
Inverse Boundary Value Problems 

and a Theorem of Gel’fand and Levitan 

This report concerns two so-called inverse problems of mathematical physics. 
These are: (i) the problem of determining :I second-order differential operator 

(in a nonnal form) on the half-axis fro111 its spectral function; ;uld. (ii) the 

problrm of determining a hypcrholic boundary vah~e prnhlrm of :I special 

form in a (non-characteristic) half-plane from its response on the boundary to 

a unit imp&c at some reference time 1 --- 0 (boundary wluc of ~hr Kicmwn 
function). WC solve problem (ii) by a natural approach, and then indiutc bow 

the solution of problem (i) follows from the solution of problem (ii). Our soln- 

tion of problem (ii) is constructive, and we obtain stability of the solution 
under perturbation of the data, in a well-defined sense. For problem (I), we 

obtain the well-known result of Ccl’fand and L&tan, in the sharp formulation 

given by Levitan and Gasymov ([6]). 

1. INTRODUCTION 

This report concerns two so-called inverse problems of mathematical physics. 
These are: (i) the problem of determining a second-order differential operator 
(in a normal form) on the half-axis from its spectral function; and, (ii) the pro- 
blem of determining a hyperbolic boundary value problem of a special form in 
a (non-characteristic) half-plane from its response on the boundary tn a unit 
impulse at some reference time t : 0 (boundary value of the Riemann function). 

WC solve problem (ii) by a natural approach, and then indicate how the 
solution of problem (i) follows from the solution of problem (ii). Our solution 
of problem (ii) is constructive, and we obtain stability of the solution under 
perturbation of the data, in a well-defined sense. 

For problem (i), we obtain the well-known result of Gel’fand and Levitan, 
in the sharp formulation given bp Levitan and Gasymov ([6]). 
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380 \v. SYMES 

We will write R+ 1:: [0, oo) CR throughout. We use the common notations 
Ck( U), Cz( V), Com( Li), &L(U), P(U), S?‘(U) for the space of K-times, respectively 
infinitely differentiable functions, respectively those with compact support, with 
the usual Frechet topologies, and their strong duals. Here I,‘C R’” may be 
closed or open. 

We denote by ?V$:(li) the collection of functions in P--l(U) whose mth 
partial derivatives, which a priori exist as distributions, may be identified with 
locally absolutely integrable functions on I/’ C R”, i.e. lit in L:,,(C). \Ye give 
W;nO$( I/‘) its usual FrCchet topology. 

If U, .I/ C R are open sets, denote by W$t( Lr x I-) the space of continuous 
functions on I; x ‘I(’ whose (distributional) partial derivative in the first (second) 
variable may be identified with a continuous function of the second (first) 
variable with values in Lt,,( Li) (L:,,,(V)). According to Fubini’s theorem, 

It is clear how to define ,9&$(Q) f or an arbitrary open set Q C R”, since the 
definition is local, and anyp E Q has a product neighborhood. On the other hand, 
suppose Q is closed with smooth boundary, and 1etfE Co(Q) n W&i(int Q). Let 
p E 2Q, and select U, Tf C R open so that 1,: x I’ is a neighborhood of p in R”. 
Then for each x E Z..‘(J~ E l,‘), extend the partial derivative D,,~(x, .) (Drf ., y)) 
to a distribution on I’(G) by requiring 

for 4 E: C(,“( I’) 

for # E Co5( C)) 

where T<.,, -= {y E V: (x, y) E Q} ( UV =: (X E U: (x, y) E Q}). WC declare that 
f E Wt,$(Q) if and only if, f or each choice of p, U, I’as above, each x E T,‘( y E V), 
the partial derivative D,f (x, .) (Q f  (a, y)) may be identified with a locally 
integrable function on V(U), and the map x E+ D,f (x, *) (y S+ D,f (*, y)) is 
continuous, i.e. lies in C”( U; L:,,(V)) (C”( E L:,,(U)). 

The topology on W:;:(Q) is given by the CO(Q)-seminorm and the local 
norms of the form 

2; s ,,dy I h.f(x>~)I 7 sup I dx I D,f (x9 r)l 
VEX5 K 

with K, L C R compact. 
Finally, f  E W;nOJ(Q), m > 1, if and only if f  E CW~-~(Q) and all m - 1st 

order partial derivatives of f  are in W:,$,(Q). The topology on q;:(Q) is 
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defined in a similar way to that of YY~,$(Q). We note that %‘$$r(Q) C Wc$(Q), 
and that the topology on WC;1 is stronger than that of W;nO$. 

Functions in YY$~(Q) may be constructed in the following way: suppose 
f  E W;Rot(R). Then, as is easily verified, the function F: Q -+ C defined by 

F(x,y) =f@ + 49 

for some (a, b) E R2, lies in wz,(Q), for any closed Q with piecewise smooth 
boundary. In fact, the spaces w;“od enter the theory developed here in precisely 
this way. 

We shall use various common notations for derivatives and partial derivatives, 
such as primes, subscripts, 0, , 2/2x, etc., without comment. 

Our results provide an alternate route for part of the proof of the following 
theorem, which is a sharp version, due to Levitan and Gasymov ([6]), of the 
celebrated theorem of Gel’fand and Levitan ([4]). 

THEOREM I. A nondecreasing funkion p: R -+ R is the spectral function of a 
boundary value problem on Rf = [0, co): 

-y”+(q-h)y=O 

y’(O) + b(O) = 0, hER 

with q E W&(R+), if and only if p satisJes the conditions: 

(i) the integrals 

1 N do(h) cos Xl’2 x = IN(X) 
‘-zx 

converge boundedly to functions in WEz’(R+), where 

o(h) = p(X) - J- P, A>0 
i7 

= PN, h < 0. 

Moreover, {IN: N EZ} converges as N + co in WGi’(R+) to a function j with 
f(0) = h. 

(ii) Suppose u E L2(R+) has compact support. Let 

u’(h) == d[m dx u(x) ~os(h)l’~ x. 
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Then zi EL’(R; dp), and 

W. SYMEB 

if and only if u L 0 ax. 

Remark. In (ii) above and for the rest of this paper, “cos Ali” x” denotes the 

entire function of h whose value for h > 0 is cos h1j2 x. In particular, for h < 0, 
cos iW2 x z cash 1 A :I:2 x. 

The bulk of this paper is devoted to proving the following two theorems, from 
which Theorem I follows, and which are of interest in their own right: 

THEOREM II. An even function J : R --f R is the boundary calue of the Riemann 
function: 

f(t) =.-- R(0, t, 0, 0), t#O 

for a hyperbolic boundary value problem: 

Utt - u,., -1 qu =x 0 

~~(0, t) -i- hu(0, t) ._ 0, tER 

with q E Wan, ;f  and only if 

(i) f”~ Wc$(R), j(O) = h 

(ii) the kernel f  (s, t) =: &(f(s +- t) -+ f  (s - t)) satisjies the condition: 
for any T > 0, there exists E(T) ‘, 0 so that for all u ~L2([0, T]), 

Remark. An easy compactness argument shows that the condition (ii) above 
is equivalent to the assertion that 

for all II EL”(R+) with compact support. 

THEOREM III. (i) The collection of even functions JE W~~‘31(R) dejined by 
condition (ii) in the statement of Theorem II forms an open set in IV~;‘91(R)even . 
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(ii) fey any ewen p in FV1~~‘~’ (R), there are preciseZJ1 one h E R und one 

q E WI”,i(R+) so that f(t) = R(0, t, 0, 0), t f  0, for the Riemann function R of 

the boundary ealue problem 

U(( - u,, - qu 2= 0 

u,,.(O, t) : hu(0, f) :-= 0. 

(iii) The map jc+ (h, q) whose existence is implicit in statement (ii), is a 

continuous map from the open set described in statement (i) to R x Wr’:(R+). 

Remark. Theorem III is a uniqueness and stability theorem. Theorem I 
is, of course, more-or-less well known, and Theorem II could be deduced from 
Theorem I. Our method of proof, however, proceeds by means of an iteration 
scheme, with error hounds given explicitly in terms of the numbers E(T) men- 

tioned in Theorem II, and various norms of jl. In particular, we obtain the 
stahilitv statement of Theorem III, which stems to be new. 

3. HECRISTIC D~scuss~oh- OP HIWLTS 

Problem (i) is concerned with the spectral function of a boundary value pro- 
blem 

-y”(x) L (q(x) - A) J(X) .:- 0, J :‘I 0, A E R 

y’(0) + hy(0) = 0 
(3.1) 

where h is some real number. Let +(sc, A) bc the solution to (1) selected by the 
initial condition 

cjJ(O, A) = 1. 

The spectral function of (1) is a nondecreasing function whose associated Stieltjes 
measure properly weights the “eigenfunctions” #(., A) in the spectral resolution 
of the identity for (I), which is concisely written 

(3.2) 

In this heuristic discussion, we shall not worry about making precise sense of 
divergent integrals such as (2); that is done, in any case, in standard textbooks 
on spectral theory of ordinary differential operators, e.g. [2], Ch. XIII. Nor 
shall we make precise smoothness assumptions on q. 

Problem (i) is: given p, find the differential equation (that is, 4) and the 
boundary condition (that is, h), which give rise to p. Of course, this involves 
describing those nondecreasing p that arise as spectral functions of problems of 

type (1). 



Problem (i) is a refined version of the inverse eigenralue problem: to construct 
a differential operator of some special type, cum boundary conditions, having a 
given spectrum. This problem admits a large amount of non-uniqueness in its 
solution. Since the points of increase of the spectral function of (I) exactly 
amount to its spectrum? a solution to problem (i) certainly solves the inverse 
eigenvalue problem. The spectral function also carries normalization informa- 
tion, however, and this additional information makes its solution unique. 

For a history of these problems consult [3] and references cited therein. 
Problem (ii) is concerned with a hyperbolic boundary value problem 

I $2 

( 
- - g + q(r)) 24(x, t) L 0 
at* * (x, t) E R+ x R 

(3.3) 

0, tcR 

The Riemann Function R(x, t; q, , ,, t ) is the solution of the mixed problem obtai- 
ned by adding to (3.3) the initial conditions 

u(x, t,,) = 6(x - x,,) 
,I 

g (x, to) = 0. 

Then U(X, t) 7 R(x, t; x0 , to). Again, 4 is “smooth enough”, and we do not 
worry for the moment about the sense in which a distribution satisfies a mixed 
problem of this sort. In fact, as explained in [5], R is a special distribution with 
well-defined restrictions to vertical (and horizontal) lines such as {X =-- O}. 

We also note that our Riemann Function is a derivative of the object usually 
called by that name; see [I], Ch. VI, Section 15. 

Ihote that the solution of the inhomogeneous mixed problem 

(6 at* ij” --. ar4 2 I 4 4(s)) +, t) .- g(x, fh x ,;. 0 

g (0, t) -1 hu(0, t) 0 

u(x, to) -- ; (24, to) L= 0, x ;> 0 

can be represented in the form 

u(x, t) = .[I da .[,; dr j-,” dy R(x, t; Y, 0) g(y> 7) (3.5) 
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(Duhamel’s integral). The system (3.4) models certain processes (e.g. nonuniform 
transmission lines) subject to an imposed force g, in which signals, represented 
by u, propagate with unit speed, and some boundary conditions are imposed at 
the “surface” x = 0. Then (3.5) represents the “forward” (t > t,,) response of 
the system to the impulse R. If we choose in particular g(~, t) :=: 6(x - .t’” , 
1 - to), then 

+, t) = 1’ R(~, t, WV,, , u) da, t ::a t, . 
” f,, 

WC conclude that 

represents the response at time t > 0 at the surface N == 0, to a unit impulse 
applied at t -= 0, x 1:~ 0. 

Problem (ii) is: givenx find the boundary value problem (3.3), that is, find 
the function q and the number h. Otherwise put, we are to recover the dynamics 
of the system from a knowledge of its response along the “surfacc” x : 0 to a 
unit impulse, also applied at the surface. 

Problem (ii) is prototypical of a variety of inverse wave propagation problems 
of applied mathematics. We refer the reader to [3, 81, for instances. 

We now observe that problems (i) and (ii) are equivalent. In fact, if WC 
denote by L the self-adjoint ordinary differential operator defined by the bound- 
ary value problem (3.1) (with a boundary condition at x = 00 supplied, if 
necessary), then the Riemann function is just the distribution kernel of cos t(,YF), 
and admits the spectral representation 

I+, 1, X,) ) t,,) : foe dp(X) cos A”” (t - to)+(.x, A)qqxo ) A), 
---m 

In particular 

f‘(t) =: R(0, t, 0,O) = y dp(h) cos A”2 t 
“-zc 

so that J is the Fourier transform of p. Thus knowledge off and knowledge of p 
are equivalent, so problems (i) and (ii) are equivalent. 

Since problems (i) and (ii) are equivalent, the solution by Gel’fand and Levitan 
[4] of problem (i) also solves problem (ii). We prefer, however, to deduce the 
solution of problem (i) from that of problem (ii), and in so doing present a 
natural interpretation of the machinery in [4] in the context of hyperbolic p.d.e. 
Besides a better understanding of the well-known results and methods of [4], 
we are immediately led to the correct stability result for problem (ii) (Theorem 
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III), and to the solution of a number of other inverse boundary value problems 

(see [9]). 
We should point out that the equivalence of problems (i) and (ii), and the 

hyperbolic interpretation of the ideas in [4], are more-or-less well known. 
However, no careful statements on the lines of Theorem II ha\-e appeared in the 
literature, nor has a stability result of the tqe of Theorem 1TT been previously 

asserted, to our knowledge. 
Our approach to problem (ii) is based on se\-era1 clcmentary proprrtics of the 

Ricmann function, especially: 

(i) (Group property). Let L’(t) be the operator which maps (‘auchy data 
(u(s, to), q(s, to)) for a solution of (3.3) at time t,, to the Cauchy data for the same 
solution (u(,x, t -1 I,,), u,(.v, t + t,,)) at time t j- t,, . ‘I’hen 

C(s) C(t) : I@ ) 1). (3.6) 

(ii) (Z’roggre.ssing Wuze Expansion). The distribution a(~, I) R(?, f,  
0,O) can bc decomposed: 

R( iv, 1) = S( j !  -t f) I-- 6( WV -.- 1) $- K( y, f) 

where K(y, t) .: K(J, ..- f) has one more derivative than the coeliicient q in the 
region y  :K f : , vanishes identically outside that region, and on the boundary 

satisfics the transport quafion 

K(f, f) -..- -. ; 1’ q -i h. (3.7) 
* (1 

These assertions will be made precise in Section 4. They arc essentially 

classical results for which methods of proof are to be found for instance in 
Chs. V and VI of [I]. 

Since the operator (.: is implemented by the Riemann function, (i) and (ii) 

plus snmc symmetry properties of R. together imply an integral equation for I?: 

f(S, f) A(,f(S + f) 1. f‘(s --- f)) ::-- 6,’ dy zqy, f) I?(?, 5). (3.8) 

According to property (ii), we may replace the upper limit of integration on the 
right-hand side of (3.8) by max(: t / , ’ s I), and we obtain, for instance, for 
f >? s “- 0 

f(s, t) .-: K(s, t) -- j-: dy K(y, t) K(y, s). (3.9) 

We base our solution of problem (ii) on this nonlinear Volterra equation, derived 
in a different way by Gel’fand and Levitan. The hypotheses of Theorem II are 
precisely what is necessary to ensure that (3.9) has a global solution. 
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Further, our method of solving (3.9) for K is manifestly stable against small 
changes in the data f (Theorem III). Finally, explicit error bounds appear 
(Section 5) which allow one to estimate the efficiency of our approach for 
numerical computation. This circumstance should be compared with most 
other treatments of problem (i) along the lines of [4] (see especially [6, 3]), which 
turn on the solution of a linear integral equation of Fredholm type related to 
(3.9). RF contrast, our error estimates involve only a lower bound for this 
Fredholm operator. 

Having solved (3.9) for K, we show that K is the appropriate piece of the 
Riemann 1;unction for a boundary value problem (3.3), with coefficient function 
Q related to K hv the transport equation (3.7). This is accomplished in Section 7. 
Finally, Theorem II is used in Section 8 to supply the key ingredients of the proof 
given in [6] of Theorem I, and we leave the matter there. 

4. PROPERTIES OF THR IIIEMANK FUNCTIOS 

This section is devoted to the necessity part of Theorem II, that is, the proof 
that the boundary value of the Riemann function of a problem of form (4.1) 
below must satisfy the conditions (i) and (ii) in Theorem II. 

Most of the following assertions are standard and can be found, for instance, 
in [I, Chaps. 1’ and VI], in one form or another. In a few cases, our finite 
differentiability hypotheses and imposition of boundary conditions in the 
progressing wave construction of R arc incompatible with readily available 
results; however, the proofs are the appropriate modifications of the available 
ones, and we omit them. 

We denote by R(*, .; x0 , to) the solution of the boundary value problem 

utt - u,, - qu = 0 
(4.1) 

U?(O, t) - hu(0, t) = 0. 

with initial conditions 

R(x, t,; x,, , to) = 8(x - x0) 

n 

& R(x, t, x,, , t,JL, = o. 

We assume that q E W;“,$(R+), m > 1. Then: 

I. (Regularity) 

(4.2) 

R E Cm(Rt x R,+, x Rt,; b’(R,+)) n P(R,+ x R;, x R!,; P(R,)). 
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Property I follows from a theorem on solutions of (4.1) with smooth (‘au&y 
data and the Schwarz kernel theorem, via standard arguments. 

II. (Symmetry) 

R(x, t; x0 ) to) = R(x, , t,; x, t) 

=-. R(x, t,; x,, ) t) 

--= R(x, t - s; x,, , t,, - s) 

for s E R; in particular 

R(x, 2; x0, 0) = R(x, -t; X” ) 0). 

Note that I and II combine to yield further regularity properties. 
Denote by .2 the matrix of distributions 

R(r, 1; X” , f,,) 
2(x, t; *To, to) L 

j* du R(x, t; “q) , u) 
tlJ ij 

z n(x, t; x0 , to) ; j-” da R(x, t; .Q 1 0) 
to ! 

Then the solution of (4.1) with smooth Cauchy data 

q.5 t,,) = u,,(x), u,(x, to) .= v&) E C"(R+-) 

is given by 

(4.3) 

where we have written (S, 4) for the evaluation of a distribution S on a test 
function a, and regarded W as a matrix-valued distribution in the third variable. 
We shall find it convenient to write 

(4.4) 

with the integration “in the sense of distributions”, i.e. (4.4) means (4.3). We 
shall also find it convenient to indicate the composition of distribution kernels 
such as R, W by integrals (see [IO] Part III; note that compositions of the type 
below make sense because R is semiregulav, in the language of [lo]). 

III. (Group Law) 
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This is just (3.6) written in terms of distribution kernels. It is a consequence 
of the independence of time of the coefficient and boundary condition of the 
problem (4.1). 

As in Section 3, we write a for the distribution kernel on R+ x R: 

R(y, t) :e R(y, t; 0,O). 

LEMMA. 

#(O, t - s) + &O, t + s)) = I,u dy &y, s) w(y, t). (4.5) 

Proof. By III, 

R(0, t + s) = j-= dy R(O, t + s, Y, s) R(Y, s, 0, 0) 
0 

(4.6) 

+ 6 4 (j-“+” du W, t + s, Y, 4) D,R(y, s, 0,O). 
s 

However, using the symmetry properties (II), 

It+’ da R(0, t + s, y, u) =: 1’ du R(0, t, y, u) 
‘R ‘0 

4R(y, s, 0,O) = --D,R(y, -s, 0,O). 

Thus the second integral (composition of kernels) is odd in the parameter s 
whereas the first is even. Replacing s by -s in (4.6), adding, and multiplying by 
4 gives the result. 

IV. (Progressing Wave Expansion) , 

R(y, t) == S(T + t) + S(y - t) + K(y, t) 

where K E Wl”a’,‘*‘(Q), 

(4.7) 

Q=i(r,t>ER+ xR:y<rtll, and K(y, t) = 0, y > [ t 1 . 

Also the transport equation holds: for t > 0, 

K(t, &t) = - Q stq + h. 
0 

(4.8) 

In the readily accessible literature, the progressing wave expansion is usually 
developed for equations with Cm coefficients and no boundary conditions. In our 



case, we just barely get away with it, because of the finite differentiabilit! 
assumptions. 

Slightly altering the notation used in Section 3, write 

R(0, t) :.I 26(t) /. J(t) 

~(a(O, S ‘. t) -1. 17(0, S -- f)) = S(S -i- t) ) S(S - t) ~ f(S, f) 

f(S, I) = z,(j(s ;- t) .j. J(.Y ..’ t)). 

‘I’henJE IV;“,lT1(R),f~ ti‘i$‘*r(R x R) according to I\‘; according to II, f  is 

even and f is symmetric. 
In view of all this symmetry, we consider the integral relation (4.5) when t, 

s ::.: 0. Then the progressing wave expansion reads 

I?(?, f) :: S(y - t) -I- K(y, t) 

and (4.5) becomes, for 1 > 0, 

S(s - t) + f (s, t) 7 ST dy(S(y - t) + K(y, t)) (S(y - s) $ K(y, 4) 
0 

= S(s - t) + K(s, t) f js dyK(y, t) K(y, s) 
0 

01 

,f(s, t) = K(s, t) -; s * dyK(y, t) K(y, s). (4.9) 
0 

Since both sides of (4.9) are continuous, it holds for t -= 0 also. Restricted to 
0 :.I t :s’: T, some T :/ 0, the kernel i? defines an operator of the form I )- Kr- , 

where I is the identity operator on L2([0, T]), and K7 is the integral operator 

Thus Z :- K, is a bounded (Volterra) operator on P([O, Y’]), and in particular is 
invertible. 

Write F7 for the integral operator on F([O, I’]) with kernel f (s, t). Then (4.9) 
can be written 

I ;- FT z.7 (f -+ KT+) (I -b K=) (4.10) 

which shows that the left-hand side is a positive semidefinite symmetric Fred- 
holm operator on L*( [0, T]). \F ‘e claim that, in fact, it is positive definite. Indeed, 

is the product of an invertible operator and its adjoint, and therefore positive. 
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Denote by ~(7’) > 0 the smallest cigenvalue of I +- Fr . Then for any 

(G E L2([0, n 

(4.11) 

This completes the demonstration of the necessity of hypotheses (i) and (ii) 
in Theorem II. The next three sections are devoted to their sufficiency. 

5. SOLUTION OF A NONLINEAR VOLTERRA EQUATION 

Let T > 0, and set Qr = {(s, t): 0 < s < t < T). In this and the next 
section, we shall show that the equation 

f(S, t) = K(s, t) i Jy dyK(y, s) K(y, t) (s, t) E Q, (5.1) 

has a solution K E %‘$$Qr) for every symmetric f~ “w;“d,l([O, T] x [0, T]) 
which satisfies condition (4.11) for some E( 2’) > 0. 

We first show that (5.1) has a continuous solution for each continuous sym- 
metric f  satisfying (4.11). We note in passing that continuous solutions are 
necessarily unique, since (5.1) is a Volterra equation. 

The existence proof consists of three steps. 

Step I. There exists some f  > 0 so that (5.1) has a continuous solution in 

Qr . 
This is true, in fact, independently of the hypothesis (4.1 I). We denote by 1,’ 

the Volterra operator on C”(Qr) 

I/‘k’(s, t) ==f(s, t) - .$: dy’K(y, s) K(y, t) (s, t) EQ?. 

Then a standard contraction mapping argument shows that, provided t is 
small enough, the operator V has a fixed point in CO(Qr). 

Precisely, we obtain 

A. Let ,I I$ denote the sup norm in CO(Qr). Then the ball 

Q(f) = IR E CO(Q,): !I g --Or G ~1 

is invariant under I’, provided 
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B. For or , g, E B,.?(f), E as above, 

Thus I/ is a contraction operator for t small enough. 

c1. Denote by K the fixed point of V in Cn(Qi), and set 

These conclusions are completely straightforward. We exhibit them only to 
make explicit the dependence of the error estimate (5.2) on the size off. 

Step 2. We suppose that (5.1) has been solved in Q, for some t > 0. We 
write 

@(s, t) = K(s, t), O<s<i<t<T 

and note that (5.1) becomes, in the region 0 ,< s <. f < t < T, 

f(s, t) :-- @(s, t) t- 1’ dyK(y, s) @(y, t) 
JO 

which for each t E [f, T], is a linear Volterra equation with continuous kernel, 
hence has a continuous solution, which also depends continuously on the 
parameter t, since the inhomogeneous term does. 

Setft(s) =f(s, t), at(s) == @(s, t). Th en, in the notation of (4.10, 1 l), replacing 
T by i, (5.3) becomes 

and (4.1 l), implies 

since (I + Ki)(I + Ki’) has the same lower bound as (I + Klt)(I + KS) = I --j- Fi. 
We observe that we can replace e(i) by c(t’), t’ > f, in (5.4), in particular we can 
replace c(i) by c(T). Together with the Schwarz inequality, this implies 

r 42 ’ dv I @(y, tdi I @(y, h)l G E(T) . (5.5) 
‘0 
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Here 

The important point, of course, is that the right-hand side of (5.5) is independent 
of t. 

Step 3. For i < S, t, (5.1) reads, in the notation of Step 2 

.f(S, t) = ws, t) + Jr dY@(Y, 4 @(Y, t) + j; dYK(Y, 4 WY, t). (5.6) 
0 

This problem is of the same form as that dealt with in Step 1. Therefore we can 
solve (5.6) in a region of the form {(s, t): t < s .< t < t + S}, where 6 depends as 
in Step 1 on the uniform norm of the inhomogeneous term 

fib 4 =.fh t) - pY@(Y, 4 @(Y, t). 

Since (5.5) provides us with an estimate of the size of jr which may be taken 
independent of Z, the increment 6 may also be chosen independently of t. 

It follows that finitely many repetitions of Steps l-3 suffice to yield a continu- 
ous solution K of (5.1) in Q(T). The construction proceeds by alternately 
solving nonlinear Volterra equations over small intervals, and linear Volterra 
equations over large intervals. The error in each step, hence the cumulative 
error, and the number of steps required, may be estimated in terms of the three 
numbers 

Ilf ilT , A(*), l - 

Suppose now that f E Cm(Qr). By differentiating (5.1) formally, we obtain 
equations for the derivatives of K, which we solve in exactly the same way as we 
solved (5.1). Thus K E Cm(QT). 

We remark with an eye to the proof of Theorem III that the following estimate 
shows that the condition (4.11) is stable against CO-small perturbations of j : 

1 L= ds lT dt W) $0) (fh t) - f ‘0, 4) 1 

for any # eL2[0, TJ. 
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It follows that, for anyfc PL(QT) which satisfies condition (4. I I), there exists 
a neighborhood off in Cm(QT) in which condition (4.11) is uniformly satisfied 
(for some smaller E > 0, perhaps). Easy perturbation arguments show that the 
solution K E CJL(Qp) of (5.1) depends continuously on the left-hand side f, as f 
ranges over any such neighborhood. 

The existence and stability of solutions of (5.1) with IocalIy integrable deri- 
vatives follow from the basic existence and stability theorem for linear Volterra 
equations. We state this elementary result for the reader’s convenience, though 
we have used it tacitly several times in the previous section. 

THEOREM. Suppose a <: b, Q - {(T, s) : a .$ y << s I:< b}, B a Banach Space, 
g E P([a, b]; E), I’ E Pf(Q; R). Then there exists a unique v E P([a, b]; E) with 

Furthermore, the solution map: 

P([a, b]; E) x P(Q; R) -+ P([a, b], I?) 

(5 VI++ Y’ 

is continuous. 
Finally, fhere exists a IV E P(Q; R), called the resolvent kernel corresponding to 

V, in terms of which the solution v may be written 

y(s) g(s) -k 1’$ &W(y, s)g(y). 
* (1 

Now suppose that f E YY’-~$,(R”) satisfies (4.11) (The casef E r”k“gf(R”), m .> 2’ 
can be handled in exactly the same way so we give details only for nz =-. 2.) 
Since 7VT;i C Cl, the previous section guarantees that the solution K of (5.1) 
is in C*(Q”) for every T ;- 0, and depends continuously on f E C1(QT). 

We shall first show that K has a second derivative D22K with respect to its 
second argument in CO([O, i];Li([t, T])) for every ‘.E [0, T]. We differentiate 
(5.1) formally twice with respect to t, and obtain 

D,‘ff(s, t) : D,“K(s, t) -L [” +K(y, s) D,“K(y, f). 
“I) 

(h-1) 
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xow f E w;;;(FP) means that Di2f E P([O, iIs; Ll([t, T]),), for each i E [0, T]. 
Let g: [0, t] + L*[t, T] by g(s) = D,zf (s, e). Then the basic existence theorem 
asserts that 

g(s) r u(s) + J-: dyK(y, t) u(y) (6.2) 

has a unique solution u E CO([O, t]; L,[t, 1’1). It remains to show that u may be 
identified with D,“K as a distribution. In terms of the resolvcnt kernel G cor- 
responding to K the solution u to (6.2) may be expressed: 

u(s) = g(s) f- f dyG(y, s) g(y). 
0 

The kernel G is also continuous. If we regard u and g as 9’([t, T])-valued 
functions of s E [0, t], then for + E C,,=((t, T)) we may write 

i44,+> = <g(s), d> + js ~YG(Y, 4 (s(y)> v0 
n 

==z (f(s, *I, 4") + 1; dyG(y, s) (.f(s, *)V> 

= (K(s, *), 4”) 

where WC have used the equation, equivalent to (5.1): 

W, t) -f (s, t) + [* &G(y, s)f (y, t). 
-0 

Thus u is indeed the second derivative of K, and we conclude that 

Dz2K E CO([O, t]; L’[t, T]) 

for each t E [0, T], I’ > 0. Finally, since K E C1(Qr) depends continuously on 
f E Y”*J(Q~), the stability part of the basic theorem implies that Ds2K also 
depends continuously on f, in the sense of CO([O, t];Ll[f, T]), for each i. 

The other two formal derivatives of (5.1) read: 

4Yf(s, 4 = D12K(s, 4 + (1 K(s, s)) K(s, 5) T K(s, s) D,K(s, t) 

t WW, 4 K(s, t) + I’ W,‘K(y, s) WY, t) 
(6.3) 

0 

D,D,f (s, t) = D,D,K(s, t) + K(s, s) D,K(s, t) -I- 1’ dyD,K(y, s) D,K(y, t). 
-0 

(6.4) 
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From these equations, which hold apriori in the sense of distributions, we can 
immediately deduce that K E Y@,:(Q); we leave the details to the reader. 

From the stability assertion about D,'K and some obhous fiddling with 
equations (6.3) and (6.4), we can conclude that the nrap ft-- I\’ is continuous in 
%‘$,A(Q), in a neighborhood of evcryfsatisfying (4. I I). 

Finally, w-e point out that K inherits fromf a property somewhat more special 
than that of being in W$,‘, iff is of the special form 

Indeed, it follows from a remark in Section 2 that for any (a, B, c, d) 6 R”, the 
function 

sl-kf(US --- h, cs /- d) 

is then in vOf(R), and a simple modification of the above argument shows that 
that the function 

is then also m WIT;’ on its interval of definition. In particular, 

s I+ K(s, s) 

defines an element of IVEt( 
The details of this argument are very similar to that used to establish that 

K E W%:(Q), and we omit them. 

7. RECOVERY OF THE BOUNARY VALUE PROBLEM 

We shall show that the kernel K constructed in the last section is the regular 
part of the Riemann function of some boundary value problem (4.1), thus 
completing the proofs of Theorems II and III. 

Suppose that jE WE,fl’(R) is even. Set 

ThenfE W;“z1V1(R2) y is s mmetric. Suppose thatfsatisfies (4.11) for each T > 0. 
Let K be the solution of (5.1) constructed in Sections 5, 6, withf as above. Then 
KE W$~‘**(Q), where Q = {(s, t): 0 < s < t}. 

As remarked in Section 6, the functions 

s k+ K(as f b, cs + d) 
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are in IV,,, m+l~l of their appropriate intervals of definition. In particular, the 
function 

q(s) = -2 $ K(s, s) 

is in W;“o’:(R+). 
We claim that K solves the characteristic mixed 

I 

82 
- - g + q(s)) K(s, t) = 0, at2 

f$ (0, t> f- hK(0, t) = 0 

problem 

s, tEQ 

(7.1) 
F): 

K(s, s) = h - ;- J” y# 

Before showing that K solves (7.1), we remark that the problem (7.1) has a 
. . 

unique solution in Wgzl*l(Q), as is shown by standard arguments. Since the 
results of Section 4 imply that the regular part of the Riemann function of the 
boundary value problem (4.1), with 4 as above, must solve (7.1) also, we con- 
clude that K is the regular part of the Riemann function. We have therefore 
proven Theorem II if we show that K is a solution of (7.1). 

To do this, note first that f solves 

( 
t E R. 

(Note thatf has second derivatives which are locally integrable in Ra). According 
to the integral equation 

f(s, 4 = K(s, 0 ?- i,’ dyK(y, 4 K(Y, 0 

we have 

(1) f(O,O) = K(O,O) r: h 

(2) g (0, t) = g (0, t> + K(0, 0) K(0, t) 

= $ (0, t) + hK(0, t) 5 0, t>O 

(3) o=(% $)rcs9 t) 

( 
52 (7.2) 

= -- 
at2 

5) K(s, t) - ($ K(s, 5)) K(s, t) 
as2 

- K(s, s) D,K(s, t) - D,K(s, s) K(s, t) 

- j' dyQ2K(y, s> K(y, t) + j' ~YK(Y, 4 D22K(~, t)- 
0 0 
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The differentiation under the integral sign above, and various integrations by 
parts below are justified (for the only questionable case, m = I) b! 

LEimI.4. Suppose u E C”[t, , t,], z’ = Du ELl[t, , t,]. Then 

F t2 2, = u(t,) - u(t*). 
‘fl 

We apply this Lemma to compute 

s ry dyD,“K(y, s) K(y, t) 
0 

== j’ dy~,(~l~(y, 4 K(~, 4 - fs dy4~(y, 4 D,K(~, t) 
0 ‘0 

:= D,K(s, s) qs, t) - D,K(O, s) K(0, t) 

+ f’ wqy, 4 D,“K(y, 4 - j“ dYD,WY, 4 DlK(Y, 4) 
‘0 0 

= D,K(s, s) K(s, t) - D&(0, s) K(0, t) - K(s, s) D,K(s, t) 

+ K(0, s) D,k’(O, q + J” &qy, s) D12K(Y, q. 
0 

Hence for 0 < s < t 

K(s, s) D,K(s, t) - D&s, s) qs, t) 
(7.3) 

= js @'K(y, s)D,"K(y, t) - Is dyDl"K(Y, S) K(y, t) 
0 0 

where we have made use of the boundary condition (2). By virtue of the identity 

1 K(s, s) = D,K(s, t) -b D&s, t);,zt 

we can add (7.3) to (7.2) to obtain 

0 =- (Dz2 - D12) K@, t) - 2 ($K@,S)) K@, t) 

-t j' +K(Y, 4 P, 2 - 4') WY, t) - fs dy((Dz' - Q2) 0, 4) WY, Q 
0 -0 

(7.4) 
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Set 

U(S, t) = (D: - 0,~) K(~, t) - 2 (f k’ts, s)j K(~, t). 

We can re-write (7.4) as 

0 == u(s, t) + J; dyK(y, s) u(y, t) - 1; dyu(y, s) K(y, t). (7.6) 

If m > 0, we can immediately conclude that u -. 0, since (7.6) is a homo- 
geneous equation of Volterra type, which finishes the proof of (7.1) in that 
case. If m = 0, we must be slightly more careful, since we know a priori only 
that u is locally integrable in Q == {(s, t): 0 < s 5; t}. 

We reason as follows. Suppose that f E W$,i is a proximated by fn E WY;: . 
Then, according to Sections 5, 6, the corresponding solutions K, E ?Y$.(Q) 
converge in W$(Q) to K. As noted in Section 2, the topology of W$i is 
stronger than that of W;nO$. If we denote by u, the expression (7.5) formed 
with K, instead of K, the sequence u, thus converges in L&,(Q) to u. However, 
the u, all satisfy (7.6) and are continuous, hence vanish identically. Thus u 
vanishes almost everywhere, and the differential equation in (7.1) is satisfied in 
the sense of distributions. 

This concludes the proof of sufficiency, hence the entire proof, of Theorem II. 
To prove Theorem III, we note that the coefficient 4 is determined by the 

transport equation (characteristic boundary condition in (7.1)): 

q(s) :- -2 $ K(s, s). 

Since it was shown in Section 6 that K E W;‘$‘*‘(Q) depends continuously on 
JE W;“d61*1(R+) it follows that the map 

is (well-defined and) continuous in a neighborhood of every p satisfying (4.1 l), 
which is exactly the assertion of Theorem III. 

8. PROOF OF THEOREM I 

Suppose p: R - R is a nondecreasing function satisfying conditions (i) and 
(ii) of Theorem I. 

LEMMA. J defined as in Theorem I, condition (i), satisfies condition (ii) of 
Theorem II. 
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Proof. Suppose u EL~(R+-) has support in [0, 7’1. Then 

s R 444 I WI2 

where we have used the ordinary Parseval formula for the (cosine) Fourier 
transform. 

Now according to condition (i) of Theorem I, 

cos Al’2 s cos W” t 

exists in CO([O, 1’1 x [0, T]). Hence 

u(s) u(t) j= du(h) cos Al,” s cos Xl’2 t --.: u(s) u‘(t)& t) 
-zY 

is in Ll([O, T] x [0, T]), and by Fubini’s Theorem 

ix da(A) I C(A);” = i:ps dt u(s) ii(t) t). 
“-x. 

Thus 

and condition (ii) say that the inequality is strict if u is not identically zero a.e. 
This however is equivalent to Condition (ii) of Theorem II, as remarked in 
Section 2. 

We may therefore apply Theorem II to conclude the existence of a hyperbolic 
boundary value problem 

(8.1) 
u,(O, t) f  hu(0, t) = 0 

for which j is the boundary value of the Riemann function. Here q E W$,$(R+). 
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Denote by +(x, h) the solution (in Cm+l(R+), entire in X E C) of 

-+yx, A) $ (q(x) - A)#%?, A) = 0, x > 0 

#(O, 4 = 1, $b’(O, A) = --h. 
(8.21 

One immediately verifies that the function 

uyx, t) = cos(h)‘~” tc$(x, A) 

solves (8.1) with initial values 

It follows that 

In particular 

uyx, 0) = $(x, A) 

t$(X, 0) is 0. 

d(X, t) = Jrn dx,R(x, t, x0 , 0) c$(xo ) A). 
0 

with K E *FY’-~~‘~‘(Q). 
As in Section 6, denote by G the resolvent kernel for K. Then 

s 

t 
#, A) = cos Al’2 t -+ dxG(x, t) cos A”2 x. (8.3) 

0 

On the other hand, K satisfies equation (5.1). These two equations ((5.1) and 
(8.3)) constitute the input of the argument in [6], and we refer the reader to 
that excellent reference for the remainder of the proof of Theorem I. 

We remark that equation (8.3) was first derived by Povzner [7] in exactly this 
way. 
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