Positive Values of Non-homogeneous Indefinite Quadratic Forms of Type (2, 4)

V. C. DUMIR AND R. J. HANS-GILL

Centre for Advanced Studies in Mathematics, Panjab University, Chandigarh 160014, India

AND

RANJEET SEHMI

Department of Applied Sciences, Panjab Engineering College, Chandigarh 160012, India

Communicated by Alan C. Woods

Received February 10, 1994

1. Introduction

Let $Q(x_1, ..., x_n)$ be a real indefinite quadratic form in n variables of type (r, n-r) and determinant $D \neq 0$. Blaney [9] has shown that there exist constants Γ , independent of Q and depending only on n and r, such that given any real numbers $c_1, ..., c_n$ there exist $(x_1, ..., x_n) \equiv (c_1, ..., c_n) \pmod{1}$ such that

$$0 < Q(x_1, ..., x_n) \le (\Gamma |D|)^{1/n}$$
.

Let $\Gamma_{r,n-r}$ denote the infimum of all such numbers Γ . In this notation the following results are known:

 $\Gamma_{1,1} = 4$, Davenport and Heilbronn [11].

 $\Gamma_{2,1} = 4$, Blaney [10] and Barnes [7].

 $\Gamma_{1,2} = 8$, $\Gamma_{3,1} = 16/3$, $\Gamma_{2,2} = 16$, Dumir [12–14].

 $\Gamma_{1,3} = 16$, Dumir and Hans-Gill [15].

 $\Gamma_{3,2} = 16$, $\Gamma_{4,1} = 8$, Hans-Gill and Madhu Raka [19, 20].

 $\Gamma_{r,n-r}$ for $s = 2r - n = 0, \pm 1, 2, 3$, Bambah et al. [4-6].

 $\Gamma_{r,r+2}$ and $\Gamma_{r,r+3}$ for $r \ge 3$, Aggarwal and Gupta [1, 2].

 $\Gamma_{r+4,r}$ for $r \ge 1$, Aggarwal and Gupta [3].

 $\Gamma_{2.5} = 32$, Dumir and Sehmi [17].

Dumir et al. [16] have proved that $\Gamma_{r,n-r}$ depends only on signature $s=2r-n \pmod 8$ for $n\geqslant 6$. Thus $\Gamma_{r,n-r}$ is known except for $\Gamma_{2,4}$ and $\Gamma_{1,4}$. It is easy to see that $\Gamma_{1,4}\geqslant 8$. Dumir and Sehmi [18] have shown that $\Gamma_{1,4}\leqslant 16$. The expected value is 8. It may be remarked here that for larger values of n the evaluation of $\Gamma_{r,n-r}$ is relatively easy. (For $n\geqslant 21$, see M. Flahive, *Indian J. Pure Appl. Math.* 19 (1988), 931-959.) For small values of n, detailed analysis and careful investigation is needed. In this paper we shall prove that $\Gamma_{2,4}=64/3$, thereby proving the conjecture of Bambah et al. [4] in this case. More precisely we prove:

THEOREM. Let $Q(x_1, ..., x_6)$ be a real indefinite quadratic form of type (2, 4) and determinant $D \neq 0$. Then given any real numbers $c_1, ..., c_6$ there exist $(x_1, ..., x_6) \equiv (c_1, ..., c_6) \pmod{1}$ such that

$$0 < Q(x_1, ..., x_6) \le \left(\frac{64}{3} |D|\right)^{1/6}. \tag{1.1}$$

Moreover, equality in (1.1) is needed if and only if Q is equivalent to ρQ_1 or ρQ_2 and $(c_1, ..., c_6)$ is equivalent to P_1 or P_2 respectively, where $\rho > 0$ and

$$Q_1 = x_1 x_2 + x_3 x_4 - x_5^2 - x_5 x_6 - x_6^2$$
, $P_1 = (0, ..., 0)$

and

$$Q_2 = x_1^2 + x_2^2 - x_3^2 - x_4^2 - x_5^2 - x_5 x_6 - x_6^2$$
, $P_2 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0)$.

2. Some Lemmas

In the course of the proof we shall use the following lemmas:

LEMMA 1 [Lagrange]. If Q(x, y) is a positive definite form of determinant Δ , then $Q \sim ax^2 + bxy + cy^2$, where $0 \le b \le a \le c$ and

$$0 < a \le (\frac{4}{3}\Delta)^{1/2}$$
.

LEMMA 2 [Markoff]. If Q(x, y) is an indefinite non-zero quadratic form of determinant Δ , and if Q is not equivalent to $x^2 + xy - y^2$, then there exist integers u, v such that

$$0 < |Q(u, v)| \le (\Delta/2)^{1/2}$$
.

LEMMA 3 [Gauss and Seeber]. Any positive definite ternary form of determinant Δ represents a number b with $0 < b \le (2\Delta)^{1/3}$.

LEMMA 4. (Watson [27]). Any non-zero ternary form of type (1, 2) and determinant Δ represents a number b with $0 < b \le (4\Delta)^{1/3}$.

LEMMA 5 (Venkov [25]). Any non-zero ternary form of type (1, 2) and determinant Δ represents a number b with $|b| \leq (2\Delta/3)^{1/3}$.

LEMMA 6 (Oppenheim [24]). Any non-zero form $Q_{1,3}$ of determinant Δ represents a number b with $|b| \le (2 |\Delta|/9)^{1/4}$ except when $Q_{1,3} \sim \rho G_i$, i=1, 2, 3, where $G_1 = -[x^2 + y^2 + z^2 - u^2 - xu - yu - zu]$, $G_2 = -[x^2 + xy - y^2 + 2(z^2 + zu + u^2)]$, and $G_3 = -[2(x^2 + xy - y^2) + z^2 + zu + u^2]$.

LEMMA 7 (Dumir [13, 14]). Let α , β , γ be real numbers with $\gamma > 1$. Suppose that m is the integer defined by $m < \gamma \le m + 1$. Let x_0 be any real number.

(a) There exists $x \equiv x_0 \pmod{1}$ satisfying

$$0 < -(x + \alpha)^2 + \beta < \gamma,$$

provided

$$\frac{1}{4} < \beta < \frac{m^2}{4} + \gamma.$$

(b) There exists $x \equiv x_0 \pmod{1}$ satisfying

$$0 < (x + \alpha)^2 + \beta < \gamma,$$

provided

$$-\frac{m^2}{4} < \beta < \gamma - \frac{1}{4}.$$

It is convenient to use the following convention: For a polynomial $P(x_1, ..., x_n)$ and real numbers α , β we say that the inequality

$$\alpha < P(x_1, ..., x_n) < \beta$$

is soluble if for any real numbers $c_1, ..., c_n$ there exist $(x_1, ..., x_n) \equiv (c_1, ..., c_n)$ (mod 1) satisfying this inequality.

LEMMA 8 (Dumir and Hans-Gill [15]). If $Q(x_1, ..., x_4)$ is a quadratic form of type (1, 3) with determinant D, then

$$0 < Q(x_1, ..., x_4) \le (16 |D|)^{1/4}$$

is soluble.

LEMMA 9 (Jackson [21]). Let $Q(x_1, ..., x_5)$ be a zero form of type (1, 4) or (2, 3) and determinant D. Then

$$\alpha_1 < Q(x_1, ..., x_5) < \alpha_2$$

is soluble provided $\alpha_2 - \alpha_1 > 2 |D|^{1/5}$.

LEMMA 10 (Macbeath [22]). Let α and β be given real numbers with $\alpha \neq 0$. Then for any real number ν , there exist integers κ , γ satisfying

$$0 < x + \beta y - \alpha y^2 + v \le (2 |\alpha|)^{1/3}.$$

LEMMA 11 (Macbeath [22]). Let α , β , A be real numbers with $\alpha \neq 0$. Let 2h, k be positive integers such that

$$|h - k^2|\alpha| + \frac{1}{2} < A.$$
 (2.1)

Further, suppose that either $|\alpha| \neq h/k^2$ or $\beta \not\equiv h/k \pmod{1/k}$, 2α), i.e., $\beta - h/k$ is not an integral linear combination of 1/k and 2α . Then for any real number y, there exist integers x, y satisfying

$$0 < x + \beta y - \alpha y^2 + y < A. \tag{2.2}$$

This result follows from Lemma 6 of Macbeath [22]. The special case h=1/2, k=1 in this lemma will be used several times. So we state it separately.

LEMMA 11'. Let a, β , A be real numbers with $a \neq 0$. Suppose that (i) 1/2 < |a| < A or (ii) 1-A < |a| < 1/2 or (iii) |a| = 1/2 < A and $\beta \not\equiv 1/2$ (mod 1). Then for any real number v, there exist integers x, y satisfying

$$0 < x + \beta v - av^2 + v < A. \tag{2.3}$$

3. Proof of the Theorem

If Q is an incommensurable quadratic form, then the result follows by well known results of Margulis [23] and Watson [27]. So we can suppose that Q is a rational form of determinant $D \neq 0$. By Meyer's Theorem it is a zero form. Following the proof of Lemma 12 of Birch [8] and using homogeneity we can suppose that either

$$Q = (x_1 + a_2 x_2 + a_4 x_4 + a_5 x_5 + a_6 x_6) x_2 + m(x_3 + b_4 x_4 + b_5 x_5 + b_6 x_6) x_4 - Q_{2,0}(x_5, x_6),$$

or

$$Q = (x_1 + a_2x_2 + a_3x_3 + \dots + a_6x_6)x_2 + Q_{1,3}(x_3, x_4, x_5, x_6),$$

where m is a positive integer, $Q_{2,0}$ is a positive definite quadratic form and $Q_{1,3}$ is a non-zero rational form of type (1,3). We can suppose that $-1/2 < a_i \le 1/2$ and $-1/2 < b_j \le 1/2$ for each i and j. Further, Theorem 13 of Watson [28] gives that if $a_2 = 0$ then $a_i = 0$ for each i and if $b_4 = 0$ then

 $b_5 = b_6 = a_4 = 0$. We can also suppose that $-1/2 < c_i \le 1/2$ for each *i*. Let $d = (64 |D|/3)^{1/6}$. We shall show that

$$0 < Q(x_1, ..., x_6) < d (3.1)$$

is soluble except when Q is equivalent to ρQ_1 or ρQ_2 , $\rho > 0$ and c_i are as stated in the theorem.

LEMMA 12. If Q represents a number a such that 0 < |a| < d/3 or $d/2.48 \le |a| < d/2$, then (3.1) is soluble.

Proof. We can suppose that Q represents a primitively. Replacing Q by an equivalent form we can suppose that

$$Q = a(x_1 + h_2 x_2 + \dots + h_6 x_6)^2 + \phi(x_2, \dots, x_6).$$

By homogeneity we can suppose that $a = \pm 1$, so that d > 2. Let m be the integer satisfying $m < d \le m + 1$. Then $m \ge 2$.

Case (i) a = 1.

Here (3.1) becomes

$$0 < (x_1 + h_2 x_2 + \dots + h_6 x_6)^2 + \phi(x_2, \dots, x_6) < d.$$

By Lemma 7(b), it is enough to show that

$$-\frac{m^2}{4} < \phi(x_2, ..., x_6) < d - \frac{1}{4}$$
 (3.2)

is soluble.

Since Q is a rational form, so is ϕ . Also ϕ is indefinite being of type (1, 4). Hence by Meyer's Theorem, ϕ is a zero form. By Lemma 9, (3.2) is soluble if

$$\frac{m^2 - 1}{4} + d > 2 |D|^{1/5} = \left(\frac{3}{2} d^6\right)^{1/5},$$

i.e. if

$$f(d) = \left(\frac{m^2 - 1}{4} + d\right) d^{-6/5} > \left(\frac{3}{2}\right)^{1/5}.$$
 (3.3)

Now f(d) is a decreasing function of d and $d \le m + 1$. Therefore (3.3) is satisfied if

$$f(m+1) = \frac{1}{4}(m+3)(m+1)^{-1/5} > (\frac{3}{2})^{1/5}$$
.

Since f(m+1) is an increasing function of m, for $m \ge 3$, we have

$$f(m+1) \geqslant f(4) = \frac{3}{2}(4)^{-1/5} > (\frac{3}{2})^{1/5}$$
.

For m = 2, $f(d) = (d + 3/4)d^{-6/5} > (3/2)^{1/5}$ if $2 < d \le 2.48$.

Case (ii)
$$a = -1$$
.

This case is dealt in an analogous manner using Lemma 7(a) and Lemma 9.

4.
$$Q = (x_1 + a_2 x_2 + a_4 x_4 + a_5 x_5 + a_6 x_6) x_2 + m(x_3 + b_4 x_4 + b_5 x_5 + b_6 x_6) x_4 - Q_{2,0}(x_5, x_6)$$

4.1. Let $\Delta =$ determinant of $Q_{2,0}$. Then $m^2\Delta/16 = D = 3d^6/64$ and so $\Delta = 3d^6/4m^2$. Let $a = \min\{Q_{2,0}(X): 0 \neq X \in \mathbb{Z}^2\}$. By Lemma 1, $Q_{2,0}$ represents a primitively with

$$0 < a \leqslant \left(\frac{4\Delta}{3}\right)^{1/2} = \frac{d^3}{m}.\tag{4.1}$$

Since Q represents -a, by Lemma 12, (3.1) is soluble except when

$$\frac{d}{2} \leqslant a \leqslant \frac{d^3}{m} \quad \text{or} \quad \frac{d}{3} \leqslant a \leqslant \frac{d}{2.48},\tag{4.2}$$

so that

$$d^2 \geqslant \frac{m}{3} \geqslant \frac{1}{3}$$
 and hence $d > \frac{1}{2}$. (4.3)

LEMMA 13. Inequality (3.1) is soluble if (i) $c_2 \neq 0$, or (ii) $c_2 = 0$ and d > 1. In particular this is so if $c_2 = 0$ and $m \geqslant 4$.

Proof. Choose $x_2 = c_2$ or 1 according as $c_2 \neq 0$ or $c_2 = 0$. Take $(x_3, ..., x_6) = (c_3, ..., c_6)$ and then choose $x_1 \equiv c_1 \pmod{1}$ such that

$$0 < Q = (x_1 + \cdots)x_2 + m(x_3 + \cdots)x_4 - Q_{2,0}(x_5, x_6) \le |x_2| < d.$$

Since $m \ge 4$ implies that d > 1, the lemma is proved.

Remark 1. Now we suppose that $c_2 = 0$, $m \le 3$ and $d \le 1$. Moreover, we can suppose that

$$Q_{2,0} = a(x_5 + \lambda x_6)^2 + \left(\frac{\Delta}{a}\right)x_6^2,$$

where $0 \le \lambda \le \frac{1}{2}$. We notice that if we write $x_1 = x + c_1$, $x_5 = y + c_5$, $x_2 = \pm 1$ and choose $(x_3, x_4, x_6) \equiv (c_3, c_4, c_6) \pmod{1}$ arbitrarily, then (3.1) reduces to an inequality of the type

$$0 < x + \beta y - ay^2 + v < d, (4.4)$$

where $\beta = \pm a_5 + mb_5x_4 - 2ac_5 - 2a\lambda x_6$ and v is some constant. Solubility of (3.1) follows if we can find integers x and y satisfying (4.4). This inequality is of the type (2.2) with d = A. We shall make repeated use of Macbeath's result (Lemmas 11 and 11').

LEMMA 14. If m = 2 or 3, then (3.1) is soluble.

Proof. Here (4.3) along with Remark 1, implies that d = 1 if m = 3 and d > 3/4 if m = 2 and so $a \ge d/3 > 1 - d$. Also

$$a \leqslant \frac{d^3}{m} \leqslant \frac{1}{m} \leqslant \frac{1}{2}.$$

Therefore by Lemma 11', there exist integers x, y satisfying (4.4) unless m=2, d=1, a=1/2 and $\beta=\pm a_5+2b_5x_4-c_5-\lambda x_6\equiv 1/2$ (mod 1). Taking $x_6=c_6$ and $1+c_6$ we get $\lambda\equiv 0 \pmod 1$, i.e., $\lambda=0$. Since a=1/2, d=1 therefore

$$Q = (x_1 + \cdots)x_2 + 2(x_3 + \cdots)x_4 - (1/2)x_5^2 - (3/8)x_6^2.$$

So 3/8 is a value of $Q_{2,0}$, which is not possible since a = 1/2 is the minimum value of $Q_{2,0}$.

Remark 2. We are now left with m=1.

4.2. m = 1.

Here $Q = (x_1 + a_2x_2 + \cdots)x_2 + (x_3 + b_4x_4 + \cdots)x_4 - a(x_5 + \lambda x_6)^2 - (\Delta/a)x_6^2$. Arguing as in Lemma 13, we see that (3.1) is soluble if $c_4 \neq 0$. So we can now suppose that

$$c_2 = c_4 = 0, \qquad \frac{d}{3} \le a \le d^3 \le d, \qquad \frac{1}{\sqrt{3}} \le d \le 1.$$
 (4.5)

By Lemma 11', there exist integers x, y satisfying (4.4) if (i) 1/2 < a < d or (ii) a < 1/2 and a + d > 1 or (iii) a = 1/2 and $\beta \not\equiv 1/2$ (mod 1). Therefore we are through by Lemma 11' except when (i) a = d = 1 or (ii) a < 1/2, $a + d \le 1$ or (iii) a = 1/2 and $\beta \equiv 1/2$ (mod 1).

LEMMA 15. If a = d = 1, then (3.1) is soluble except when Q is equivalent to ρQ_1 or ρQ_2 and $(c_1, ..., c_6)$ is equivalent to P_1 or P_2 respectively, where $\rho > 0$ and Q_1 , Q_2 , P_1 , P_2 are as in the Theorem. In these cases (1.1) is soluble with the sign of equality being necessary.

Proof. Here

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 + (x_3 + b_4 x_4 + \cdots) x_4 - (x_5 + \lambda x_6)^2 - 3/4 x_6^2.$$

Choosing $(x_1, x_2, x_5) = (x + c_1, \pm 1, y + c_5)$, $(x_3, x_4, x_6) \equiv (c_3, c_4, c_6)$ (mod 1), (3.1) reduces to an inequality of the type (2.2) with a = A = 1 and $\beta = \pm a_5 + b_5 x_4 - 2c_5 - 2\lambda x_6$. Applying Lemma 11 with h = k = 1 it is easy to see that (3.1) is soluble unless

$$\pm a_5 + b_5 x_4 - 2c_5 - 2\lambda x_6 \equiv 0 \pmod{1}. \tag{4.6}$$

Taking $x_6 = c_6$ and $1 + c_6$ we get $\lambda \equiv 0 \pmod{\frac{1}{2}}$ and thus

$$\lambda = 0 \text{ or } 1/2. \tag{4.7}$$

If $\lambda = 0$, then 3/4 is a value of $Q_{2,0}$, which is not possible since a = 1 is the minimum value. Let $\lambda = 1/2$. Then (4.6) becomes

$$\pm a_5 + b_5 x_4 - 2c_5 - x_6 \equiv 0 \pmod{1} \tag{4.8}$$

Taking $x_4 = c_4$ and $1 + c_4$, we get $b_5 = 0$. Interchanging the roles of x_2 and x_4 in the above argument we get $a_5 = 0$. Thus (4.8) reduces to

$$2c_5 + c_6 \equiv 0 \pmod{1}.$$

Symmetry w.r.t. x_5 and x_6 gives $a_6 = b_6 = 0$ and

$$2c_6 + c_5 \equiv 0 \pmod{1}.$$

so that $c_5 = c_6 = 0$, 1/3 or -1/3. Thus

$$Q = (x_1 + a_2 x_2 + a_4 x_4) x_2 + (x_3 + b_4 x_4) x_4 - x_5^2 - x_5 x_6 - x_6^2.$$

Now b_4 is a value of Q therefore (3.1) is soluble except when $b_4 = 0$ or $|b_4| \ge d/3$. For $b_4 \ne 0$, $|1/2 - |b_4|| + 1/2 < 1$, so that choosing $x_1 = x + c_1$, $x_2 = \pm 1$, $x_3 = c_3$, $x_5 = c_5$, $x_6 = c_6$ and $x_4 = y + c_4$ and applying Lemma 11', (3.1) is soluble unless $b_4 = 1/2$ and $\pm a_4 + c_3 \equiv 1/2 \pmod{1}$, i.e., $(a_4, c_3) = (0, 1/2)$ or (1/2, 0). Thus we are left with (i) $b_4 = 0$ in which case by symmetry we can suppose that $c_3 = 0$ or (ii) $b_4 = 1/2$ and $(a_4, c_3) = (0, 1/2)$ or (1/2, 0).

Similarly we can show that either (i) $a_2 = 1/2$ and $(a_4, c_1) = (0, 1/2)$ or (1/2, 0) or (ii) $a_2 = 0$ in which case $a_4 = 0$ by a result of Watson [26] and hence $c_1 = 0$.

Case (i)
$$b_4 = 0 = c_3$$
.

Choose $(x_1, x_2, x_3, x_4) = (c_1, 0, 1, 1)$, $|x_6| \le 1/2$, $|x_5 + (1/2)x_6| \le 1/2$ then 0 < Q < 1 unless $x_6 = 0$ and $x_5 + (1/2)x_6 = 0$, i.e., $c_5 = c_6 = 0$. Now if $a_2 = a_4 = c_1 = 0$ then

$$Q = x_1 x_2 + x_3 x_4 - (x_5 + (1/2)x_6)^2 - (3/4)x_6^2$$

= $x_1 x_2 + x_3 x_4 - x_5^2 - x_5 x_6 - x_6^2 \equiv 0 \pmod{1}$

for integers x_i and Q(1, 1, 0, 0, 0, 0) = 1 so that (1.1) is soluble with equality where as (3.1) is not soluble.

If $a_2 = 1/2$ and $(a_4, c_1) = (1/2, 0)$ then Q(0, 1, 0, 0, 0, 0) = 1/2 so that (3.1) is soluble in this case.

If $a_2 = 1/2$ and $(a_4, c_1) = (0, 1/2)$ then

$$Q = (x_1 + (1/2)x_2)x_2 + x_3x_4 - x_5^2 - x_5x_6 - x_6^2$$

and

$$(c_1, ..., c_6) = (1/2, 0, ..., 0)$$

so that $Q(x_1, ..., x_6) \equiv 0 \pmod{1}$ for $(x_1, ..., x_6) \equiv (1/2, 0, ..., 0) \pmod{1}$ and Q(1/2, 0, 1, 1, 0, 0) = 1, i.e., (3.1) is not soluble whereas (1.1) is soluble with equality. Moreover Q is equivalent to ρQ_2 and $(c_1, ..., c_6)$ goes to P_2 under the corresponding transformations.

Case (ii).
$$b_4 = 1/2$$
 and $(a_4, c_3) = (1/2, 0)$ or $(0, 1/2)$.

If $(a_4, c_3) = (1/2, 0)$ then $a_2 = 1/2$ and $c_1 = 0$. (Since $a_2 = 0$ implies $a_4 = 0$ and since $a_4 = 1/2$ we have $c_1 = 0$). Therefore

$$Q = (x_1 + (1/2)x_2 + (1/2)x_4)x_2 + (x_3 + (1/2)x_4)x_4$$
$$-(x_5 + (1/2)x_6)^2 - (3/4)x_6^2.$$

Choosing $(x_1, ..., x_4) = (0, 0, 0, 1)$ and $|x_6| \le 1/2$, $|x_5 + (1/2)x_6| \le 1/2$, we have 0 < Q < 1 so that (3.1) is soluble.

If $(a_4, c_3) = (0, 1/2)$ and $a_2 = c_1 = 0$, as before it is easy to see that (3.1) is soluble unless

$$Q = x_1 x_2 + (x_3 + (1/2)x_4)x_4 - x_5^2 - x_5 x_6 - x_6^2$$

and

$$(c_1, ..., c_6) = (0, 0, 1/2, 0, 0, 0),$$

in which case (1.1) is soluble with equality. Moreover in this case Q is equivalent to ρQ_2 and $(c_1, ..., c_6)$ goes to P_2 under the corresponding transformations.

If $(a_4, c_3) = (0, 1/2)$ and $a_2 = 1/2$ we must have $c_1 = 1/2$ (since $a_4 = 0$). Now

$$Q = (x_1 + (1/2)x_2)x_2 + (x_3 + (1/2)x_4)x_4 - (x_5 + (1/2)x_6)^2 - (3/4)x_6^2.$$

Again we can show that (3.1) is soluble unless $c_5 = c_6 = 0$ in which case Q(1/2, 1, 1/2, 0, 0, 0) = 1 and $Q(x_1, ..., x_6) \equiv 0 \pmod{1}$ for $(x_1, ..., x_6) \equiv (1/2, 0, 1/2, 0, 0, 0) \pmod{1}$ so that (1.1) is soluble with equality being necessary. Again Q is equivalent to ρQ_2 and $(c_1, ..., c_6)$ goes to P_2 under the corresponding transformations. This proves the lemma.

LEMMA 16. If a < 1/2, $a + d \le 1$ and $d \le 3/4$, then (4.4) is soluble for d > 0.7 unless a = 1/4, $\lambda = c_5 = 0$, $a_5 = 0$ or 1/2 and $b_5 = 0$ or 1/2.

Proof. Taking h = 1, k = 2 and A = d in Lemma 11, it is easy to see that

$$|1-4a|+\frac{1}{2}< d$$

is satisfied for d > 0.7. Hence (4.4) is soluble unless $a_4 = 1/4$, and $\beta \equiv 0 \pmod{1/2}$, i.e., $\pm a_5 + b_5 x_4 - (1/2) c_5 - (1/2) \lambda x_6 \equiv 0 \pmod{1/2}$. Taking $x_6 \equiv c_6$ and $1 + c_6$ we get $\lambda \equiv 0 \pmod{1}$ and so $\lambda = 0$. Taking $x_4 = 0$ and 1, we get $b_5 \equiv 0 \pmod{1/2}$. Since m = 1, by symmetry $a_5 \equiv 0 \pmod{1/2}$. For $a_5 \equiv 0 \pmod{1/2}$, $b_5 \equiv 0 \pmod{1/2}$ and $\lambda = 0$ we get $c_5 \equiv 0$.

Remark 3. If $a \ge d/2$, then $d^3 \ge a \ge d/2$ gives $d^2 \ge 1/2$, i.e., d > 0.7, and $a \ge d/2 \ge 1/2$ $\sqrt{2} > 1/4$. Thus, in this case result follows by Lemma 16, so we can now suppose by (4.2) that

$$\frac{d}{3} \leqslant a \leqslant \frac{d}{2.48}.\tag{4.9}$$

LEMMA 17. If $d/3 \le a \le d/2.48$, then (3.1) is soluble for a < 1/2, $a + d \le 1$ and $d \le 3/4$.

Proof. Taking $(x_2, x_3, x_4) = (1, c_3, 0)$, the inequality (3.1) becomes

$$0 < x_1 + a_2 + a_5 x_5 + a_6 x_6 - a(x_5 + \lambda x_6)^2 - (\Delta/a) x_6^2 < d.$$

This can be written as

$$0 < a^{-1}(x_1 + a_6'x_6 + v_6' - (\Delta/a)x_6^2) - (x_5 + \lambda x_6 + a_5/2a)^2 < d/a, \tag{4.10}$$

where a'_6 and v' are suitable real numbers. By Lemma 7(a), the inequality (4.10) is soluble if we can solve

$$\frac{1}{4} < a^{-1} \left(x_1 + a_6' x_6 + v' - \frac{\Delta}{a} x_6^2 \right) < 1 + \frac{d}{a}.$$

Write $x_1 = x + c_1$ and $x_6 = y + c_6$. Then this inequality becomes

$$0 < x + a_6'' y + v'' - \frac{\Delta}{a} y^2 < d + \frac{3a}{4}, \tag{4.11}$$

for some real numbers a_6'' and v''.

Case (i). $d^2 < 125/288$.

By Lemma 10, (4.11) is soluble in integers x and y if

$$\left(\frac{2\Delta}{a}\right)^{1/3} < d + \frac{3a}{4},$$

which is satisfied because $\Delta = 3d^6/4$, $a \ge d/3$, and $d^2 < 125/288$.

Case (ii).
$$d^2 \ge 125/288$$
.

Here we shall use Lemma 11' with A=d+3a/4 and Δ/a instead of a. Since $d/3 \le a \le d^3$ and $\Delta/a+3a/4+d>1$, therefore by Lemma 11', it remains to consider the case $\Delta/a=1/2$ or $a=3d^6/2$. Since $a \ge d/3$, this gives d>0.7. By Lemma 16, it follows that (4.4) is soluble unless a=1/4 (so that $d^6=1/6$) and $a_5=0$ or 1/2, $b_5=0$ or 1/2 and $\lambda=c_5=0$. In this case

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 + (x_3 + b_4 x_4 + b_5 x_5 + b_6 x_6) x_4 - \frac{1}{4} x_5^2 - \frac{1}{2} x_6^2.$$

If $b_5 = 1/2$, we have

$$Q = (x_1 + a_2 x_2 + \dots) x_2 + (x_3 + b_4' x_4 + b_6 x_6) x_4 - \frac{1}{4} (x_5 - x_4)^2 - \frac{1}{2} x_6^2$$

$$\sim (x_1 + a_2 x_2 + a_4' x_4 + a_5' x_5 + a_6 x_6) x_2 + (x_3 + b_4' x_4 + b_6 x_6) x_4$$

$$- \frac{1}{4} x_5^2 - \frac{1}{2} x_6^2.$$

So we can suppose that $b_5 = 0$. Similarly we can suppose that $a_5 = 0$. Therefore

$$Q = (x_1 + a_2 x_2 + a_4 x_4 + a_6 x_6) x_2 + (x_3 + b_4 x_4 + b_6 x_6) x_4 - \frac{1}{4} x_5^2 - \frac{1}{2} x_6^2$$

Take $(x_1, ..., x_6) = (x + c_1, 1, c_3, 0, 0, y + c_6)$ or $(c_1, 0, x + c_3, 1, 0, y + c_6)$ or $(x + c_1, 1, c_3, 1, 0, y + c_6)$. By Lemma 11', it is easy to see that (3.1) is soluble unless

$$a_6 - c_6 \equiv \frac{1}{2} \pmod{1}$$

$$b_6 - c_6 \equiv \frac{1}{2} \pmod{1}$$

and

$$a_6 + b_6 - c_6 \equiv \frac{1}{2} \pmod{1}$$
.

Therefore $a_6 = b_6 = 0$ and $c_6 = 1/2$. Now we have

$$Q = (x_1 + a_2 x_2 + a_4 x_4) x_2 + (x_3 + b_4 x_4) x_4 - \frac{1}{4} x_5^2 - \frac{1}{2} x_6^2$$

and

$$(c_2, c_4, c_5, c_6) = (0, 0, 0, \frac{1}{2}).$$

We shall now show that (3.1) is soluble unless $b_4 = 0$, $\pm 1/4$, 1/2. Let $b_4 \neq 0$. Take $(x_1, ..., x_6) = (x + c_1, 1, c_3, y, 0, 1/2)$. Then (3.1) will be soluble if there exist integers x, y satisfying

$$0 < x + (a_4 + c_3) y + b_4 y^2 + v < 6^{-1/6} = d = 0.7418.$$
 (4.12)

If $1-d < |b_4| < 1/2$, then this follows by Lemma 11'. So let $0 < |b_4| \le 1-d$, $|b_4| \ne 1/4$. By Lemma 12, (3.1) is soluble except when $|b_4| \ge d/3$. Now using Lemma 11, with h=1, k=2, the condition $|1-4|b_4| |+1/2 < d$, is easily seen to be satisfied. Therefore by Lemma 11 and Lemma 11', the inequality (4.12) is soluble unless $b_4=0$, $\pm 1/4$, 1/2. Now we discuss the special cases depending on b_4 .

Case (i).
$$b_4 = 0$$
.

In this case $Q = (x_1 + \cdots)x_2 + x_3x_4 - (1/4)x_5^2 - (1/2)x_6^2$. If $c_3 \neq 0$, choose $(x_1, x_2, x_5, x_6) = (c_1, c_2, c_5, c_6)$ and x_4 such that

$$0 < Q \le |c_3| \le \frac{1}{2} < d.$$

If $c_3 = 0$, then $0 < Q(c_1, 0, 1, 1, 1, 1/2) = 5/8 < d$.

Case (ii)
$$b_4 = 1/2$$
 or $1/4$.

Choosing $(x_1, ..., x_4, x_6) = (c_1, 0, c_3, \pm 1, 1/2)$ so that $x_3 x_4 = |c_3|$ and $x_5 = 0$ or 1 according as $b_4 = 1/4$ or 1/2, it can be seen that

$$0 < Q = |c_3| + b_4 - \frac{1}{4}x_5^2 - \frac{1}{8} \le \frac{5}{8} < d.$$

Case (iii). $b_4 = -1/4$.

Choosing $(x_1, ..., x_6) = (c_1, 0, \pm 1 + c_3, \pm 1, 0, 1/2)$ in such a way that $x_3 x_4 = 1 - |c_3|$ we have $0 < Q = 1 - |c_3| - 1/4 - 1/8 \le 5/8 < d$.

LEMMA 18. The inequality (3.1) is soluble when a = 1/2.

Proof. By Lemma 1, we can take

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 + (x_3 + b_4 x_4 + \cdots) x_4 + (\frac{1}{2} x_5^2 + b x_5 x_6 + c x_6^2),$$

where $0 \le b \le 1/2 \le c$.

As before we convert the inequality 0 < Q < d to an inequality of the type (2.2) by making different substitutions given below:

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (x + c_1, 1, c_3, 0, y + c_5, c_6)$$
or $(x + c_1, 1, c_3, 0, y + c_5, 1 + c_6)$
or $(x + c_1, 1, c_3, 1, y + c_5, c_6)$
or $(c_1, 0, x + c_3, 1, y + c_5, c_6)$.

By Lemma 11', the inequality (3.1) is soluble except when

$$-bc_6 - c_5 + a_5 \equiv \frac{1}{2} \pmod{1}$$

$$-b(c_6 + 1) - c_5 + a_5 \equiv \frac{1}{2} \pmod{1}$$

$$-bc_6 - c_5 + a_5 + b_5 \equiv \frac{1}{2} \pmod{1}$$

$$-bc_6 - c_5 + b_5 \equiv \frac{1}{2} \pmod{1}.$$

From these congruences we get

$$b = a_5 = b_5 = 0$$
 and $c_5 = 1/2$. (4.13)

In this case

$$Q = (x_1 + a_2 x_2 + a_4 x_4 + a_6 x_6) x_2 + (x_3 + b_4 x_4 + b_6 x_6) x_4 - \frac{1}{2} x_5^2 - c x_6^2,$$

 $d^6 = (64/3)$ |D| = 2c/3 and so c < 3/2 because d < 1. Since $c \ge 1/2$ we get $d^6 \ge 1/3$. Since b_4 is a value of Q, therefore (3.1) is soluble except when $|b_4| \ge d/3$ or $b_4 = 0$. If $b_4 \ne 0$ then $|b_4| + d \ge d/3 + d = 4d/3 > 1$, therefore by Lemma 11', (3.1) is soluble unless $b_4 = 0$ or 1/2.

Again we convert the inequality (3.1) to that of type (2.2) with $\alpha = c$, A = d by the substitution $(x_1, ..., x_6) = (c_1, 0, x + c_3, 1, c_5, y + c_6)$. For 1/2 < c < d, the result follows by Lemma 11'. So let us suppose that $c \ge d$. Then $d^5 \ge 2/3$ and so d > 0.9. Since

$$|1-c| + \frac{1}{2} < d$$

applying Lemma 11 with h = k = 1, it follows that (3.1) is soluble unless c = 1. Thus, we are left with $c = \frac{1}{2}$ and 1.

Case (i).
$$c = \frac{1}{2}$$
.

Interchange of x_5 and x_6 shows that $c_6 = \frac{1}{2}$, $a_6 = b_6 = 0$. Thus $Q = (x_1 + a_2 x_2 + a_4 x_4) x_2 + (x_3 + b_4 x_4) x_4 - \frac{1}{2} x_5^2 - \frac{1}{2} x_6^2$, $c_5 = c_6 = \frac{1}{2}$, $b_4 = 0$ or $\frac{1}{2}$.

Choosing $(x_1, x_2, x_3, x_5, x_6) = (c_1, 0, c_3, \frac{1}{2}, \frac{1}{2})$ and $x_4 = \pm 1$ so that $x_3x_4 = |c_3|$, it can be easily seen that (3.1) is satisfied for $b_4 = \frac{1}{2}$. If $b_4 = 0$, then interchanging x_3 and x_4 we see that $c_3 = 0$. Here take $x_2 = 0$, $x_3 = x_4 = 1$, $x_5 = x_6 = \frac{1}{2}$.

Case (ii).
$$c = 1$$
.

Here $d^6 = 2/3$; i.e., d = 0.93, We convert (3.1) into an inequality of the type (2.2) by making different substitutions given below

$$(x_1, ..., x_6) = (x + c_1, 1, c_3, 0, \frac{1}{2}, y + c_6)$$
 or $(x + c_1, 1, c_3, 1, \frac{1}{2}, y + c_6)$,

or

$$(c_1, 0, x + c_3, 1, \frac{1}{2}, y + c_6).$$

Applying Lemma 11 with $\alpha = h = k = 1$, A = d, it follows that (3.1) is soluble unless

$$a_6 - 2c_6 \equiv 0 \pmod{1}$$

 $a_6 + b_6 - 2c_6 \equiv 0 \pmod{1}$
 $b_6 - 2c_6 \equiv 0 \pmod{1}$.

These congruences imply $a_6 = b_6 = 0$ and $c_6 = 0$ or $\frac{1}{2}$. In this case

$$Q = (x_1 + a_2 x_2 + a_4 x_4) x_2 + (x_3 + b_4 x_4) x_4 - \frac{1}{2} x_5^2 - x_6^2,$$

where $b_4 = 0$ or $\frac{1}{2}$. These special cases can be dealt with easily as done in Case (i).

5.
$$Q = (x_1 + a_2 x_2 + \dots + a_6 x_6) x_2 + Q_{1,3}(x_3, \dots, x_6)$$

Here $Q_{1,3}$ is a non-zero rational form of type (1, 3) and determinant $\Delta = 4 |D| = 3d^6/16$.

LEMMA 19. The inequality (3.1) is soluble if (i) $c_2 \neq 0$ and d > 1/2 or (ii) $c_2 = 0$ and d > 1 or (ii) $c_2 = 0$ and $d < 1/\sqrt{3}$.

Proof. Proof of (i) and (ii) is similar to that of Lemma 13. For the proof of (iii) we note that by Lemma 8, the inequality $0 < Q_{1,3} \le (16 |\Delta|)^{1/4} = (3d^6)^{1/4}$ is soluble. Therefore taking $x_2 = 0$, it follows that for $d < 1/\sqrt{3}$ and $c_2 = 0$, (3.1) is soluble. This completes the proof of the lemma.

Suppose first that $Q_{1,3}$ is not equivalent to ρG_i , i = 1, 2, 3. Since $Q_{1,3}$ is a rational form, $Q_{1,3}$ represents a, where

$$|a| = \min\{|Q_{1,3}(X)| : 0 \neq X \in \mathbb{Z}^4\}.$$

By Lemma 6, we have

$$0 < |a| \le \left(\frac{2|A|}{9}\right)^{1/4} = \left(\frac{d^6}{24}\right)^{1/4}.$$
 (5.1)

Since Q represents a, the inequality (3.1) is soluble by Lemma 12, if |a| < d/3. So let us suppose that $|a| \ge d/3$ and hence $d^2 \ge 8/27 > 1/4$.

Remark 4. In view of Lemma 19, we can suppose that $c_2 = 0$ and $1/\sqrt{3} \le d \le 1$. Moreover we have

$$\frac{d}{3} \le |a| \le \left(\frac{d^6}{24}\right)^{1/4} < \frac{d}{2} \le \frac{1}{2}.\tag{5.2}$$

Since $Q_{1,3}$ represents a, we can write

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 + a(x_3 + b_4 x_4 + \cdots)^2 + \phi(x_4, x_5, x_6).$$

Putting $(x_1, ..., x_6) = (x + c_1, 1, y + c_3, c_4, c_5, c_6)$, the inequality (3.1) is converted into an inequality of the type (2.2). By Lemma 11', this inequality is soluble in integers x, y if |a| + d > 1. So we can suppose that

$$|a| + d \le 1$$
 and $d \le \frac{3}{4}$. (5.3)

LEMMA 20. The inequality (3.1) is soluble for |a| > 2/9 unless |a| = 1/4.

Proof. Proceeding as in the above Remark and applying Lemma 11 with h = 1 and k = 2, the inequality (3.1) is soluble if

$$|1-4|a| + \frac{1}{2} < d.$$
 (5.4)

If $|a| > \frac{1}{4}$, then using (5.3) for d > 0.7 and using (5.2) for $d \le 0.7$, it is easy to see that (5.4) is satisfied. If |a| < 1/4, then (5.4) is satisfied if 3/2 < d+4|a|. Otherwise $2/9 < |a| \le (1/4)(3/2-d)$. Again apply Lemma 11 with h = 2 and k = 3. Then it is easy to see that |2-9|a| + 1/2 < d, so that (2.2) and hence (3.1) is soluble in this case.

LEMMA 21. The inequality (3.1) is soluble if $d/3 \le a \le 2/9$ or if a = 1/4. Proof. Here

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 + a(x_3 + \cdots)^2 - Q_{3,0}$$

where the positive definite form $Q_{3,0}$ has determinant $\delta = 4D/a = 3d^6/16a$. Let b be the minimum value of $Q_{3,0}$. By Lemma 3, $Q_{3,0}$ represents b with

$$0 < b \le (2\delta)^{1/3} = \left(\frac{3d^6}{8a}\right)^{1/3} \le \left(\frac{9d^5}{8}\right)^{1/3}.$$
 (5.5)

Now we can suppose that

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 + a(x_3 + b_4 x_4 + \cdots)^2 - b(x_4 + \cdots)^2 - Q_{2,0}$$

Take $x_2 = 1$. Then (3.1) is soluble if we can solve

$$0 < \left(x_3 + b_4 x_4 + b_5 x_5 + b_6 x_6 + \frac{1}{2} a_3 a^{-1}\right)^2$$

$$+ a^{-1} \left[x_1 + a_4' x_4 + \dots + a_6' x_6 - b(x_4 + \dots)^2 + \dots + v'\right] < \frac{d}{a} \quad (5.6)$$

Here v' is a suitable real number and $d/3 \le a \le 1/4 < d/2$ and so $2 < d/a \le 3$. Therefore by Lemma 7(a) with m = 2, (5.6) is soluble if we can solve

$$-1 < a^{-1}[x_1 + a_4'x_4 + \dots + a_6'x_6 - b(x_4 + \dots)^2 - Q_{2,0} + v'] < \frac{d}{a} - \frac{1}{4},$$

or

$$0 < x_1 + a_4' x_4 + \dots + a_6' x_6 - b(x_4 + \dots)^2 - Q_{2,0} + v < d + \frac{3a}{4}, \quad (5.7)$$

where v is a constant.

Putting $x_1 = x + c_1$, $x_4 = y + c_4$, $x_5 = c_5$ and $x_6 = c_6$, we get an inequality of the type (2.2). Using (5.5) it is easy to see that b < d + 3a/4 so that applying Lemma 11' with b and d + 3a/4 in place of a and A respectively if follows that (5.7) is soluble for b > 1/2. Now suppose that b < 1/2. Since a is a value of section $a(x_3 + b_4 x_4)^2 - bx_4^2 = f(x_3, x_4)$ of $Q_{1,3}$ and $a = \min\{|Q_{1,3}(X)|: 0 \neq X \in \mathbb{Z}^4\}$, therefore $a = \min\{|f(x_3, x_4)|: x_3, x_4 \text{ integers not both zero}\}$ and hence by Lemma 2, either $f \sim a(x_3^2 + x_3 x_4 - x_4^2)$ or $0 < a \le (ab/2)^{1/2}$, i.e., $a \le b/2$. Consequently for $a \le b/2$ we have $b + d + 3a/4 \ge d + 11a/4 \ge d + 11d/12 > 1$, so that the condition of Lemma 11' is satisfied for b < 1/2. Thus (3.1) is soluble unless b = 1/2 or $f \sim a(x_3^2 + x_3 x_4 - x_4^2)$.

Case (i) b = 1/2.

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 + a(x_3 + \cdots)^2 - \frac{1}{2} (x_4 + \cdots)^2 - Q_{2,0},$$

where $Q_{2,0}$ represents α such that

$$0 < \alpha \leqslant \left(\frac{d^6}{2a}\right)^{1/2}.\tag{5.8}$$

Without loss of generality, we can suppose that

$$Q_{2,0} = \alpha(x_5 + \lambda_6 x_6)^2 + \alpha' x_6^2$$

Now (5.7) becomes

$$0 < -(x_4 + \dots)^2 - 2[\alpha(x_5 + \dots)^2 + \alpha' x_6^2 - (x_1 + \dots) + v_1]$$

$$< 2d + \frac{3a}{2}.$$
(5.9)

Since 1 < 2d + 3a/2 < 2, by Lemma 7(a), (5.9) is soluble if we can solve

$$\frac{1}{4} < -2[\alpha(x_5 + \cdots)^2 + \alpha' x_6^2 - (x_1 + \cdots) + v_1] < 2d + \frac{3a}{2} + \frac{1}{4},$$

or

$$0 < -\alpha [x_5 + \dots]^2 - \alpha_6' x_6^2 + x_1 + \dots + v_2 < d + \frac{3a}{4}.$$
 (5.10)

Consider the section $-(1/2)(x_4 + \lambda_5 x_5)^2 - \alpha x_5^2$ of $-Q_{3.0}$. It represents -k, where $0 < k \le (2\alpha/3)^{1/2}$. Also $k \ge b = 1/2$. Therefore $\alpha \ge 3/8$. This gives $\alpha + d + (3a/4) > 1$. If $d/3 \le a \le 2/9$, then (5.8) gives $\alpha < 1/2$, so that applying Lemma 11', it is easy to see that (5.10) is soluble. If a = 1/4, then (5.8) gives $\alpha \le \sqrt{2}d^3$. It can be easily verified that if $\alpha \ne 1/2$, then the conditions of Lemma 11' are satisfied and so (5.10) is soluble for $\alpha \ne 1/2$.

If $\alpha = 1/2$, then $Q_{1,3}(x_3, x_4, x_5, 0) = (1/4)(x_3 + \cdots)^2 - (1/2)(x_4 + \cdots)^2 - (1/2)x_5^2$ is rationally equivalent to a zero form which is a contradiction.

Case (ii)
$$a(x_3 + b_4 x_4)^2 - bx_4^2 \sim a(x_3^2 + x_3 x_4 - x_4^2)$$
.

Here $b=5a/4 \le 5/16 < 1/2$. If b+d+3a/4=d+2a>1, then (5.7) is soluble by Lemma 11'. Let us now suppose that $d+2a \le 1$. Since $a \ge d/3$, we have $d \le 3/5$. Using Lemma 11 with h=1, k=2, the inequality (5.7) is soluble for $b \ne 1/4$ if

$$|1 - 4b| + \frac{1}{2} < d + \frac{3a}{4}. \tag{5.11}$$

Since b = 5a/4, $1/4 \ge a \ge d/3$, and $d \ge 1/\sqrt{3}$, it is easy to see that (5.11) is satisfied and hence (5.7) is soluble unless b = 1/4.

If b = 1/4, then a = 1/5. Again we proceed as in Case (i). Here

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 + \frac{1}{5} (x_3 + \cdots)^2 - \frac{1}{4} (x_4 + \cdots)^2 - Q_{2,0}$$

where $Q_{2,0}$ represents α with $0 < \alpha \le (5d^6)^{1/2}$. Since $d/3 \le a = 1/5$ we have $d \le 3/5$. Therefore $\alpha < 1/2$. In this case (5.7) can be written as

$$0 < -(x_4 + \cdots)^2 + 4[x_1 + \cdots - \alpha(x_5 + \cdots)^2 - \alpha' x_6^2 + v''] < 4d + \frac{3}{5}. \quad (5.12)$$

Since $2 < 4d + 3/5 \le 3$, by Lemma 7(a), (5.12) is soluble if we can solve

$$\frac{1}{4} < 4[x_1 + \cdots - \alpha(x_5 + \cdots)^2 - \alpha' x_6^2 + v''] < 1 + 4d + \frac{3}{5},$$

i.e.,

$$0 < x_1 + \dots - \alpha(x_5 + \dots)^2 - \alpha' x_6^2 + v'' < d + \frac{27}{80}.$$
 (5.13)

Consider the section

$$Q_{1,3}(x_3, x_4, x_5, 0) = \frac{1}{5}(x_3 + \cdots)^2 - \frac{1}{4}(x_4 + \cdots)^2 - \alpha x_5^2$$

By Lemma 5, it represents a number k with $|k| \le (\alpha/30)^{1/3}$. Also $|k| \ge a = 1/5$ and so $\alpha \ge 6/25$. Therefore $\alpha + d + 27/80 > 1$ and hence (5.13) is soluble by Lemma 11'.

LEMMA 22. The inequality (1.1) is soluble if a < 0, $d/3 \le |a| \le 2/9$ or a = -1/4.

Proof. For convenience, writing -a instead of a, we have $d/3 \le a \le 2/9$ or a = 1/4 and

$$Q = (x_1 + \cdots)x_2 - a(x_3 + b_4x_4 + b_5x_5 + b_6x_6)^2 + Q_{1,2}$$

where $Q_{1,2}$ is a non-zero form of determinant $-\Delta/a = 3d^6/16a$. By Lemma 4, $Q_{1,2}$ represents b with $0 < b \le (3d^6/4a)^{1/3}$. Let b be the smallest such number and write $Q_{1,2} = b(x_4 + \lambda_5 x_5 + \lambda_6 x_6)^2 - Q_{2,0}$, where $0 \le \lambda_5 \le \frac{1}{2}$, $0 \le \lambda_6 \le \frac{1}{2}$.

Now proceeding as in the proof of Lemma 21, using Lemma 7(b), one can easily see that it is enough to prove that

$$0 < (x_1 + a_4' x_4 + \dots) + b(x_4 + \lambda_5 x_5 + \lambda_6 x_6)^2 - Q_{2,0} + v < d + \frac{3a}{4},$$
 (5.14)

is soluble.

Proceeding as in Lemma 21, it is easy to see that either $-a(x_3+b_4x_4)^2+bx_4^2$ is equivalent to $-a(x_3^2+x_3x_4-x_4^2)$ or $2a \le b$,

b+d+3a/4>1 and b< d+3a/4. Taking $x_1=x+c_1$, $x_2=1$ $x_4=y+c_4$ and $(x_5,x_6)\equiv (c_5,c_6)$ (mod 1) arbitrarily and applying Lemma 11', it follows that (5.14) is soluble unless

(i)
$$b = 1/2$$
 and $a'_4 + c_4 + \lambda_5 x_5 + \lambda_6 x_6 \equiv 1/2 \pmod{1}$, or

(ii)
$$b = 5a/4$$
 and $-a(x_3 + b_4 x_4)^2 + bx_4^2 \sim -a(x_3^2 + x_3 x_4 - x_4^2)$.

If b = 5a/4 and $-a(x_3 + b_4x_4)^2 + bx_4^2 \sim -a(x_3^2 + x_3x_4 - x_4^2) \sim a(x_3^2 + x_3x_4 - x_4^2)$ then a binary section of $Q_{1,3}$ represents a and so the result follows as in case (ii) of Lemma 21.

Now we are left with b=1/2 and $a_4'+c_4+\lambda_5x_5+\lambda_6x_6\equiv 1/2 \pmod{1}$. Taking $x_5=c_5$ and $1+c_5$, this congruence implies that $\lambda_5\equiv 0 \pmod{1}$. Since $0 \le \lambda_5 \le 1/2$, we get $\lambda_5=0$. Similarly $\lambda_6=0$. Therefore

$$Q = (x_1 + a_2 x_2 + \cdots) x_2 - a(x_3 + b_4 x_4 + \cdots)^2 + \frac{1}{2} x_4^2 - Q_{2,0}(x_5, x_6).$$

By Lemma 2, $Q_{2,0}$ represents c such that

$$0 < c \le \left(\frac{4}{3} \cdot \frac{3d^6}{8a}\right)^{1/2} \le \left(\frac{3d^5}{2}\right)^{1/2} < d,\tag{5.15}$$

because $a \ge d/3$ and $d \le 3/4$. Without loss of generality we can suppose that

$$Q_{2,0} = c(x_5 + \cdots)^2 + \cdots$$

If c < 1/2, then (1/2) - c > 0 is a value of $Q_{1,2}$ and is less than 1/2 = b, which is not possible by definition of b. Therefore $c \ge 1/2$. If c = 1/2, then $Q_{1,2} = (1/2)x_4^2 - (1/2)(x_5 + \cdots)^2 + \cdots$ is rationally equivalent to a zero form, which is not the case. If c > 1/2, then choose $x_1 = x + c_1$, $x_2 = 1$, $(x_3, x_4, x_6) = (c_3, c_4, c_6)$ and $x_5 = y + c_5$ and apply Lemma 11'. Since 1/2 < c < d, by (5.15), it follows by Lemma 11' that (3.1) is soluble in this case.

6. EXCEPTIONAL CASES: $Q_{1,3} \sim \rho G_i$, $i = 1, 2, 3, \rho > 0$

Case (i)
$$Q_{1,3} = -\rho \left[x_3^2 + x_4^2 + x_5^2 - x_6^2 - x_6(x_3 + x_4 + x_5) \right], \rho > 0.$$

Here $Q = (x_1 + \cdots)x_2 + Q_{1,3}$ and $(7/16)\rho^4 = D = (3d^6/64)$, so that $\rho = (3d^6/28)^{1/4}$. Since ρ is a value of Q, by Lemma 12, we can suppose

$$\frac{d}{3} \le \rho = \left(\frac{3d^6}{28}\right)^{1/4} \le \frac{d}{2.48} \quad \text{or} \quad \rho \ge \frac{d}{2}$$
 (6.1)

which gives

$$d^2 > \frac{1}{9}. (6.2)$$

By Lemma 19, it remains to discuss the following cases

- (i) $c_2 = 0, 1/\sqrt{3} \le d \le 1,$
- (ii) $c_2 = 0, d \le |c_2|$.

First suppose that $c_2 = 0$ and $1/\sqrt{3} \le d \le 1$. Then $\rho = (3d^6/28)^{1/4} \ge d(1/28)^{1/4} > d/2.48$, so that (6.1) gives $\rho \ge d/2$ and hence d > 3/4. Take $x_1 = x + c_1$, $x_2 = 1$, $x_3 = y + c_3$, $(x_4, x_5, x_6) = (c_4, c_5, c_6)$. By Lemma 11', it is easy to see that (3.1) is soluble unless $\rho = 1/2$. If $\rho = 1/2$, then $d = (7/12)^{1/6} = 0.914$, ... Taking $x_2 = 1$, (3.1) can be written as

$$0 < (x_1 + a_2 + a_3 x_3 + \cdots)$$

$$-\frac{1}{2}(x_3^2 + x_4^2 + x_5^2 - x_6^2 - x_3 x_6 - x_4 x_6 - x_5 x_6) < d.$$

By Lemma 7(a), it is soluble if we can solve

$$0 < x_1 + a_4 x_4 + a_5 x_5 + a_6' x_6 + v - \frac{1}{2} (x_4^2 + x_5^2 - \frac{5}{4} x_6^2 - x_4 x_6 - x_5 x_6) < d.$$
 (6.3)

Taking $x_1 = x + c_1$, $x_6 = y + c_6$ and $(x_4, x_5) = (c_4, c_5)$ it reduces to an inequality of the type (2.2). Since d > 5/8, taking a = 5/8 and A = d in Lemma 11', it follows that the inequality is soluble.

Now suppose that $c_2 \neq 0$ and $d \leq |c_2| \leq 1/2$. Let $d' = d/|c_2|$ and $\rho' = \rho/|c_2|$. Then $\rho' \leq \rho/d = (3d^2/28)^{1/4} < 1/2$. Taking $x_2 = c_2$ it is enough to solve

$$0 < \pm (x_1 + \dots) - \rho' \left[(x_3 - x_6/2)^2 - \frac{5}{4}x_6^2 - \dots \right] < d'. \tag{6.4}$$

Taking $x_1 = x + c_1$, $x_3 = y + c_3$, $(x_4, x_5) = (c_4, c_5)$ it reduces to an inequality of the type (2.2) with a and A replaced by ρ' and d' respectively. By Lemma 11', it is soluble if $\rho' + d' > 1$ or $\rho + d > |c_2|$, which is satisfied if d > 3/8 and $\rho \ge d/3$. Otherwise suppose that

$$\rho + d \leqslant |c_2| \leqslant \frac{1}{2} \quad \text{and} \quad d \leqslant \frac{3}{8}. \tag{6.5}$$

(6.4) can be rewritten as

$$0 < -\left[x_3 - \frac{1}{2}x_6 - \frac{1}{2\rho'}a_3\right]^2 + \frac{5}{4}x_6^2$$

$$+ (x_1 + a_2x_2 + a_4x_4 + a_5x_5 + a_6'x_6)/\rho + \nu$$

$$-\left[x_4^2 + x_5^2 + \cdots\right] < \frac{d'}{\rho'} = \frac{d}{\rho}.$$

Since $2 < d/\rho \le 3$, by Lemma 7(a) it is soluble if we can solve

$$\begin{split} \frac{1}{4} < & \frac{5}{4} x_6^2 + (x_1 + a_2 x_2 + a_4 x_4 + a_5 x_5 + a_6' x_6)/\rho + v \\ & - \left[x_4^2 + x_5^2 - x_4 x_6 - x_5 x_6 \right] < \frac{d'}{\rho'} + 1, \end{split}$$

i.e.,

$$0 < x_1 + \dots + \frac{5\rho'}{4} x_6^2 + \nu' - \rho' [x_4^2 + x_5^2 - x_4 x_6 - x_5 x_6] < d' + \frac{3}{4} \rho'. \quad (6.6)$$

Now

$$\frac{5\rho'}{4} = 5\rho/(4|x_2|) \leqslant \frac{5\rho}{4d} \leqslant \frac{5}{4} \left(\frac{3d^2}{28}\right)^{1/4} \leqslant \frac{5}{4} \left[\frac{3}{28} \left(\frac{3}{8}\right)^2\right]^{1/4} < \frac{1}{2}.$$

Since

$$\begin{aligned} \frac{5\rho'}{4} + d' + \frac{3\rho}{4} &= d' + 2\rho' = (d + 2\rho)/|x_2| \geqslant 2\left(d + \frac{2d}{3}\right) \\ &= \frac{10d}{3} > 1, \quad \text{by (6.2)}. \end{aligned}$$

Therefore taking $x_1 = x + c_1$, $x_6 = y + c_6$, $(x_4, x_5) = (c_4, c_5)$ and $5\rho'/4$ and $d' + 3\rho'/4$ in place of a and A in Lemma 11', it follows that (6.6) is soluble.

Case (ii)

$$Q_{1,3} = -\rho \left[x_3^2 + x_3 x_4 - x_4^2 + 2(x_5^2 + x_5 x_6 + x_6^2) \right] = \rho G_2 \text{ or}$$

$$Q_{1,3} = -\rho \left[2(x_3^2 + x_3 x_4 - x_4^2) + x_5^2 + x_5 x_6 + x_6^2 \right] = \rho G_3.$$

Here

$$Q = (x_1 + a_2 x_2 + \cdots + a_6 x_6) x_2 + Q_{1,3}$$

In this case $(15/16)\rho^4 = D = (3/64)d^6$ so that $\rho = (d^6/20)^{1/4}$. Since ρ is a value of Q, therefore $d/3 \le \rho = (d^6/20)^{1/4}$ and hence $d^2 \ge 20/81$. By Lemma 19, (3.1) is soluble if either $c_2 \ne 0$ and $d > |c_2|$, or $c_2 = 0$ and d > 1, or $c_2 = 0$ and $d < 1/\sqrt{3}$.

Suppose first that $c_2 \neq 0$ and $d \leq |c_2| \leq 1/2$. We want to solve

$$0 < (x_1 + \dots)x_2 - \rho[x_3^2 + x_3x_4 - x_4^2 + 2(x_5^2 + x_5x_6 + x_6^2)] < d \quad (6.7)$$

and

$$0 < (x_1 + \cdots)x_2 - \rho \left[2(x_3^2 + x_3 x_4 - x_4^2) + x_5^2 + x_5 x_6 + x_6^2 \right] < d. \quad (6.8)$$

Take $x_1 = x + c_1$, $x_2 = c_2$, $(x_4, x_6) = (c_4, c_6)$ and $(x_3, x_5) = (y + c_3, c_5)$ or $(c_3, y + c_5)$ according as inequality is (6.7) or (6.8), respectively. Then these inequalities reduce to an inequality of the type (2.2) with $a = p/|c_2|$ and $A = d/|c_2|$. Since $(p + d)/|c_2| \ge 4d/|c_2| \ge 8d/3 > 1$ and $p/|c_2| \le p/d = (d^2/20)^{1/4} \le (1/80)^{1/4} < 1/2$, therefore the inequality is soluble by Lemma 11'.

Now suppose that $c_2 = 0$ and $1/\sqrt{3} \le d \le 1$ and hence $\rho < 1/2$. Take $(x_1, ..., x_6) = (x + c_1, 1, y + c_3, c_4, c_5, c_6)$ or $(x + c_1, 1, c_3, c_4, y + c_5, c_6)$ according as inequality considered is (6.7) or (6.8) respectively. By Lemma 11' with $a = \rho$ and A = d, these inequalities are soluble if $\rho + d > 1$ which is satisfied if d > 3/4. Otherwise suppose that $\rho + d \le 1$ and $d \le 3/4$, then $2 < d/\rho \le 3$. Taking $x_2 = 1$, (6.7) and (6.8) can be written as

$$0 < (x_1 + a_4' x_4 + a_5 x_5 + a_6 x_6 + v)/\rho - \left[\left(x_3 + \frac{1}{2} x_4 - \frac{1}{2\rho} a_3 \right)^2 - \frac{5}{4} x_4^2 \right] - 2x_5^2 + \dots < \frac{d}{\rho},$$

and

$$0 < (x_1 + a_3 x_3 + a_4 x_4 + a_6' x_6 + v)/\rho - \left[\left(x_5 + \frac{1}{2} x_6 - \frac{1}{2\rho} a_5 \right)^2 + \frac{3}{4} x_6^2 \right] - 2x_3^2 + \dots < \frac{d}{\rho}.$$

By Lemma 7(a) these are soluble if we can solve

$$0 < x_1 + \dots + v' + \frac{5\rho}{4} x_4^2 - 2\rho x_5^2 + \dots < d + \frac{3\rho}{4}, \tag{6.9}$$

and

$$0 < x_1 + \dots + \nu' + \frac{3\rho}{4} x_6^2 - 2\rho x_3^2 + \dots < d + \frac{3\rho}{4}. \tag{6.10}$$

Take $(x_1, x_4, x_5, x_6) = (x + c_1, y + c_4, c_5, c_6)$ in (6.9) and $(x_1, x_3, x_4, x_6) = (x + c_1, c_3, c_4, y + c_6)$ in (6.10). They reduce to an inequality of the type (2.2). By Lemma 11', (6.9) and (6.10) are soluble if $d + 3\rho/4 + 5\rho/4 > 1$ and $d + 3\rho/4 + 3\rho/4 > 1$, respectively. Otherwise suppose that

$$d+2\rho \leqslant 1$$
 and $d+\frac{3\rho}{2} \leqslant 1$, respectively.

It is easy to see that $2\rho < 1/2$ in each case. Then taking $(x_1, x_4, x_5, x_6) = (x + c_1, c_4, y + c_5, c_6)$ in (6.9) and $(x_1, x_3, x_4, x_6) = (x + c_1, y + c_3, c_4, c_6)$ in (6.10) and applying Lemma 11', these inequalities are soluble since $d + 3\rho/4 + 2\rho = d + 11\rho/4 > d + 11d/12 > 1$. This completes the proof of case (ii).

Lemmas 1–22 along with Section 6 complete the proof of the theorem.

ACKNOWLEDGMENT

The authors are very grateful to Professor A. C. Woods for many useful discussions.

REFERENCES

- S. K. AGGARWAL AND D. P. GUPTA, Positive values of inhomogeneous quadratic forms of signature (-2), J. Number Theory 29 (1988), 138-165.
- S. K. AGGARWAL AND D. P. GUPTA, Least positive values of inhomogeneous quadratic forms of signature (-3), J. Number Theory 37 (1991), 260–278.
- S. K. AGGARWAL AND D. P. GUPTA, Positive values of inhomogeneous quadratic forms of signature 4, J. Indian Math. Soc. 57 (1991), 1–23.
- R. P. BAMBAH, V. C. DUMIR, AND R. J. HANS-GILL, Positive values of non-homogeneous indefinite quadratic forms, Proc. Col. in classical number theory, Budapest, 1981, pp. 111-170.
- R. P. BAMBAH, V. C. DUMIR, AND R. J. HANS-GILL, On a conjecture of Jackson on non-homogeneous quadratic forms, J. Number Theory 16 (1983), 403-419.
- R. P. BAMBAH, V. C. DUMIR, AND R. J. HANS-GILL, Positive values of non-homogeneous indefinite quadratic forms II, J. Number Theory 18 (1984), 313–341.
- E. S. Barnes, The positive values of inhomogeneous ternary quadratic forms, J. Austral. Math. Soc. 2 (1961), 127-132.
- 8. B. J. BIRCH, The inhomogeneous minimum of quadratic forms of signature zero, *Acta Arithmetica* 3 (1958), 85-98.
- H. Blaney, Indefinite quadratic forms in n variables, J. London Math. Soc. 23 (1948), 153-160.
- 10. H. BLANEY, Indefinite ternary quadratic forms, Quart. J. Math. Oxford 1 (1950), 262-269.
- H. DAVENPORT AND H. HEILBRONN, Asymmetric inequalities for non-homogeneous linear forms, J. London Math. Soc. 22 (1947), 53-61.
- V. C. Dumr, Asymmetric inequalities for non-homogeneous ternary quadratic forms, Proc. Camb. Phil. Soc 63 (1967), 291–303.
- V. C. Dumir, Positive values of inhomogeneous quadratic forms I, J. Austral. Math. Soc. 8 (1968), 87-101.
- V. C. Dumir, Positive values of inhomogeneous quadratic forms II, J. Austral. Math. Soc. 8 (1968), 287–303.
- 15. V. C. Dumir and R. J. Hans-Gill, On positive values of non-homogeneous quaternary quadratic forms of type (1, 3), *Indian J. Pure Appl. Math.* 12 (1981), 814–825.
- V. C. DUMIR, R. J. HANS-GILL, AND A. C. WOODS, Values of non-homogeneous indefinite quadratic forms, J. Number Theory 47 (1994), 190-197.
- 17. V. C. DUMIR AND SEHMI RANJEET, Positive values of non-homogeneous indefinite quadratic forms of type (2, 5), *Number Theory* 48 (1994), 1–35.

- V. C. Dumir and Sehmi Ranjeet, Positive values of non-homogeneous indefinite quadratic forms of type (1, 4), Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 557-579.
- 19. R. J. Hans-Gill and Raka Madhu. Positive values of inhomogeneous 5-ary quadratic forms of type (3, 2), J. Austral. Math. Soc. 29 (1980), 439-450.
- R. J. HANS-GILL AND RAKA MADHU, Positive values of inhomogeneous quinary quadratic forms of type (4, 1), J. Austral. Math. Soc. 31 (1981), 175-188.
- T. H. JACKSON, Gaps between values of quadratic forms, J. London Math. Soc. 3 (1971), 47-58.
- 22. A. M. Macbeath, A new sequence of minima in the geometry of numbers, *Proc. Camb. Phil. Soc.* 47 (1951), 266-273.
- 23. G. A. MARGULIS, Indefinite quadratic forms and unipotent flows on homogeneous spaces, C. R. Acad. Sc. (1987), 249-253.
- 24. A. OPPENHEIM, The minima of indefinite quaternary quadratic forms, *Ann. Math.* 32 (1931), 271-298.
- 25. B. A. Venkov, Sur le problèmes extrémale de Markoff pour les forms quadratiques ternaires indéfinies, *Izv. Akad. Nauk SSR Ser. Mat.* 9 (1945), 429-494.
- 26. G. L. Watson, Indefinite quadratic polynomials, Mathematika 7 (1960), 141-144.
- G. L. Watson, Asymmetric inequalities for indefinite quadratic forms, *Proc. London Math. Soc.* 18 (1968), 95–113.
- 28. G. L. WATSON, "Integral Quadratic Forms," Cambridge University Press, 1960.