
on the model case of Toeplitz operators on the Hardy-Hilbert space on the unit disc.
The Berezin number of an operator is also discussed.

The Hardy space H2 ¼ H2ðDÞ is the Hilbert space consisting of the analytic func-
tions on the unit disc D ¼ z 2 C : zj j < 1f g satisfying
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fk k22 :¼ sup
0<r<1

1

2p

Z 2p

0

fðreitÞ
�� ��2dt < þ1:
The symbol H1 ¼ H1ðDÞ denotes the Banach algebra of functions bounded and
analytic on the unit disc D equipped with the norm fk k1 ¼ supz2D fðzÞj j. A function
h 2 H1 for which hðnÞj j ¼ 1 almost everywhere in the unit circle T is called an inner
function. It is convenient to establish a natural embedding of the space H2 in the space
L2 ¼ L2ðTÞ by associating to each function f 2 H2 its radial boundary values ðbfÞðnÞ :¼
limr!1�fðrnÞ, which exist for m-almost all n 2 T; where m is the normalized Lebesgue
measure on T. Then we have
H2 ¼ f 2 L2 : f̂ðnÞ ¼ 0; n < 0
n o

;

where f̂ðnÞ :¼
R

T
�nnfðnÞdmðnÞ is the Fourier coefficient of the function f. For

u 2 L1 ¼ L1ðTÞ, the Toeplitz operator Tu with symbol u is the operator on H2

defined by Tu f ¼ Pþðuf Þ; here Pþ : L2ðTÞ ! H2 is the orthogonal projection (Riesz

projector).
We shall use repeatedly the easy but useful fact that T�uk̂k ¼ u kð Þk̂k for u 2 H1; here

k̂k is the normalized reproducing kernel for the Hardy space H2ðDÞ (see Section 2).

2. ON THE MAXIMAL NUMERICAL RANGE AND MAXIMAL BEREZIN SET

Recall that for the operator T 2 BðHÞ, (Banach algebra of all bounded linear operators
on the Hilbert space H), Stampfli [14] defined the maximal numerical range as follows:
W0ðTÞ :¼ k 2 C : Txn; xnh i ! k where xnk k ¼ 1 and Txnk k ! Tk kf g:

When H is finite dimensional, it is easy to see that W0ðTÞ corresponds to the numerical
range produced by the maximal vectors (vectors x such that xk k ¼ 1 and Txk k ¼ Tk k).
It is well known [14, Lemma 2] that the set W0ðTÞ is nonempty, closed, convex, and
contained in the closure of the usual numerical range
WðTÞ :¼ Tx; xh i : xk kH ¼ 1
� �

:

It is well known (see [7]) that WðAÞ is a convex set whose closure contains the spectrum
rðAÞ of A. If A is a normal operator, then the closure of WðAÞ is the convex hull of
rðAÞ. Furthermore, it is also known that each extreme point of WðAÞ is an eigenvalue
of A.

Let B be a Banach algebra with the norm :k kB. A derivation on B is a linear map
D : B ! B which satisfies
DðabÞ ¼ aDðbÞ þ DðaÞb

for all a; b 2 B. If for a fixed a; Da : b! ab� ba, then Da is called an inner derivation.
It is well known that every derivation on a von Neumann algebra or on a simple
C�-algebra is inner (see [8,12,13]). It is obvious that Dak k � 2 ak kB. Stampfli proved
that (see [14, Theorem 4]) if DT is a derivation on BðHÞ, then DTk k ¼ 2distðT;CIÞ,
where CI denotes the set of all scalar operators kI k 2 Cð Þ on H. Stampfli also proved
in terms of the maximal numerical range of T that DTk k ¼ 2 Tk k if and only if
0 2W0ðTÞ (see [14, Theorem 4]). When T ¼ Tu, the Toeplitz operator defined on
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H2ðDÞ, Stampfli’s assertion ‘‘ DTu

�� �� ¼ 2 Tu

�� ��() 0 2W0ðTuÞ’’ is equivalent to
‘‘dist u;F constð Þ ¼ uk kL1 () 0 2W0ðTuÞ’’ (because it is elementary to show that
distðTu;CIÞ ¼ dist u;F constð Þ, where F const is the set of all constant functions). Thus,
the condition 0 2W0ðTuÞ is important in the approximation problem. So, the notion
of maximal numerical range plays a key role in distance estimates.

In this section, we investigate the structure of the maximal numerical range and
maximal Berezin set of some Toeplitz operators on the Hardy space H2.

The following result gives an example of an operator containing 0 in its maximal
numerical range.

Proposition 1. Let hðzÞ ¼ exp zþ1
z�1
� �

be a singular inner function. Then 0 2W0ðThÞ.

Proof. It is well known that (see, for example [4]) the nontangential limit at the point 1
of the function h is equal to zero. Therefore, there exists a sequence knf gnP1 � D such

that hðknÞ ! 0 as kn tends the nontangentially to 1. Let us consider the sequence

kknðzÞf gnP1 ¼ 1

1�knz

n o
nP1

. Clearly, kkn 2 H2 for all n P 1. Let us denote k̂knðzÞ :¼

kkn ðzÞ
kkn ðzÞk k

2

¼ ð1� knj j2Þ
1
2

1�knz
. Then, by considering that T�hkkn ¼ hðknÞkkn , we have
lim
n

Th
bkkn ; k̂kn

D E
¼ lim

n
k̂kn ;T

�
hk̂kn

D E
¼ lim

n
k̂kn ; hðknÞk̂kn

D E
¼ lim

n
hðknÞ ¼ 0
because hðknÞ ! 0 as kn ! 1 nontangentially. On the other hand, since Th is an isom-

etry, we have limn Th
bkkn

��� ���
2
¼ 1 ¼ Thk k, and hence limn Thk̂kn

��� ���
2
¼ Thk k, which shows

that 0 2W0ðThÞ, as desired. h

Remark 1. In general, it is easy to see that W0ðVÞ ¼WðVÞ for any isometry V on a
Hilbert space H. On the other hand, since rðVÞ �WðVÞ, we have that 0 2W0ðVÞ
for any non-unitary isometry V.

Recall that by a Reproducing Kernel Hilbert Space (RKHS) we mean a Hilbert
space H ¼ HðXÞ of complex-valued functions on some set X such that evaluation at
any point of X is a continuous linear functional on H. The classical Riesz representa-
tion theorem ensures that a functional Hilbert space H has a reproducing kernel, that
is, a function kH : X� X! C with defining property f; kH;kh i ¼ fðkÞ for all f 2 H and

k 2 X, where kH;k ¼ kHð:; kÞ 2 H. Let k̂H;k :¼ kH;k
kH;kk kH

be the normalized reproducing

kernel of H. For any bounded linear operator A on H, its Berezin symbol eA is defined
by (see [17])
~AðkÞ :¼ Ak̂H;k; k̂H;k

D E
; k 2 X:
It is well known that k̂H2;k ¼ ð1� knj j2Þ
1
2

1�kz
and ~Tu ¼ eu for any Toeplitz operator on the

Hardy space H2, where ~u is the harmonic (Poisson) extension of u into the unit disc
D. The Berezin symbol of an operator provides important information about the
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operator. Namely, it is well known that on the most familiar RKHS, including the
Hardy, Bergman and Fock spaces, the Berezin symbol uniquely determines the opera-

tor ði.e., ~A1ðkÞ ¼ ~A2ðkÞ for all k 2 X implies A1 ¼ A2).
The RKHS is said to be standard (see [11]) if the underlying set X is a subset of a

topological space and the boundary @X is non-empty and has the property that

k̂H;kn

n o
converges weakly to 0 whenever knf g is a sequence in X that converges to a

point in @X.
For a compact operator K on the standard RKHS H, it is clear that

limn!1 ~KðknÞ ¼ 0 whenever knf g converges to a point of @X (since compact operators
send weakly convergent sequences into strongly convergent ones). In this sense, the
Berezin symbol of a compact operator on a standard RKHS vanishes on the boundary.

For a bounded linear operator on a RKHS its Berezin set and Berezin number are
defined, respectively, as follows:
BerðAÞ :¼ Rangeð eAÞ ¼ eAðkÞ : k 2 X
n o

berðAÞ :¼ sup gj j : g 2 BerðAÞf g ¼ eA��� ���
L1ðXÞ

:

Observe that Engliś showed, in his thesis, that eA is a C1 function.
For any operator A 2 BðHÞ, let us define also the following set, which we call as

maximal Berezin set of A:
fW0ðAÞ :¼
�

k 2 C : 9 knf g � X such that

k ¼ lim
kn!@X

eAðknÞ and lim
kn!@X

Ak̂H;kn

��� ���
H
¼ Ak k

	

Clearly, fW0ðAÞ �W0ðAÞ. It is also obvious that fW0ðAÞ ¼W0ðAÞ ¼ kf g for any scalar

operator A ¼ kI, and fW0ðKÞ ¼ ; for every non-trivial compact operator K on the stan-
dard RKHS H. However, the situation is not much trivial for other operators and
RKHS.

Our next result concerns the structure of the maximal Berezin set fW0ðTuÞ for some
analytic Toeplitz operator Tu on H2. Before giving it, let us introduce the following
notation:
H1;d :¼ f 2 H1 : fj j ¼ fk k1 on a subset of Tof positive measure
� �

:

In other words, for every f 2 H1;d there exists a set Ef � T with measEf > 0 such
that fðnÞj j ¼ fk k1 for all n 2 Ef. According to the result of Fisher [3] (see also [4]),
the set H1;d is dense in H1.

Theorem 1. Let u 2 H1;d be a nonconstant function. Then there exists a subset Eu � T

of positive measure such that uðnÞ : n 2 Eu
� �

� fW0ðTuÞ.

Proof. Since u 2 H1;d, there exists a set Eu � T such that measEu > 0 and
uðnÞj j ¼ uk k1 for all n 2 Eu. Let n 2 Eu be an arbitrary fixed point. Then there exists
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a sequence knf g � D such that limnkn ¼ n and limkn!nuðknÞ ¼ uðnÞ. Then by

considering that k̂kn :¼ bkH2;kn ¼ ð1� knj j2Þ
1
2ð1� knzÞ

�1
and
uðknÞj j ¼ Tu
bkkn ;

bkkn

D E��� ��� 6 Tu
bkkn

��� ���
2
6 Tu

�� �� ¼ uk k1;
we have
uk k1 ¼ uðnÞj j ¼ lim
kn!n

uðknÞj j 6 lim
kn!n

Tu
bkkn

��� ���
2
6 uk k1:
Hence
lim
kn!n

Tuk̂kn

��� ���
2
¼ uk k1:
This shows that uðnÞ : n 2 Eu

� �
� fW0ðTuÞ, as desired. The theorem is proved. h

As will be shown below, the notion of maximal Berezin set can be useful in the inves-
tigation of some problems for some special C�-operator algebras on the Bergman space

L2
a, which we will call Engliś algebras (because, apparently, these algebras have been

introduced for the first time by Engliś in [2]). Recall that the Bergman space

L2
a ¼ L2

a Dð Þ is the Hilbert subspace of the Lebesgue space L2 Dð Þ consisting of analytic

functions, with induced norm :k kL2
a
, and that the reproducing kernel of L2

a reads as

KL2
a;k

zð Þ ¼ 1

1�kzð Þ2, see [17] for further details. In particular, the following Engliś algebra

AB (the subscript B stands for ‘‘Bergman’’) is defined in [2] as follows:
AB :¼ T 2 B L2
a

� �
: Tk̂L2

a;k

��� ���2
L2
a

� Tk̂L2
a;k
; k̂L2

a;k

D E��� ���2 and T�k̂L2
a;k

��� ���2
L2
a

�

� T�k̂L2
a;k
; k̂L2

a;k

D E��� ���2 ! 0 radially

	
;

where bkL2
a;k

is the normalized reproducing kernel of L2
a.

It was shown in [2] that the same algebra in the Hardy space case contains all
the Toeplitz operators Tu;u 2 L1 Tð Þ. However, the situation is not clear for the
algebra AB, and the following question has been posed in this respect by Engliś in
[2, Question 1].

Question 1. Is it true that T/ 2 AB for all / 2 L1ðDÞ?

Here, we characterize in terms of maximal Berezin set and Berezin number the Eng-
liś algebra AB, which in particular sheds some light on the solution of Question 1.

Proposition 2. Let T 2 B L2
a Dð Þ

� �
be an operator on the Bergman space L2

a Dð Þ such that

berðTÞ 2gW0ðTÞ \gW0ðT�Þ. Then T 2 AB if and only if Tk k ¼ ber Tð Þ.

Proof. Since berðTÞ 2gW0ðTÞ \gW0ðT�Þ, there exists a sequence knf g and lnf g � D

tending to the boundary points n and g 2 T, respectively, such that
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berðTÞ ¼ lim
kn!n

eT knð Þ and lim
kn!n

Tk̂L2
a;kn

��� ���
L2
a

¼ Tk k
and
ber T �ð Þ ¼ lim
ln!g

fT � lnð Þ and lim
ln!g

T �k̂L2
a;ln

��� ���
L2
a

¼ T�k k:
If it is necessary, by choosing other points n and g 2 T, we can assume that at least one
of the sequences knf g and lnf g tends radially to a boundary point in T. Then, by

considering the obvious facts that T �k k ¼ Tk k; eTðzÞ��� ��� ¼ fT � zð Þ
��� ���; ber T �ð Þ ¼ ber Tð Þ,

it follows from the latter equalities that T 2 AB if and only if Tk k ¼ ber Tð Þ. This proves
the proposition. h

The following question arises: is it true that there exists a Toeplitz operator Tu on

the Bergman space L2
a Dð Þ with symbol u 2 L1 Dð Þ satisfying ber Tu

� �
2gW0ðTuÞ and

ber Tu

� �
< Tu

�� ��?

By using Proposition 2, it is easy to see that a positive answer to this question would
give a negative answer to the above mentioned Question 1.

3. NORMALITY AND THE NUMERICAL RANGE OF TOEPLITZ OPERATORS

Our next result is the following characterization of normal operators in terms of
Berezin symbols.

Proposition 3. Let A be a bounded operator on a RKHS H ¼ HðXÞ and let eAðkÞ ¼
A bkH;k; bkH;kD E

be its Berezin symbol, where bkk ¼ kk
kkk kH

is a normalized reproducing kernel

of H. Then A is a normal operator on H if and only if
A� eAðkÞI
 �bkk

��� ���
H
¼ A� eAðkÞI
 �� bkk

��� ���
H

for all k 2 X.

Proof. By considering that Ak̂k � eAðkÞk̂k ? eAðkÞk̂k, we have
Ak̂k

��� ���2
H
¼ Ak̂k � eAðkÞk̂k

��� ���2
H
þ eAðkÞ��� ���2 ð1Þ
for each k 2 X. Since A bkk

��� ���2
H
¼ A�A bkk; bkk

D E
¼ gA�A kð Þ and A� bkk

��� ���2
H
¼ gAA� kð Þ, it

follows immediately from formula (1) that
Ak̂k � eAðkÞ bkk

��� ���2
H
¼ gA�A kð Þ � eAðkÞ��� ���2
and
A�k̂k � fA�ðkÞk̂k

��� ���2
H
¼ gAA� kð Þ � eAðkÞ��� ���2:
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Since the Berezin symbol uniquely determines the operator, it follows from the last two
formulas that A�A ¼ AA� if and only if
A� eAðkÞI
 �
k̂k

��� ���
H
¼ A� eAðkÞI
 ��

k̂k

��� ���
H
; k 2 D;
which proves the proposition, since fA� kð Þ ¼ eA kð Þ. h

In the present, section we will give some applications of Proposition 2 in the study of
some topological properties of the numerical range of Toeplitz operators acting on the
Hardy space.

The description of the numerical range of an arbitrary Toeplitz operator on the
Hardy space H2 Dð Þ of the unit disc D was given in [10]. The Bergman space case
was considered by Thukral [15] in case of bounded harmonic symbols. More recently
Choe and Lee [1], as well as Gu [5], treat higher-dimensional Bergman space analogues.
The case of Bergman space Toeplitz operators with bounded radial symbols has been
considered very recently by Wang and Wu [16]. (For characterization of numerical
ranges of certain classes of so-called dual Toeplitz operators, see, for instance, Guediri
[6].)

Theorem 2 ([10]). Let u 2 L1 Tð Þ. If W Tuð Þ is not open in C, then Tu is normal on H2.

Corollary 1 ([10]). Let u 2 L1 Tð Þ. If Tu is not normal on H2, then W Tuð Þ is the interior
of its closure.

It is known (see [6, Thoerem 1.4-1]) that for any bounded linear operator T on a
Hilbert space, if W Tð Þ is a part of a line segment, then T must be normal. In [10],
the author considers the problem of when the converse of this fact is also true for Toep-
litz operators. Namely, he proved the following result.

Theorem 3 [10]. Let u 2 L1 Tð Þ. Then Tu is normal on H2 if and only if W Tuð Þ is an
open line segment.

The following results are immediate from Theorems 2 and 3, Corollary 1 and Prop-
osition 2.

Proposition 4. Let u 2 L1 Tð Þ. If there exists a k0 2 D such that
Tu � eu k0ð ÞIð Þk̂k0

��� ���
2

– Tu � ~u k0ð ÞIð Þ�k̂k0

��� ���
2
;

then the numerical range W Tuð Þ of Tu is open in C.

Proposition 5. Let u 2 L1 Tð Þ. Then, the numerical range W Tuð Þ is an open line segment

if and only if Tu � ~u kð ÞIð Þ bkk

��� ���
2
¼ Tu � ~u kð ÞIð Þ� bkk

��� ���
2
, 8k 2 D.
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The same results can be similarly proved for Toeplitz operators on the analytic or
harmonic Bergman spaces of the unit disc, on Hardy and Bergman (pluriharmonic
Bergman) spaces of the unit ball or polydisc in Cn.

4. AN ESTIMATE FOR ber Að Þ

The next result slightly improves a result in [9, Theorem 1] and gives an inequality for
the Berezin number of operators.

Theorem 4. Let u 2 H1; uk k � 1, be any function, and h be any nonconstant inner
function. For any operator A 2 B H2

� �
we denote
Nu;h;A :¼ Tu I� ThATh

� �
:

For any e 2 0; 1ð Þ, let Le;h :¼ z 2 D : h zð Þj j 6 ef g be an e-level set of h. Then
berðAÞP sup
0<e<1

u� eNu;h;A

��� ���
L1 Le;hð Þ

e2
:

Proof. Arguing in the same manner as in Theorem 1 of [9], we obtain
eNu;h;A kð Þ ¼ Nu;h;A kð Þk̂k; bkk

D E
¼ u kð Þ 1� h kð Þj j2 eA kð Þ


 �
; k 2 D
from which we obtain that
u kð Þ � eNu;h;A kð Þ
��� ��� ¼ eA kð Þ

��� ��� u kð Þj j h kð Þj j2 6 ber Að Þ h kð Þj j2
for all k 2 D. In particular,
u kð Þ � eNu;h;A kð Þ
��� ��� 6 ber Að Þe2
for all k 2 Le;h, and hence
u� eNu;h;A

��� ���
L1 Le;hð Þ

6 ber Að Þe2; 0 < e < 1;
which implies that
sup
0<e<1

u� eNu;h;A

��� ���
L1 Le;hð Þ

e2
6 ber Að Þ
as desired. The proof is completed. h
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[2] M. Engliś, Toeplitz operators and the Berezin transform on H2, Linear Algebra Appl. 223/224 (1995)

171–204.

[3] S. Fisher, Exposed points in spaces of bounded analytic functions, Duke Math. J. 36 (1969) 479–484.

[4] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, London, 1981.

[5] D.G. Gu, The numerical range of Toeplitz operator on the polydisc, Abstr. Appl. Anal. 2009 (2009)

(Article ID 757964, 8 p).

[6] H . Guediri, Quasinormality and numerical ranges of certain classes of dual Toeplitz operators, Abstr.

Appl. Anal. vol. 2010. http://dx.doi.org/10.1155/2010/426319 (Article ID 426319, 14 p).

[7] K. Gustafson, D. Rao, Numerical Range: the Field of Values of Linear Operators and Matrices,

Springer Verlag, New York, 1997.

[8] R.V. Kadison, Derivations of operator algebras, Ann. Math. 83 (1966) 280–293.
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