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This report concerns two so-called inverse problems of mathematical physics.
These are: (i) the problem of determining a second-order differentiul operator
(in a normal form) on the half-axis from its spectral function; and, (ii) the
problem of determining a hyperbolic boundary value problem of a special
form in a (non-characteristic) half-plane from its response on the boundarv to
a unit impulse at some reference time ¢ -— 0 (boundary value of the Riemuann
function). We solve problem (ii) by a natural approach, and then indicate how
the solution of problem (i) follows from the solution of problem (ii). Our solu-
tion of problem (ii) is constructive, and we obtain stability of the solution
under perturbation of the data, in a well-defined sense. For problem (1), we
obtain the well-known result of Gel’fand and Levitan, in the sharp formulation
given by Levitan and Gasymov ([6]).

1. INTRODUCTION

This report concerns two so-called inverse problems of mathematical physics.
These are: (1) the problem of determining a sccond-order differential operator
(in a normal form) on the half-axis from its spectral function; and, (i) the pro-
blem of determining a hyperbolic boundary value problem of a special form in
a (non-characteristic) half-plane from its response on the houndary to a unit
impulse at some reference time ¢ — 0 (boundary value of the Riemann function).

We solve problem (ii) by a natural approach, and then indicate how the
solution of problem (i) follows from the solution of problem (ii). Our solution
of problem (ii) is constructive, and we obtain stability of the solution under
perturbation of the data, in a well-defined sense.

For problem (i), we obtain the well-known result of Gel’fand and Levitan,
in the sharp formulation given by Levitan and Gasymov ([6]).
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380 W. SYMES
2. NOTATION AND STATEMENT OF RESULTS

We will write R¥ := [0, oc) C R throughout. We use the common notations
CHU), C<(U), Cy=(U), &(U), 8'(U), 2'(U) for the space of k-times, respectively
infinitely differentiable functions, respectively those with compact support, with
the usual Frechet topologies, and their strong duals. Here L' C R* may be
closed or open.

We denote by Wis(U) the collection of functions in C™-}(U) whose mth
partial derivatives, which a priori exist as distributions, may be identified with
locally absolutely integrable functions on UCR?, i.e. lic in Lj, (). We give
Wigk(U) its usual Fréchet topology.

If U, 1" CR are open sets, denote by #;o(U x 1) the space of continuous
functions on ' x V" whose (distributional) partial derivative in the first (second)
variable may be identified with a continuous function of the second (first)
variable with values in L{,o(U) (Llye(V)). According to Fubini’s theorem,

WEHU x VYC WEYTU x V).

It is clear how to define ¥ ;i(Q) for an arbitrary open set Q C R?, since the
definition is local, and any p € Q has a product neighborhood. On the other hand,
suppose Q is closed with smooth boundary, and let fe C(Q) N #7};3(int Q). Let
P € ¢0Q, and select U, ¥ C R open so that U X ¥ is a neighborhood of p in R2.
Then for cach x e U(v e V), extend the partial derivative D,f(x, -) (D, f-, )
to a distribution on }(L7) by requiring

Dof(x, ), ¢y = Dof (%, )i b lv,y  forde C(V)
(D f (9080 = DS (59D b ly,>  forde Cox(L))

where 1, = {yeV:(x,9)eQ} (U,={xecU:(x,y)€Q}). We declare that
fe#i5(Q)if and only if, for each choice of p, U, I” as above, each x € U(y € V),
the partial derivative D,f(x, ) (D, f(-, y)) may be identified with a locally
integrable function on V(U), and the map x> D,f(x, *) (v — D,f(:,3)) is
continuous, i.e. lies in CYU; L1,o(V)) (CUV; Lioo(U)).

The topology on #i(Q) is given by the C%Q)-seminorm and the local

norms of the form

sup [ dy| Dof(x, 3, sup [ dx|Dif(x,9)

reK weL

with K, L CR compact.
Finally, fe #20), m > 1, if and only if fe Cm-Y(Q) and all m — Ist
order partial derivatives of f are in #34(0). The topology on #T1ya(0Q) is
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defined in a similar way to that of #'5}((). We note that #721(Q) C WX(Q),
and that the topology on # %! is stronger than that of W5
Functions in #75(Q) may be constructed in the following way: suppose

fe WZXR). Then, as is easily verified, the function F: Q — C defined by
F(x,y) = f(ax 4 by)

for some (a, b) € R?, lies in W H}(Q), for any closed Q with piecewise smooth
boundary. In fact, the spaces # . enter the theory developed here in precisely
this way.

We shall use various common notations for derivatives and partial derivatives,
such as primes, subscripts, D,, ¢/dx, etc., without comment.

Our results provide an alternate route for part of the proof of the following
theorem, which is a sharp version, due to Levitan and Gasymov ([6]), of the
celebrated theorem of Gel’fand and Levitan ([4]).

TuEOREM 1. A nondecreasing function p: R — R is the spectral function of a
boundary wvalue problem on R+ == [0, o0):

"+ g =Ny =0
Y +hy(0) =0, heR
with g € Wig(RY), if and only if p satisfies the conditions:

(i) the integrals

N
[ do() cos A2 x = I(x)

-

converge boundedly to functions in Wit (R*), where

o(}) = p(A) — %Aw, A>0

= p(A), A <0.

Moreover, {Iy: N €Z} converges as N— 0 in Wit (R*) to a function f with

fO) =
(ii) Suppose u € LA(R*) has compact support. Let

() = [ dx u(w) cos()2 x.
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Then ii e IX(R; dp), and

[ a2+ o

if and only if w=:0 a.e.

Remark. 1In (ii) above and for the rest of this paper, “cos A\'/2 x’’ denotes the
entire function of A whose value for A > 0 is cos A1/2 x. In particular, for A < 0,
cos A1/2 x == cosh | A '1/2 4,

The bulk of this paper is devoted to proving the following two theorems, from
which Theorem I follows, and whlich are of interest in their own right:

THEOREM 11.  An even function f : R — R is the boundary value of the Riemann
Sfunction:

f(®) = R(0,1,0,0), t+#0
for a hyperbolic boundary value problem:
Upp — Upe — qut == 0
40, t) -i- hu(0,t) =0, teR
with q € Wipo(R*) if and only if

() feWiZR), f(0) ="
(i) the kernel f(s,t) == H(f(s =~ 1) -+ f (s — 1)) satisfies the condition:
for any T > 0, there exists ¢(T) > 0 so that for all u € L*([0, T']),

A\Y;
m
—~~~
~
p——g
—
2
=
e

] Y0

.[)T s f(,T dt u(s) u(t) f (s, t) + .[T lul*>

Remark. An easy compactness argument shows that the condition (ii) above
is equivalent to the assertion that

[ ds [ druis) @) fis, 1) + J: 22> 0

IR
for all u € L¥R*) with compact support.

TueoreM II1. (i) The collection of even functions fe Wit Y(R) defined by
condition (ii) in the statement of Theorem 11 forms an open set in Wige" (R)even -
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(i) for any even f in WILIVY(R), there are precisely one he R and one
€ WiXR*) so that f(t) = R(0,,0,0), t # 0, for the Riemann function R of
the boundary value problem

Uy — Upp — qu =0

u,(0,1) * hu(0, 1) :=0.

(ii) The map f— (h, q) whose existence is implicit in statement (i), is a
continuous map from the open set described in statement (i) fo R x Wi{R™).

Remark. 'Theorem III is a uniqueness and stability theorem. Theorem I
1s, of course, more-or-less well known, and Theorem II could be deduced from
Theorem I. Our method of proof, however, proceeds by means of an iteration
scheme, with error bounds given explicitly in terms of the numbers ¢(7) men-
tioned in Theorem II, and various norms of f. In particular, we obtain the
stability statement of Theorem III, which scems to be new.

3. Hetristic DiscussioN or REesuLTs

Problem (i) is concerned with the spectral function of a boundary value pro-
blem

—"(x) = (g(x) — A) ¥(x) -=- 0, x7-0, AeR

3.1)
Y(0) + hy(0) =0

where £ is some real number. Let ¢(x, A) be the solution to (1) selected by the
initial condition

$(0,3) = 1.

'The spectral function of (1) is a nondecreasing function whose associated Stieltjes
measure properly weights the “cigenfunctions” ¢(-, A) in the spectral resolution
of the identity for (1), which is concisely written

s =) = [ 4o N (3, V. (32)

In this heuristic discussion, we shall not worry about making precise sense of
divergent integrals such as (2); that is done, in any case, in standard textbooks
on spectral theory of ordinary differential operators, e.g. [2], Ch. XIIIL. Nor
shall we make precise smoothness assumptions on gq.

Problem (i) is: given p, find the differential equation (that is, ¢) and the
boundary condition (that is, &), which give rise to p. Of course, this involves
describing those nondecreasing p that arise as spectral functions of problems of

type (1).
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Problem (i) is a refined version of the inverse eigenvalue problem: to construct
a differential operator of some special type, cum boundary conditions, having a
given spectrum. This problem admits a large amount of non-uniqueness in its
solution. Since the points of increase of the spectral function of (1) cxactly
amount to its spectrum, a solution to problem (i) certainly solves the inverse
eigenvalue problem. The spectral function also carrics normalization informa-
tion, however, and this additional information makes its solution unique.

For a history of these problems consult [3] and references cited therein.

Problem (ii) is concerned with a hyperbolic boundary value problem

o &2 ‘ .
('—315?_ pre +q(x)) u(x, 1) =—0 (x,)eR* xR

(3.3)
cu )
P (0,1) —- hu(0,t): 0, teR

The Riemann Function R(x, t; x, , t,) is the solution of the mixed problem obtai-
ned by adding to (3.3) the initial conditions

u(x, £y) = d(x — )

—(x, 1) =0.
6t(’0)

Then u(x,t) = R(x, t; xo, t,). Again, ¢ is “smooth enough”, and we do not
worry for the moment about the sense in which a distribution satisfies 2 mixed
problem of this sort. In fact, as explained in [5], R is a special distribution with
well-defined restrictions to vertical (and horizontal) lines such as {x =- 0}.

We also note that our Riemann Function is a derivative of the object usually
called by that name; see [1], Ch. VI, Section 15.

Note that the solution of the inhomogeneous mixed problem

((G—; (‘_:2 1 g@)) ue, 1)~ gl w0
%(0’ 5 = (0, 1) - 0 (3.4)
u(x, ty) - ;—ltl (u, ty) == 0, x>0
can be represented in the form
Wz, 1) = (, t do ‘, dr f( f dv R(x, £ y, o) g3, 7) (3.5)
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(Duhamel’s integral). The system (3.4) models certain processes (e.g. nonuniform
transmission lines) subject to an imposed force g, in which signals, represented
by u, propagate with unit speed, and some boundary conditions are imposed at
the “surface’ x = 0. Then (3.5) represents the “forward’’ (2 > ¢;) response of
the system to the impulse g. If we choose in particular g(x, #) - 8(x — x,,
t — 1), then

al
wx,t) = | R(x,t,x,,0)do, t>>1,.
0 0

vty

We conclude that

t ot
["dsfs)== [ dsR©,50,0, >0
Y0

0

represents the response at time ¢ - 0 at the surface & = 0, to a unit impulse
applied at ¢ =0, x == 0.

Problem (ii) is: given £, find the boundary value problem (3.3), that is, find
the function ¢ and the number 4. Otherwise put, we are to recover the dynamics
of the system from a knowledge of its response along the “‘surface’’ x =0 to a
unit impulse, also applied at the surface.

Problem (ii) is prototypical of a variety of inverse wave propagation problems
of applied mathematics. We refer the reader to [3, 8], for instances,

We now observe that problems (i) and (ii) are equivalent. In fact, if we
denote by L the self-adjoint ordinary differential operator defined by the bound-
ary value problem (3.1} (with a boundary condition at x = oo supplied, if
necessary), then the Riemann function is just the distribution kernel of cos #(L1/2),
and admits the spectral representation

R(x, 1, %y, ) = | i dp(A) cos A2 (£ — t0) $(x, \) $(%p , A)-

In particular

f() = R(0,1,0,0) = [ﬂo dp() cos A2 t

v

so that f is the Fourier transform of p. Thus knowledge of f and knowledge of p
are equivalent, so problems (i) and (ii) are equivalent.

Since problems (i) and (ii) are equivalent, the solution by Gel’fand and Levitan
[4] of problem (i) also solves problem (ii). We prefer, however, to deduce the
solution of problem (i) from that of problem (ii), and in so doing present a
natural interpretation of the machinery in [4] in the context of hyperbolic p.d.e.
Besides a better understanding of the well-known results and methods of [4],
we are immediately led to the correct stability result for problem (ii) (Theorem
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I1I), and to the solution of a number of other inverse boundary valuc problems
(see [9)).

We should point out that the equivalence of problems (i) and (ii), and the
hyperbolic interpretation of the ideas in [4], are more-or-less well known.
However, no careful statements on the lines of Theorem II have appeared in the
literature, nor has a stability result of the type of Theorem T been previously
asserted, to our knowledge.

Our approach to problem (ii) is based on several elementary properties of the
Ricmann function, especially:

(1) (Group property). Let U(2) be the operator which maps Cauchy data
(u(x, 1,), u,(x, t,)) for a solution of (3.3) at time £, to the Cauchy data for the same
solution (u(x, t -* 1), u,(x,  — t,)) at time ¢ < £, . Then

Uis) Gty - U(s ;1) (3.6)

(i) (Progressing Wave Expansion). The distribution R(v,1) R(, ¢,
0, 0) can be decomposed:

ﬁ(;\" $)-=8(y-+1) +8(y-—1)+ K(»1)

where K(v,¢) = K(y, -- 1) has one more derivative than the cocfficient ¢ in the
region y < £, vanishes identically outside that region, and on the boundary
satisfies the transport equation

K(t, ) — - 1 _|" q-i h (3.7)

These assertions will be made precise in Section 4. Thev are essentially
classical results for which methods of proof are to be found for instance in
Chs. V and VI of [1].

Since the operator [ is implemented by the Riemann function, (i) and (i)
plus some symmetry properties of R, together imply an integral equation for R:

Fot) - MG+ 1)~ s — 1) = } dy Ry, N R(v, 9. (38)

According to property (ii), we may replace the upper limit of integration on the
right-hand side of (3.8) by max(: 7|, 's1), and we obtain, for instance, for
t>s5>-0

fls 1)~ Kis,0) = | dy K(y, ) K(3,9). (39)
‘o
‘We base our solution of problem (ii) on this nonlinear Volterra equation, derived

in a different way by Gel’fand and Levitan. The hypotheses of Theorem IT are
precisely what is necessary to ensure that (3.9) has a global solution.
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Further, our method of solving (3.9) for K is manifestly stable against small
changes in the data f (Theorem III). Finally, explicit error bounds appear
(Section 5) which allow one to estimate the efficiency of our approach for
numerical computation. This circumstance should be compared with most
other treatments of problem (i) along the lines of [4] (see especially [6, 3]), which
turn on the solution of a linear integral equation of Fredholm type related to
(3.9). By contrast, our error cstimates involve only a lower bound for this
Fredholm operator.

Having solved (3.9) for K, we show that K is the appropriate piece of the
Riemann Function for a boundary value problem (3.3), with coefficient function
g related to K by the transport equation (3.7). This is accomplished in Section 7.
Finally, Theorem IT is used in Section 8 to supply the key ingredients of the proof
given in [6] of Theorem I, and we leave the matter there.

4. PrROPERTIES OF THE RIEMANN FuNcTION

This section is devoted to the necessity part of Theorem II, that is, the proof
that the boundary value of the Riemann function of a problem of form (4.1)
below must satisfy the conditions (i) and (ii) in Theorem II.

Most of the following assertions are standard and can be found, for instance,
in [1, Chaps. V and VI], in one form or another. In a few cases, our finite
differentiability hypotheses and imposition of boundary conditions in the
progressing wave construction of R are incompatible with readily available
results; however, the proofs are the appropriate modifications of the available
ones, and we omit them.

We denote by R(:, *; %, , t,) the solution of the boundary value problem

Upg — Upy — qu =0
(4.1)
#,(0, £) — hu(0, t) = 0.

with initial conditions
R R(x, 25; %9 , £5) = 6(x — x,) 4.2)
7
P R(x, t, %y, ty)lgmy, == 0.

We assume that g € WA {(R*), m > 1. Then:

I. (Regularity)

ReC™(R, x RY, X Ry &'(R,) N C"(R,* X R}, X R '(R,).

o
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Property 1 follows from a theorem on solutions of (4.1) with smooth Cauchy
data and the Schwarz kernel theorem, via standard arguments.
II. (Symmetry)
R(x, t; xq, 29) = R(xy , 5 %, 1)
= R(x, tg; &y, 1)

-= R(.\‘, t— 8, Xy, t() - S)

for s € R; in particular
R(x, t; %y, 0) = R(x, —1; x,, 0).

Note that I and II combine to vield further regularity properties.
Denote by #Z the matrix of distributions

t

R(x, t; %y, 1) f do R(x, t; x, , o)
H(x, t; %y, tg) — s fo
ot

8 ot
R(x, t; %y , 1) P J; do R(x, t; x, , o)
: [

Then the solution of (4.1) with smooth Cauchy data
ulx, to) = ty(x),  ulx, ty) = volx) € C2(RY)

is given by

(u(x, t)) <g(x, 1), (ZZ)> 4.3)

ux, 1)

where we have written (S, ¢> for the evaluation of a distribution S on a test
function ¢, and regarded Z as a matrix-valued distribution in the third variable.
We shall find it convenient to write

(M= 1) f: dxy R(x, 1; 24, 1) ("0(”0)) (d.4)

(%, 1)) Do(%o)

with the integration “in the sense of distributions”, i.e. (4.4) means (4.3). We
shall also find it convenient to indicate the composition of distribution kernels
such as R, & by integrals (see [10] Part III; note that compositions of the type
below make sense because R is semiregular, in the language of [10]).

III. (Group Law)

R(x, s -1 1, %9, Ly) = J;) dy R(x, s - 1; 9, ) R(Y, $; %o » b)-
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This is just (3.6) written in terms of distribution kernels. It is a consequence
of the independence of time of the coefficient and boundary condition of the
problem (4.1).

As in Section 3, we write R for the distribution kernel on R* x R:

R(y,t) = R(y,1,0,0).
LEmMA.
HRO t— 9+ ROt +9) = [ dv Ry, ) R»t)  (49)
‘o
Proof. By III,
ROt +s) = f‘” dy RO, 1+ 5, ,5) R(, 5, 0, 0)
0
(4.6)
0 t+s
+ [ ay([ do RO, 1+ 5,3, 9)) DaR(, 5,0,0).
0 s

However, using the symmetry properties (II),

vs

i+s ¢
[ do RO, 1+ 5,9,0) = [ doR(0,1,9,0)
Y0

D,R(y,s,0,0) = —D,R(y, —s, 0, 0).
Thus the second integral (composition of kernels) is odd in the parameter s

whereas the first is even. Replacing s by —s in (4.6), adding, and multiplying by
1 gives the result.

IV. (Progressing Wave Expansion)
Ry, t) =8(y + 1) + 8(y — 1) + K(3, 1) 4.7)
where K e % tHQ),
Q—{(nneRr xRiy< it and K(»1=0 y>[t].

Also the transport equation holds: for t >0,

t
Kt +)=—1[ g+h. (4.8)

In the readily accessible literature, the progressing wave expansion is usually
developed for equations with C= coefficients and no boundary conditions. In our
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case, we just barelv get away with it, because of the finite differentiability
assumptions.
Slightly altering the notation used in Section 3, write

R0, 2) -z 28(2) - f(1)
LRO,s - t)-1- RO, s — 1)) =8(s--1) |-8(s — 1) Ff(s. 1)
fen =376 =01 o).

Then fe WM R), fe # {5V YR x R) according to IV; according to I1, fis
even and f is symmetric.

In view of all this symmetry, we consider the integral relation (4.5) when ¢,
s > 0. Then the progressing wave expansion reads

Ry, 1) == 8(y — 1) + K(», 1)

and (4.5) becomes, for 1 > 0,

(s — 1)+ £(5.1) = [ a3y — )+ K(3 0) By — ) + K(2:9)

— 85 — 1)+ K(5, )+ | (3, ) K(5.9)

0

or

£ = K 0 + [ drK(3, ) K (3,9 (4.9)

Since both sides of (4.9) are continuous, it holds for ¢ —= 0 also. Restricted to
0 <"t < T, some T > 0, the kernel R defines an operator of the form I |- K,
where I is the identity operator on L*([0, T), and K is the integral operator

T
Krg(y) = | d@tK(3.0g(0), 0:y<T.
J,
Thus I -- K, is a bounded (Volterra) operator on L¥([0, T7), and in particular is
invertible.

Write F;- for the integral operator on L%([0, 7']) with kernel f(s, #). Then (4.9)
can be written

I -F, =+ KNI+ Ky (4.10)
which shows that the left-hand side is a positive semidefinite symmetric Fred-

holm operator on L%([0, T']). We claim that, in fact, it is positive definite. Indeed,
is the product of an invertible operator and its adjoint, and therefore positive.
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Denote by «(7) > 0 the smallest cigenvalue of I - F. Then for any
¢ e LX([0, T]),

B+ Fpgary = [ [ s ardOwofen+ [ 1oz zam [ 1or

(4.11)

This completes the demonstration of the necessity of hypotheses (i) and (ii)
in Theorem II. The next three sections are devoted to their sufficiency.

5. SoLuTION OF A NONLINEAR VOLTERRA EQUATION

Let T>0, and set Qp ={(5,2): 0 <s <t < T}. In this and the next
section, we shall show that the equation

f6,1) = Ko 1) + [ dvK(3, 9 K(3,1) (5 €0 (5.1)

has a solution Ke #70XOT) for every symmetric fe # N[0, T] X [0, T])
which satisfies condition (4.11) for some ¢(7") > 0.

We first show that (5.1) has a continuous solution for each continuous sym-
metric f satisfying (4.11). We note in passing that continuous solutions are
necessarily unique, since (5.1) is a Volterra equation.

The existence proof consists of three steps.

Step 1. There exists some £ > 0 so that (5.1) has a continuous solution in
Q:.
This is true, in fact, independently of the hypothesis (4.11). We denote by 17
the Volterra operator on C%Q;)

VE(s, t) = f(ss 1) — [ dvK(3,9) K(3, 1) (5:2)€Q; -

v

Then a standard contraction mapping argument shows that, provided ¢ is
small enough, the operator V has a fixed point in C%((Q5).
Precisely, we obtain

A. Let | ll; denote the sup norm in C*(Q;). Then the ball

B (f) ={geCAQ:llg — Sl <<

is invariant under ¥V, provided
2i(e + | fl < e

409/71[2-6



392 W. SYMES
B. For gy, g,€ B, (f), € as above,

Vg — Vo [ 26(e FIfl) il — gl

Thus ¥ is a contraction operator for # small enough.
C. Denote by K the fixed point of V" in C%(Q;), and set

K0 '_'._f, Kn = VnKo
then

1K — K" [ < {28 + L fil}" e (5-2)

These conclusions are completely straightforward. We exhibit them only to
make explicit the dependence of the error estimate (5.2) on the size of f.

Step 2. We suppose that (5.1) has been solved in Q; for some { > 0. We

write

B(s, 1) = K(s,1), O0<Ls<i<t<T

and note that (5.1) becomes, in the region 0 < s < I <<t < T,

Fst) = 046, 0)+ [ dyK(3,5) 9(3, 1 (5:3)

which for each e [f, T, is a linear Volterra equation with continuous kernel,
hence has a continuous solution, which also depends continuously on the
parameter #, since the inhomogeneous term does.

Set f(s) = f(s, 1), P4(s) = D(s, 1). Then, in the notation of (4.10, 11), replacing
T by 1, (5.3) becomes

fi—U+K)to,
and (4.11), implies

A "iz([o.i]) = (@, I+ K) (I + Kif) D>
(5.4
2@, -E)) = )] 9, !|2L=([o.f]) ’
since (I 4 K;)(I + K;*) has the same lower bound as (I + K;" ) + K) =1 + F;.
We observe that we can replace (%) by «(2'), ¢’ > £, in (5.4), in particular we can
replace () by (7). Together with the Schwarz inequality, this implies

[ v 10001100 1) < 55 (55)
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Here

‘4(T) — sup {”fs ”Lz([O,T]) |ft ”[}([0,1‘])}'
0gs. T

The important point, of course, is that the right-hand side of (5.5) is independent
of i

Step 3. For i < s, ¢, (5.1) reads, in the notation of Step 2
3 s
fl6 1) = Ko )+ [ 03,9 9(3,0) + [ &yK(y, ) K(3,0). (56)

This problem is of the same form as that dealt with in Step 1. Therefore we can
solve (5.6) in a region of the form {(s, 1): f <{s << ¢ < ¢ + 8}, where § depends as
in Step 1 on the uniform norm of the inhomogeneous term

fe ) = £ 0 | “ (3, ) By, 1).

Since (5.5) provides us with an estimate of the size of f; which may be taken
independent of £, the increment 8 may also be chosen independently of £.

It follows that finitely many repetitions of Steps 1-3 suffice to yield a continu-
ous solution K of (5.1) in Q(T). The construction proceeds by alternately
solving nonlinear Volterra equations over small intervals, and linear Volterra
equations over large intervals. The error in each step, hence the cumulative
error, and the number of steps required, may be estimated in terms of the three
numbers

Ifirs  AT), (7).
Suppose now that fe C™(Qr). By differentiating (5.1) formally, we obtain
equations for the derivatives of K, which we solve in exactly the same way as we
solved (5.1). Thus K e C™(Qy).

We remark with an eye to the proof of Theorem III that the following estimate
shows that the condition (4.11) is stable against C%small perturbations of f:

[ [ w00 6,0~ 6. 0)
< ” ¢ ”i’[O.T] || ||f($, ) _fl(s’ ')”Lz[O.T] :|L,2[0.T] (57)

‘g ” ‘/’ ”iﬂ[o'T] T|f_f’ ”CO(OT)

for any € L?[0, T].
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It follows that, for any f ¢ C™(Qy) which satisfies condition (4.11), there exists
a neighborhood of f in C™(Qy) in which condition (4.11) is uniformly satisfied
(for some smaller ¢ > 0, perhaps). Easy perturbation arguments show that the
solution K & C"(Qy) of (5.1) depends continuously on the left-hand side f, as f
ranges over any such neighborhood.

6. EXISTENCE AND STABILITY IN W}

The existence and stability of solutions of (5.1) with locally integrable deri-
vatives follow from the basic existence and stability theorem for linear Volterra
equations. We state this elementary result for the reader’s convenience, though
we have used it tacitly several times in the previous section.

THEOREM. Suppose a < b, Q --{(», $): a KLy s X b}, E a Banach Space,
g€ C([a, b]; E), V€ C"(Q; R). Then there exists a unique o € C™([a, b]; E) with

K60 50 - [ V1000

Furthermore, the solution map:

C™([a, b]; E) x C™(Q; R)—> C™([a, b], E)
(& V)¢

is continuous.
Finally, there exists a W e C*((Q; R), called the resolvent kernel corresponding to
V, in terms of which the solution ¢ may be written

wo) e+ [ iy, 980)

Now suppose that f € #51(R2) satisfies (4.11) (The case fe #" X R?), m ~-2°
can be handled in exactly the same way so we give details only for m =.. 2.)
Since ¥} C C!, the previous section guarantees that the solution K of (5.1)
is in CY(Q7) for every T >- 0, and depends continuously on fe CY{Q7).

We shall first show that K has a second derivative D,?K with respect to its
second argument in C%[0, £]; LY([Z, T)) for every fe [0, T]. We differentiate
(5.1) formally twice with respect to ¢, and obtain

DEf(s, 1) = D2KGs,1) - [ dvK(y, s) DEK(y, 1). (6.1)

")
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Now fe # 5Y(R?) means that Dy2f € C({0, £],; L'([Z, T)¢), for each £€ [0, T
Let g: [0, £] — L[#, T] by g(s) = Dy¥ (s, -). Then the basic existence theorem
asserts that

¢0) = u(s) + [ BK(p, 1) u() (6.2)

0

has a unique solution u & C%[0, £]; L,[Z, T]). It remains to show that # may be
identified with D,2K as a distribution. In terms of the resolvent kernel G cor-
responding to K the solution # to (6.2) may be expressed:

uls) = () - | :' dvG(y, 5) &()-

The kernel G is also continuous. If we regard u and g as Z'([i, T])-valued
functions of s € [0, £}, then for ¢ € Cy=>((f, T')) we may writc

() 4> = <g@ $> + | " dyG(y, 5) <g(y) b

= (f )4+ | dyG(y, 5) <f(s, )"
= <K(s’ ) ¢”>

where we have used the equation, equivalent to (5.1):

K(s, 1) =5, 0) + | dG(3,9(3, )
Thus u is indeed the second derivative of K, and we conclude that
D,2K e CY([0, #]; L'[2, T])

for each £€[0, T], T > 0. Finally, since K € C(QT) depends continuously on
few20T), the stability part of the basic theorem implies that D,2K also
depends continuously on f, in the sense of C%([0, ]; L[, T]), for each Z.

The other two formal derivatives of (5.1) read:

Df (s, t) = D2K(s, 1) + (% K(s,)) K(s,2) + K(s5, $) DyK(5, )

, (6.3)
+ D,K(s, s) K(s, £) + fo dyD2K(y, s) K(y, t)

D,D,f(s, 1) = D,D,K(s, ) 4 K(s, s) DK(s, 1) + | " &yD,K(y, s) D,K(y, 1).
(6.4)
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From these equations, which hold a priori in the sense of distributions, we can
immediately deduce that K € #134(0); we leave the details to the reader.

From the stability assertion about D,°K and somc obivous fiddling with
equations (6.3) and (6.4), we can conclude that the map fi— K is continuous in

#340), in a neighborhood of every f satisfying (4.11).

Finally, we point out that K inherits from f a property somewhat more special
than that of being in #7752, if f is of the special form

F60) = e+t - f—1)  FeWrR).

Indeed, it follows from a remark in Section 2 that for any (g, b, ¢, d) e RY, the

function
st f(as — b, cs i- d)

is then in Wi (R), and a simple modification of the above argument shows that
that the function

s+ K(as -+ b, ¢s + d)
is then also in W%} on its interval of definition. In particular,
s> K(s, 5)

defines an element of WLH(R*).
The details of this argument are very similar to that used to establish that
Ke#H0), and we omit them.

7. RECOVERY OF THE BOUNARY VALUE PROBLEM

We shall show that the kernel K constructed in the last section is the regular
part of the Riemann function of some boundary value problem (4.1), thus
completing the proofs of Theorems II and III.

Suppose that fe # T:11(R) is even. Set

[ =¥+ +f6—1)

f©) =hr
Then f € # 71'}(R?) is symmetric. Suppose that f satisfies (4.11) for cach 7" > 0.
Let K be the solution of (5.1) constructed in Sections 5, 6, with f as above. Then
Kew i Y(Q), where Q = {(5,1): 0 <s < t}.
As remarked in Section 6, the functions

s> K(as + b, ¢s + d)
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are in WPh! of their appropriate intervals of definition. In particular, the
function

q(s) = -2 —:i—i; K(s, s)

is in WipH(R™).
We claim that K solves the characteristic mixed problem

o2 o2
S — O K6 ) =0,  s1€Q
‘ff (0, 1) - hK(0,7) = 0 (1)

K(s,s) == h — lfoq

Before showing that K solves (7.1), we remark that the problem (7.1) has a

unique solution in YW TY(Q), as is shown by standard arguments. Since the

results of Section 4 imply that the regular part of the Riemann function of the
boundary value problem (4.1), with ¢ as above, must solve (7.1) also, we con-
clude that K is the regular part of the Riemann function. We have therefore
proven Theorem II if we show that K is a solution of (7.1).

To do this, note first that f solves

Y o2 0
(=) =0 Zon=o ter

(Note that f has second derivatives which are locally integrable in R?). According
to the integral equation

£ =K@ )+ [ &K(5, 9 K(3.1)
we have

(1)  f(0,0) = K(0,0) = &

@ Zo.9=250.0+K00K0.Y

=%(O,t)+h1<(o,t):0, >0
® 0= )60
&2 22 d (7.2)
= (o = 2) K1) — (g K(s,9) KGs. 1
— K{(s, s) D;K(s, t) — D,K(s, s) K(s, t)

~ f dyDy2K(3, s) K(, ) -+ f dyK(y, s) DK (3, t).
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The differentiation under the integral sign above, and various integrations by
parts below are justified (for the only questionable case, m = 1) by

Lrmma.  Suppose ue Ct, , t,), v = Duellt,, t,]. Then
2
[0 = ult) — utty).

'fl

We apply this Lemma to compute

8§
jo dyD2K(p, $) K(, 1)

”

— [ 60,039 K(.1) — [ ¥DK(5.9 DiK(3.0)

v

= D, K(s, s) K(s, t) — D,K(0, s) K(0, 1)

+ || &Ky, DiK(5, ) = [ yDAK(3,5) DK(3, 1)

0

— D,K(s, s) K(s, 1) — DiK(0, 5) K(0, t) — K(s, s) D,K(s, 7)
+ K(0,5) DiK(0, ) + JO dyK(y, s) DK (y, 1).
Hence for 0 < s < ¢

K(s, s) D,K(s, £) — DiK(s, s) K(s, £)
(7.3)

'S Py

= |, B3, ) DPK(y, 1) — | DKy, 9) K(3. 1)

0
where we have made use of the boundary condition (2). By virtue of the identity
d . , :
7 K5 8) = DyK(s, 1) = DoK(s, t)isms
we can add (7.3) to (7.2) to obtain

0= (D — D®)K(s, 1) — 2 (7% K(s, s)) K(s, 1)

+ [ K59 (D2 — DA K3, 1) = [ d(@2* — D) K(3, ) (3 ).
(7.4)
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Set
u(s, 1) = (D — Dy?) K(s, 1) — 2 (gs— K(s, s)) K(s, t). (7.5)

We can re-write (7.4) as
0 = u(s, 1) + f( K (3, ) Uy, 1) ~ [ dyly, K1) (76)

If m > 0, we can immediately conclude that % —_ 0, since (7.6) is a homo-
geneous equation of Volterra type, which finishes the proof of (7.1) in that
case. If m = 0, we must be slightly more careful, since we know a priori only
that u is locally integrable in QO = {(5,£): 0 <{s <<t}

We reason as follows. Suppose that fe ¥ is a proximated by f, € #751

loc -
Then, according to Sections 5, 6, the corresponding solutions K, € # 34(0)
converge in #L(Q) to K. As noted in Section 2, the topology of # 75y is

stronger than that of W{i. If we denote by u, the expression (7.5) formed
with K, instead of K, the sequence u, thus converges in L},,(Q) to . However,
the u, all satisfy (7.6) and are continuous, hence vanish identically. Thus «
vanishes almost everywhere, and the differential equation in (7.1) is satisfied in
the sense of distributions.

This concludes the proof of sufficiency, hence the entire proof, of Theorem II.

To prove Theorem ITI, we note that the coefficient ¢ is determined by the
transport equation (characteristic boundary condition in (7.1)):

q(s) — —2 g; K(s, ).

Since it was shown in Section 6 that K € #7}%:*}(Q) depends continuously on
fe WribYR+) it follows that the map

W10, T1) > fin g € WX([O, T1)
is (well-defined and) continuous in a neighborhood of every f satisfying (4.11),
which is exactly the assertion of Theorem III.
8. ProoF oF THEOREM I

Suppose p: R — R is 2 nondecreasing function satisfying conditions (i) and
(ii) of Theorem I.

LEMMA. f, defined as in Theorem 1, condition (i), satisfies condition (i) of
Theorem 11.
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Proof. Suppose u € LR*) has support in [0, T']. Then
[ o1
R
- A’ ~ <)
= lim [ a0 V)

N 2 N N o
— lim Nd(7 ,\1‘2) | a2 & [_ () | G

Nox J_

B f: lul? I‘i-{r% J_NV do(}) (_[,T ds u(s) cos A'/2 S) ( I-T dt #(t) cos Al/2 t)

+
N ~0

where we have used the ordinary Parseval formula for the (cosine) Fourier
transform.
Now according to condition (1) of Theorem I,

Af
{Yim f do(A) cos A2 s cos AL/2 ¢
Now J_

exists in C%([0, 1] x [0, T]). Hence
u(s) #(t) r do(A) cos Ab2 s cos AY2 ¢ —= u(s) u(t) f(s, t)
is in LY[0, T] X [0, T]), and by Fubini’s Theorem

|T do(A) | a(N)2 = f( )T ‘[0 Tds dt u(s) i€(t) f (s, t).

Thus

£ T T oT
0 :;\if o) [ a0z = [ w2+ [ [ dsdeu(s) @) f(s, 1)
—s ‘0 M IR 1]
and condition (ii) say that the inequality is strict if  is not identically zero a.e.
This however is equivalent to Condition (ii) of Theorem II, as remarked in

Section 2.
We may therefore apply Theorem II to conclude the existence of a hyperbolic

boundary value problem
Uy — Ugy -+ qu == 0
(8.1)
10, t) + hu(0,1) =0

for which f is the boundary value of the Riemann function. Here g ¢ Wi s(R").
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Denote by ¢(x, A) the solution (in C™+(R*), entire in A € C) of

—#5) + (g — N N =0, x>0

8.2)
$0,A) =1, ¢'(0,2) =—h

One immediately verifies that the function

#(x, 1) = cos(A)L/2 t(x, X)
solves (8.1) with initial values

ul(x, 0) = $(x, )
u(x, 0) = 0.
It follows that
W, 1) = J”w dx,R(x, 1, % , 0) $(xy , A).
0
In particular
w0, t) = cos AL/2 ¢
= [ xR0, 1, %, 0) (a0, 3
0
= J;) dxoR(x, , 1) $(xg , )
-6

=460+ | 50K (o, 1) $lx0, )

with K € #5tY(Q).
As in Section 6, denote by G the resolvent kernel for K. Then
t
B2, A) = cos A1/2 ¢ J. dxG(x, t) cos A2 «, (8.3)
0

On the other hand, K satisfies equation (5.1). These two equations ((5.1) and
(8.3)) constitute the input of the argument in [6], and we refer the reader to
that excellent reference for the remainder of the proof of Theorem I.

We remark that equation (8.3) was first derived by Povzner [7] in exactly this
way.
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