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1. INTRODUCTION

Let Q(x,, .., x,) be a real indefinite quadratic form in » variables of type
{r, n—r) and determinant D #0. Blaney [9] has shown that there exist
constants I, independent of Q and depending only on » and r, such that
given any real numbers ¢, .... ¢, there exist (x,, ... X, )=(¢(,....¢,) (mod I)
such that

0<Q(x...x,)<(T D)™

Let I, , _, denote the infimum of all such numbers 7. In this notation the
following results are known:

I =4, Davenport and Heilbronn [11].

I, =4, Blaney [10] and Barnes {7].

I ,=81;,=16/3, I, ;=16, Dumir [12-14].

I y =16, Dumir and Hans-Gill [15].

I, s=16, I, , =8, Hans-Gill and Madhu Raka [19, 20].
I, ,fors=2r—n=0, £1, 2, 3, Bambah et a/. [4-6].
I, ,,->and [, . 5 for r=3, Aggarwal and Gupta [1,2].
I, ,,for r=1, Aggarwal and Gupta [3].
I3 =32, Dumir and Sehmi [17].
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262 DUMIR, HANS-GILL, AND SEHMI

Dumir er af. [16] have proved that I, , depends only on signature
s=2r—n (mod 8) for n=6. Thus I, , ,1s known except for I, , and I ,.
It is easy to see that [, ,= 8 Dumir and Sehmi [18] have shown that
I, <16. The expected value is 8. It may be remarked here that for larger
values of # the evaluation of I, , , is relatively easy. (For n>=21, see
M. Flahive, Indian J. Pure Appl. Math. 19 (1988), 931-959.) For small
values of n, detailed analysis and careful investigation i1s needed. In this
paper we shall prove that I, ,=64/3, thereby proving the conjecture of
Bambah ¢1 /. [4] in this case. More precisely we prove:

THEOREM.  Let Q(xy, ... Xg) be a real indefinite quadratic form of type
(2, 4) and determinant D #0. Then given any real numbers ¢, .., ¢, there
OXIST AN |, N} = ()0 o c)mod 1) such that

64 16
0<Quhmx“<&;w0 . (1.1)

Moreover, equality in (1.1) is needed if and only it Q is equivalent to pQ, or
pQ, and (¢, ..., ¢g) is equivalent to Py or Py respectively, where p >0 and

hd ki
Q| = XX, +.\'xv\'4*.\‘g—.\'5.\'(,_.\"8, P| :(O, ey O)

and

13—

-2 L2 .2 L2 .2 -\ |2 1
Q=]+ X5—X3—-X;— N3 —XgX,— X, Py={(3,

2. SOME LEMMAS
In the course of the proof we shall use the following lemmas:

Lemma 1 [Lagrange]. If Q(x, y) is a positive definite form of deter-
minant 4, then Q ~ ax*+bxy +cv?, where 0<h<a<c and

o

0<a<< (i)™

LEMMA 2 [Markofl]. [f Q(x, vy} is an indefinite non-zero quadratic form
of determinant A, and if Q is not equivalent to x* + xy — v?, then there exist
integers u, v such that

0 <[Qu. )] <(4/2)'=.

LEMMA 3 [Gauss and Seeber]. Auny positive definite ternary form of
determinant A represents a number b with 0 <b < (24)"°.
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LemMMa 4. (Watson [27]). Any non-zero ternary form of type (1,2)
and determinant A represents a number b with 0 < b < (44)'7

Lemma S (Venkov [25]).  Any non-zero ternary form of type (1, 2) and
determinant A represents a number b with |b| <(24/3)"7.

Lemma 6 (Oppenheim [24]).  Any non-zero form Q, 5 of determinant A
represents « number b owith |b| <(214|/9' except when Q) 1~ pG,,
i=1, 2, 3, where Gy= —[x*+ v+ —ul—xu—yu—cu)], Go= —[x"+
Xv— v+ 2 v zu+u) ] and Gy= —[2AX7 +xy— y)+ 2+ tu+ut].

LEmMMa 7 (Dumir [ 13, 14]). Let o, f3, y be real numbers with y > 1. Sup-
pose that w iy the integer defined by i < y <m + 1. Let xy be any real number.
(a) There exists x=x, (mod 1) satisfying
0< —(x+a)P+p<y
provided
1 <fi< Tj + 7.
4 4
(b) There exists x=x, {mod 1) satisfving
O<(x+a)y+p<y,
provided

m’ ]
I By
g <P<r—g

It is convenient to use the following convention: For a polynomial
P(x,, ... x,) and real numbers «, f we say that the inequality

a< Plxy, . .,x,)<f

is soluble if for any real numbers ¢,,.., ¢, there exist (x,,..x,)=
{(¢yv .. ¢,) (mod 1) satisfying this inequality.

LemMma 8 (Dumir and Hans-Gill [15]). If Olx,, ... x4) is a quadratic
Jorm of type (1, 3) with determinant D, then

0.<Q(x,. . xa) < (16 |D[)
is soluble.

LemMma 9 (Jackson [21]). Let Q(x,, ... x5) be a zero form of type (1, 4)
r (2, 3) and determinant D. Then

o, < QXL oy X5) <2y

is soluble provided oy — o, >2 |D|'?
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LEMMA 10 (Macbeath [22]). Let x and B be given real numbers with
a# 0. Then for any real number v, there exist integers x, y satisfying

O<x+fr—a’ +r<(2]a)

LemMma 11 (Macbeath [22]). Ler o, B, A be real numbers with o #0.
Let 2h, k be positive integers such that

-k ol |+ < A (2.1)

,

Further, suppose that either |x| £ hik> or  # hik{mod 1/k, 22), ie., f— Nk
is not an integral linear combination of 1/k and 2a. Then for any real number
v, there exist integers x, vy satisfying

O<x+fy—ap’+v<A. (2.2)

This result follows from Lemma 6 of Macbeath [22]. The special case
h=1/2, k=1 in this lemma will be used several times. So we state it
separately.

Lemma 11", Let u, . A be real numbers with a+#0. Suppose that
(1) 12<ul<d or (i) 1 —A<|a| <1/2 or (il) la|=12<A4 and f£1,2
(mod 1). Then for any real number v, there exist integers x, v satisfving

O<x+fr—ap’+v< A (2.3)

3. PrROOF OF THE THEOREM

If Q is an incommensurable quadratic form, then the result follows by
well known results of Margulis [ 23] and Watson [27]. So we can suppose
that @ is a rational form of determinant D #0. By Meyer’s Theorem it is
a zero form. Following the proof of Lemma 12 of Birch [8] and using
homogeneity we can suppose that either

Q=(x,F+drXs+adyx,+ds s+ dexelxs
+m(xy by xg+bs X+ b ), — O o (X5, Xe),
or
O=(xX;+dsXs+a; X34+ - Fdo )Xo+ Q) X3, X4, X5, X,

where n1 is a positive integer, Q,  is a positive definite quadratic form and
Q, : is a non-zero rational form of type (l,3). We can suppose that
—1/2<a,<1/2 and —1/2<b,;<1/2 for each i and ;. Further, Theorem 13
of Watson [ 28] gives that if ¢, =0 then ¢, =0 for each i and if b, =0 then
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bs=b.=a,=0. We can also suppose that —1/2 <c¢; < 1/2 for each i. Let
d=(64|D|/3)"*. We shall show that

0<O(xy, ... ¥o) <d (3.1)

1s soluble except when @ is equivalent to pQ, or pQ,, p >0 and ¢, are as
stated in the theorem.

LEmMMA 12, If Q represents « number a such that 0<|a| <d/3 or
di2.48 < a| <dj2, then (3.1) is soluble.

Proof. We can suppose that Q represents a primitively. Replacing Q by
an equivalent form we can suppose that

O=a(x;+1:Xs+ - +hexe) +d(xa, oy Xg)

By homogeneity we can suppose that ¢ = +1, so that d>2. Let m be the
integer satisfying m<d<m+ 1. Then m = 2.

Case (1} a=1.

Here (3.1) becomes
0<(x,+hxs4 - +hex) + (x5, ., X)) <d.
By Lemma 7(b), it is enough to show that

? ]
A%<¢(.\‘3,m, .\‘(,)<(/—Z (3.2)

is soluble.

Since Q 1s a rational form, so is ¢. Also ¢ 1s indefinite being of type
(1, 4). Hence by Meyer’s Theorem, ¢ is a zero form. By Lemma 9, {3.2) is
soluble if

5
m-

—1 3 175
4 -+d>2 |D|1”5=<§ d(’> .

ie. if

1 145
f(d)=<’” 7 l+d> d*"““><§> . (3.3)

&

Now f(d) i1s a decreasing function of d and d <m + 1. Therefore (3.3) is
satisfied if

Sm+D=m+3)m+1)" "> (3
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Since f(m+1) is an increasing function of m, for m > 3, we have
fim+ Dz (4 =34) "> )"
For m=2, fld)=(d+3/4)d **>(3/2)"°if 2<d<248.
Case (i1) a= —1.

This case is dealt in an analogous manner using Lemma 7(a) and
Lemma 9.

4. Q=(X|+drXs+dyXg+Us N5+ dg X)X
TN+ DXy +bsXs+ b X)Xy — Q2 (X5, X)
4.1. Let A4=determinant of Q,,. Then m>4/16 =D =3d°/64 and

so A=3d%4m’. Let a=min{Q, ((X):0#XeZ*}. By Lemmal, Q,,
represents ¢ primitively with

12 3
0<u<<4-4) _d (4.1)

m’

Since @ represents —ua, by Lemma 12, (3.1) is soluble except when

¢ d
S<a<— S<a<z, 4.
2 “ m o 3 “ 2.48 (4.2)
so that
2"l nd hence d> . 43)
¢ Z373 an e ¢ 3 (4.

LEMMA 13, Inequality (3.1} is soluble if (1) ¢, #0, or (i1) ¢, =0 and
d> 1. In particular this is so if ¢;=0 and m=4.

Proof. Choose x,=¢, or 1 according as ¢,#0 or ¢,=0. Take
(N34 oy Xg ) =(C3, .. ¢} and then choose x| =¢, (mod 1) such that

0<@=(x+ - )xy+mlxat - )xs— Oy ol X5, X)) <[] <dd.

Since # =4 implies that d > 1, the lemma is proved.

Remark 1. Now we suppose that ¢, =0. m <3 and d < 1. Moreover, we
can suppose that
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where 0</< 3. We notice that if we write X, =x+c¢;, Xs=V+cs,
x,= +1 and choose (x;, x4, xo)=(c3, ¢4, ¢4) (mod 1) arbitrarily, then
{3.1) reduces to an inequality of the type

O<x+pfr—ay’ +v<d, (4.4)

where ff= tas+mbsx, —~2acs —2usx, and v is some constant. Solubility
of (3.1) follows 1if we can find integers v and 1 satisfying (4.4). This
inequality is of the type (2.2) with d = A. We shall make repeated use of
Macbeath’s result (Lemmas 11 and 11°).

LemMma 14, If mi=2 or 3, then (3.1) is soluble.

Proof. Here (4.3) along with Remark . implies that d=1 1f w1 =3 and
d>34ifm=2and so azd/3>1-d Also

d* 1 1
U< —< —< .
m m 2

Therefore by Lemma 11', there exist integers v, v satisfying (4.4} unless
m=2,d=1,a=1/22and = +as+2bsx,—¢s—7rxg=1,2 (mod ). Taking
Xy, = and 1 + ¢, we get 2 =0(mod 1), 1.e, A=0. Since « =1,/2, d=1 there-
fore

O=(x 4+ X+ 2Ax+ - xy— (1/2)x3 — (3/8)x¢.

So 3/8 i1s a value of Q, . which is not possible since «= 1,2 is the mini-
mum value of Q, .

Renwark 2. We are now left with m=1.
42, m=1.

Here Q=(x, 4+ arXa4 -+ )X, + (X34 byx, + - )xy —alxs + Ax) —
(A:a)x,. Arguing as in Lemma 13, we see that (3.1) is soluble if ¢, #0. So
we can now suppose that

1
ca=cy=0, %1<u<u”<d. —=<d< 1. (4.5)

By Lemma 11, there exist integers x, v satisfying (4.4) if (i) 1.2 <a<d or
(iya<l/2and a+d>1 or (iii) «= 1,2 and f# 1,2 (mod 1). Therefore we
are through by Lemma 11’ except when (i) a=d=1 or (ii) a<]l/2,
a+d<1or (i) a=1/2 and f=1/2 (mod 1).
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LemMa 15. If a=d =1, then (3.1) is soluble except when Q is equivalent
to pQ, or pQ, and (¢, .., ¢} is equivalent to P, or P, respectively, where
p>0 and Q. Q., P, P, are as in the Theorem. In these cases (1.1) is
soluble with the sign of equality being necessary.

Proof. Here

O=(x;+d2X>+ I+ (X3 +baxs+ - )x,— (x5 + Axg)” — 3/4x2.

Choosing (x|, x;. xs)=(x+ ¢, L, p+¢5), (X3, X4, Xg) = (€3, a5 C)
{mod 1), (3.1) reduces to an inequality of the type (2.2) with a=A4 =1 and
f= tas+bsxys—2¢5s —24x,. Applying Lemma 11 with A=k =1 it is easy
to see that (3.1) is soluble unless

tas+bsxy—2¢s—24x,=0 (mod 1). (4.6)
Taking x, = ¢, and | + ¢, we get A=0(mod }) and thus
1=0or 172 (47)

If /=0, then 3/4 is a value of Q5 ,, which is not possible since « =1 is
the minimum value. Let 4 =1/2. Then (4.6) becomes

tas+bsxy—2c5—x,=0 {mod 1) (4.8)

Taking x,=c, and | +¢,, we get b; =0. Interchanging the roles of x, and
X, in the above argument we get a; =0. Thus (4.8) reduces to

205+ ¢ =0 (mod 1).
Symmetry w.r.t. x5 and x, gives ¢, = b, =0 and
2e6+¢s=0 {mod 1).

so that ¢c.=¢,=0, 1/3 or — /3. Thus
O=(x+a: N+ ad; X)X+ (x3+b5x4)x,— .\"g — XsXg— .\‘g.

Now b, is a value of Q therefore (3.1) is soluble except when b, =0 or
lbsl 2 d/3. For by#0, |1/2—|b4|| +1/2 <1, so that choosing x; =x +¢,,
X, =11, xy=¢;5, X5 =¢5, Xg=¢g and x, =y + ¢, and applying Lemma 11,
(3.1} 1s soluble unless b,=1/2 and +a,+c;=1/2(mod 1), ie. (a4, c3}=
(0, 1/2) or (1,2, 0). Thus we are left with (i) b, =0 in which case by sym-
metry we can suppose that ¢y =0 or (ii) b,=1/2 and (a,, ¢;)=(0, 1,2) or
(1,2, 0).

Similarly we can show that either (i) ¢, =1/2 and (a4, ¢,)=(0, 1/2) or
(1,2, 0) or (i1) ¢, =0 in which case a, =0 by a result of Watson [26] and
hence ¢, =0.
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Case (i) b,=0=c;.

Choose (x|, X5, x5, x)=(c;. 0,1, 1), |xq| <172, |x5+(1/2)x4] <1/2 then
0< Q<1 unless x¢=0 and x5+ (1/2)x,=0, ie, cs=ce=0. Now if
a,=a,=c,=0 then

Q=xX,+ X35, — (x5 + (1/2)x6)* — (3/4) x;

=X N+ XXy — X:—Xs X, — X2 =0 (mod 1)

for integers x;, and Q(1,1,0,0,0,0)=1 so that (1.1) is soluble with
equality where as (3.1) is not soluble.

If a, =1/2 and (a,, ¢;)=(1/2,0) then Q(0, 1,0, 0,0,0)=1/2 so that (3.1)
is soluble in this case.

If a,=1/2 and (a,, ¢,)=(0, 1,2) then

O=(x,+(1/2)X2) X2+ X353 — X2 — XX — X2
and
(c1s o ce)=(1/2,0, ... 0)

so that Q(x,, .., x¢)=0(mod 1) for (x,, ..., x¢)=(1/2,0, ..,0)(mod 1) and
0(1/2,0,1,1,0,0)=1, ie, (3.1) is not soluble whereas (1.1) is soluble with
equality. Moreover Q is equivalent to pQ, and (¢,, ..., ¢,) goes to P, under
the corresponding transformations.

Case (1). b,=1/2 and (a,, c;)=(1/2,0) or (0, 1/2).

If (a4, ¢3)=(1/2,0) then a,=1/2 and ¢, =0. (Since ¢, =0 implies a, =0
and since a4 = 1/2 we have ¢, =0). Therefore

O=(x,+{1/2)x, + (1/2)x ) x,+ (x:+{1/2)x,4) x4
— (x5 4+ (1/2)x¢)? — (3/4)x2.
Choosing (x|, .., x4} =(0,0,0, 1} and |v¢| <1/2, |xs4+(1/2) x| <1/2, we
have 0 < Q@ <1 so that (3.1} is soluble.
If (a4, ¢;)=10,1/2) and a,=c, =0. as before it is easy to see that (3.1)
1s soluble unless
Q=x,X+ (x3+ (1/2)X4)xs — X3 — X5 X — X

and

(€1 e)=(0.0,1/2,0,0,0)

641 S5 2.9
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in which case (1.1) is soluble with equality. Moreover in this case Q is
equivalent to pQ, and (¢, .., ¢,) goes to P, under the corresponding trans-
formations.

If (as,c3)=1(0,1/2) and a,=1/2 we must have ¢, =1/2 (since a,=0).
Now

Q= (¥, +(1/2)x3) %5 + (x5 +(1/2) x4) x4 — (x5 + (1/2) %)% = (3/4) x¢.

Again we can show that (3.1} i1s soluble unless ¢s=c¢,=0 in which case
0(1/2,1,1/2,0,0,0)=1 and Q(x,,...x¢)=0 (mod 1} for (x,, .., Xq)=
(1/2,0,1/2,0,0,0) {mod 1) so that (1.1) is soluble with equality being
necessary. Again Q is equivalent to pQ, and (¢4, ..., ¢¢) goes to P, under the
corresponding transformations. This proves the lemma.

LEMMA 16. If a<1/2, a+d<1 and d<3/4, then (4.4) is soluble for
d>0.7 unless a=1/4, A=¢5=0, as=0 or 1/2 and b5=0 or 1/2.

Proof. Taking h=1,k=2and A =d in Lemma 11, it is easy to see that
|1 —da| +i<d,

is satisfied for d>0.7. Hence (4.4) is soluble unless a,=1/4, and =0
(mod 1/2), ie, Fas+bsx,—(1/2)cs—(1/2) Axg=0 (mod 1/2). Taking
X¢=ce and 1+ ¢, we get A=0 (mod 1) and so A=0. Taking x,=0 and 1,
we get b5 =0 (mod 1/2). Since m=1, by symmetry ¢s=0 (mod 1/2). For
as=0 (mod 1/2), bs=0 (mod 1/2) and A =0 we get ¢5=0.

Remark 3. If a>d/2, then d*>=a>d/2 gives d*=1/2, ie, d>0.7, and
azdi2=1/2 ﬂ> 1/4. Thus, in this case result follows by Lemma 16, so
we can now suppose by (4.2) that

4, b
3\(1\

248 (49)

LEMMA 17. If d/3<a<dj2.48, then (3.1) is soluble for a <172, a+d <1
and d <3/4.

Proof. Taking (x,, x5, x4) =(l, ¢4, 0), the inequality (3.1) becomes
0 <X, +d>+dsxs+agxe—a(xs+ix,) —(d/a) xi<d.

This can be written as

0<a Mx,+dsxe+ve—(d/a)x)) —(xs+ Axg +as/2a)* < dfa, (4.10)
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where «, and v are suitable real numbers. By Lemma 7(a), the inequality
(4.10) 1s soluble if we can solve

l e , .4, d
Z<a .‘c|+a(,.\(,+v—z.\6 <l+‘—l.
Write x, =x+ ¢, and x, =y +¢,. Then this inequality becomes

4,
O<x+aly+v ——y <d+—, (4.11)
a 4

for some real numbers a¢ and v”.
Case (i). d”<125/288.

By Lemma 10, (4.11) is soluble in integers x and y if

24\'*
<—> <d+ 3_a
a 4

which is satisfied because 4 =3d®/4, a > d/3, and d* < 125/288.
Case (ii). d?>=125/288.

Here we shall use Lemma 11’ with A =d+ 3a/4 and 4/a instead of «
Since d/3<a<d’ and Aja+3a/4+d>1, therefore by Lemma Il’, it
remains to consider the case 4/a = 1/2 or a=3d®/2. Since a = d/3, this gives
d>0.7. By Lemma 16, it follows that (4.4) is soluble unless ¢ = 1/4 (so that
d®=1/6) and a;=0 or 1/2, bs=0 or 1/2 and A=¢;=0. In this case

O=(X,4+dyx,+ - )Xo4 (X3 +baxy+bsXs+bgxe)Xs— §X3— 5X7.
If b =1/2, we have
O=(X,4+d>rX2+ ) Xa4 (X3 + by xs+ b xe) Xy — 5(Xs— X4) = 3xg
~ (Xt ay N d X F adsXstag Xe)Xo (X3 + Dy xs+ b xg) Xy

X

X

fa—
(LN}
b=
o N

So we can suppose that b5 = 0. Similarly we can suppose that a5 =0. There-
fore

5

O=(x,+a>xs+a,x3+degXe)Xs+ (X3 +byXa+bgxe)xs—3x5— 35X

ol Y



272 DUMIR, HANS-GILL, AND SEHMI

Take (X, .. X¢)=(x+cy, 1, ¢5,0.0,v4¢q) or (¢,,0, x+0¢5, 1,0, y+c¢4)
or (v+¢y. ey, 1,0, y+¢¢). By Lemma 11’, it is easy to see that (3.1) 1s

soluble unless

and
g+ bg—co=1 (mod 1).

Therefore ag =b, =0 and ¢, =1/2. Now we have

O=(x,+asXs+a,x) x>+ (X3+byx4) x4 —

and

(€1, €4y €5, C6) =10, 0,0, 5).

We shall now show that (3.1) is soluble unless b,

b,#0. Take (x,,..x¢)=(x+c¢;, 1, ¢35, ¥, 0, 1/2).
soluble if there exist integers x, y satistying

O<y+(as+e)y+hayi+v<6 =d=

=

X

[S1E

1,2
a¥s—

=0, +1/4, 1,2, Let
Then (3.1) will be

0.7418. (4.12)

If | —d < |b,] <1/2, then this follows by Lemma 11". So let 0 < |b,] <1 —d,
|b4| #1/4. By Lemma 12, (3.1) is soluble except when |b,| = d/3. Now using
Lemma 11, with A= 1, k=2, the condition |1 —4 |b,|| +1/2 <d, is easily
seen to be satisfied. Therefore by Lemma 11 and Lemma 11, the inequality
(4.12) is soluble unless b, =0, +1/4, 1/2. Now we discuss the special cases

depending on b,.
Case (1). b,=0.

In this case Q=(x,+ - )xs+x3x,—(1/4)xI—

(12)x2. I ¢y #0,

choose (x|, X5, X5, Xg) = (¢}, €2, ¢5, ¢6) and x4 such that

0<0<|eil<i<d.

If ¢;=0, then 0 < Q(c,,0,1,1,1,1/2)=5/8 < d.
Case (1) b,=1/2 or 1/4.

Choosing (x, ..., X4, X¢) =(c;, 0, ¢35, +1,1/2) so that x;x,=]cs] and
xs=0or | according as b,=1/4 or 1,2, it can be seen that

0<Q=les| +bs—gxi—g<i<d
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Case (in). b,=—1/4.
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Choosing {(x, .., xg)=(¢,, 0,1 4+¢;,+1,0,1/2) in such a way that

xyxya=1—|cyl wehave 0<Q=1—|cy| - 1/4—1/8<K5/8<d.

LemMmA 18, The inequality (3.1} is soluble when a=1/2.

Proof. By Lemma |, we can take

Q= (X, +arXs+ )X+ (X3 +baxg+ - )xs— (AxI+bxsxg+exd),

where 0<b<1/2<e.

As before we convert the inequality 0 < Q < d to an inequality of the type

(2.2) by making different substitutions given below:

(X, X5, X3, vy, X5, -\'(,) = (-V+('1. 1, Cs, 0, y+cs, C())

or{x+c¢p, e, 0, y+es, L +¢)
or(x+c. e L y+eq, )
or (¢, 0, x+ci, 1, y+c¢s.ce)
By Lemma 11’, the inequality (3.1) 1s soluble except when
—bcg—cs+as=1(mod 1)
—blce+1)—cs+as=1(mod 1)
—beg—cs+as+bs=3(mod 1)
—bhcy—cs+bs=4%(mod 1).
From these congruences we get

b=a;=bs=0 and cs=1/2.

In this case

(4.13)

Q=(X,+ a1 X+ Ay X+ a X)) Xs+ (X3 +bgxy+ bgXe) x4 — 555 — exg,

d®=(64/3) |D|=2¢/3 and so ¢ < 3/2 because d < 1. Since ¢ = 1/2 we get
d®>1/3. Since b, is a value of Q, therefore (3.1) is soluble except when
lbst = di3 or by=0.1If by #0 then |by| +d = d/3 +d=4d/3 > 1, therefore by

Lemma 11’, (3.1) is soluble unless ,=0 or 1,/2.

Again we convert the inequality (3.1) to that of type (2.2) with x=¢,

A=d by the substitution (x,,..x¢)=(c,,0,x+c;, 1,5, y+c6)

For

1/2 < ¢ <d, the result follows by Lemma 11'. So let us suppose that ¢ =d.

Then ¢° > 2/3 and so d>0.9. Since

I—cl+1<d,

61F 5SS D)
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applying Lemma 11 with h=k =1, it follows that (3.1} is soluble unless
¢=1. Thus, we are left with ¢=1 and 1.

Case (i). c¢=13

Interchange of x5 and x, shows that ¢,=31, ag=be=0. Thus Q=

. . . - . 2 2 . . 1
(X1 + s Xs+ayx) X + (X3 +baxg)x,—ix2—Ix2 cs=ce=1 by=0o0r L

Choosing (X, X5, X3, X5, X¢) = (¢, 0, ¢5,3,3) and x,= +1 so that
X3x,=lcs], it can be easily seen that (3.1) is satisfied for b, = 3. If b, =0,

then interchanging x; and x, we see that ¢;=0. Here take x,=0,
1

X3=x3=1, Xs=x,=5.
Case (11). c¢=1.

Here d®=2/3; ie., d=093, ... We convert (3.1) into an inequality of the
type (2.2) by making different substitutions given below

(X1 Xe)= (x4, 1,63, 0,3, p+¢g) or (x+cp, Lies, 1,4, y+ceh
or
(c1, 0, x+ ¢y, 1,5, y+ce)

Applying Lemma 11 with a=h=k=1, A=d, 1t follows that (3.1} is
soluble unless

ag—2c,=0 (mod 1)
dg+bo—2¢,=0 (mod 1)
bo—2¢,=0 (mod 1).
These congruences imply ¢, =b, =0 and ¢, =0 or }. In this case
Q= (X, +UsXs+dgXg) X5+ (X3+byx,) X, — 5X3— X_,

where b, =0 or 1. These special cases can be dealt with easily as done in
Case (1).
5. 0=(x;+dsXxs+ -+ +auxe) Xa+ Q) a(x3, .y Xg)

Here Q, , is a non-zero rational form of type (1, 3) and determinant
A=4|D|=3d%16.

LEMMA 19,  The inequality (3.1) is soluble if (1) ¢, #0 and d> 1/2 or (ii)
e;=0and d>1or (11) ¢, =0 and d < 1/\/§.
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Proof.  Proof of (i) and (1) is similar to that of Lemma 13. For the
proof of (i) we note that by Lemma 8, the inequality 0<Q, <
(16 |4])""*=(3d®)"* is soluble. Therefore taking x, =0, it follows that for
d<1/‘ﬁ and ¢,=0, (3.1) is soluble. This completes the proof of the
lemma.

Suppose first that Q, ; is not equivalent to pG,, i=1,2, 3. Since Q, , is
a rational form, Q, ; represents a, where

lal=min{ |Q, +(X)|: 0 XeZ}.

By Lemma 6, we have

2|A| 14 dﬁ 174
o<t <2 (L) s

Since Q represents «, the inequality (3.1) 1s soluble by Lemma 12, if
la] < d/3. So let us suppose that |a| = d/3 and hence ¢ = 8/27 > 1/4.

Remark 4. In view of Lemma 19, we can suppose that ¢,=0 and
l,fﬁsdg 1. Moreover we have

d
3

6N 149 1 ]
<|a|<(‘24> <Leo (52)

Since Q, ; represents a, we can write
Q=(x;+ay Xot )X+ ANz +byxg+ )7+ Py, X5, ).

Putting (x,, ., xs)={(x+¢;, I, y+ea, ¢y, ¢s, ¢,), the inequality (3.1) is
converted into an inequality of the type (2.2). By Lemma 11', this
inequality 1s soluble in integers x, y if |a| +d > 1. So we can suppose that

la| +d <1 and d<i. (5.3)

LEMMA 20.  The inequality (3.1) is soluble for |a| > 2/9 unless |a| =1/4.

Proof. Proceeding as in the above Remark and applying Lemma 11
with =1 and & =2, the inequality (3.1} is soluble if

I1—4lal| +i<d. (5.4)

If |a| > }. then using (5.3) for d>0.7 and using (5.2) for 4<0.7, it is easy
to see that (54) 1s satisfied. If |¢| <1/4, then (54) is satisfied if
3/2 <d+4 |a|. Otherwise 2/9 < |a| <(1/4)3/2 —d). Again apply Lemma 11
with /1=2 and k = 3. Then it is easy to see that |2 —9 ||| + 1/2 <d, so that
(2.2) and hence (3.1) is soluble in this case.
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LEMMA 21.  The inequality (3.1) is soluble if di3<a<2/9 or if a=1/4.
Proof. Here

O=(x+a) X2+ - )Xa+alxs+ ) = Q.

where the positive definite form Q- , has determinant é =4D/a = 3d%/16a.
Let » be the minimum value of Q5 ,. By Lemma 3, Q; , represents & with

’ d6 1/3 l'5 1/3
O<b<(2o‘)"3=<3—> <<35—> | (5.5)
8u 8

Now we can suppose that
O=(x+arXs+ )Xo +a(x;+byxs+ ) =bxy+ ) =05y

Take x,=1. Then (3.1) is soluble if we can solve

1 2
0<<.\'3+b4.\‘4+h5_\'5+b(,x(,+§a3a' ’)

2

d
+"71[>\‘1+af4-\'4+ o dgXg—blxg+ )T+ - +\"]<; (5.6)

Here v' 1s a suitable real number and d/3<a<1/4<d/2 and so 2 <d/a<3.
Therefore by Lemma 7(a) with #1=2, (5.6) is soluble if we can solve

2

d 1
—l<a '[x +dsx,+ - Fagxe—blxg+ ) _QZ.(I+V,]<;__

7
or 34
O<x,+ayxs+ - +agxe—b(x,+ --')2—Q2.0+v<d+—4—, (5.7)

where v is a constant.

Putting x, =X+ ¢, X4 =y + ¢4, Xs=¢s and x, = ¢, we get an inequality
of the type (2.2). Using (5.5) it is easy to see that b <d+ 3a¢/4 so that
applying Lemma 11’ with b and d+4 3a/4 in place of ¢ and A4 respectively
if follows that (5.7) is soluble for 4> 1/2. Now suppose that b <1/2.
Since « is a value of section a(x;+ byx,)° —bx;=f(x3, x,) of @, ; and
a=min{|Q, ;(X)|:0# XeZ*}, therefore a=min{[f(xs, x,)|:x3, x4
integers not both zero} and hence by Lemma 2, either f ~ a(x3 + x3x,— X3)
or 0<a<(ab/2)"? ie, a<b/2. Consequently for a<h/2 we have
b+d+3a/d=zd+11a/d=d+11d/12> 1, so that the condition of Lemma 11’
is satisfied for b<1/2. Thus (3.1) is soluble unless b=1/2 or f~
a(x3+ X354 — X3).
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Case (1) b=1/2.

O=(x;+a,x,+ - )xy+a(xs+ P —3x, V¥ =0y,

where Q- , represents x such that
76N\ 12
0<a<<£2;> . (5.8)

Without loss of generality, we can suppose that
QZ. 0= a(-\.S + )vﬁ -\'6)2 + Cllxi.
Now (5.7) becomes

0< —(x4+ ) =2[alxs+ -V +a'x]—(x,+ )+ ]

<2d+§2£. (5.9)

Since 1 < 2d+ 3a/2 <2, by Lemma 7(a), (5.9) is soluble if we can solve

1 2 2 3 1
—< —2[afxs+ )+ xg—(x; + ---)+v1]<2d+~q+—,
4 2 4
or
2 2 3a
0<—:x[x5+-‘-]*—ot’(,,\‘g—i-.w,-{-u-+v2<d+?. (5.10)

Consider the section —(1/2)(x4+ Asx5)” —axi of —Q; . It represents
—k, where 0 <k <(24/3)'% Also k> b=1/2. Therefore a > 3/8. This gives
x+d+(3a/4)> 1. If d/3 <a <2/9, then (5.8) gives x < 1/2, so that applying
Lemma 11, it is easy to see that (5.10) is soluble. If a = 1/4, then (5.8) gives
agﬂd’. It can be easily verified that if «  1/2, then the conditions of
Lemma 11’ are satisfied and so (5.10) is soluble for o # 1/2.

If x =1/2, then Q; 3(x3, x4, X5, 0) = (1/4) (x5 + - D= (120 x4+ ) =
(1/2)x? is rationally equivalent to a zero form which is a contradiction.

Case (ii) a(x;+byx,)? —bxi~a(x}+x3x,—x3).

Here b=5a/4<5/16<1/2. If b+d+3a/4d=d+2a>1, then (5.7) is
soluble by Lemma 11°. Let us now suppose that d +2a < 1. Since a >d/3,
we have d<3/5. Using Lemma 11 with £ =1, k=2, the inequality (5.7} is
soluble for b #1/4 if

1 3a
—4 - —_. .
1 b|+2<d+4 (5.1
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Since b=5a/4, 1/Aza>d/3, and d= l/ﬁ, it is easy to see that (5.11) is
satisfied and hence (5.7) is soluble unless » = 1/4.
If h=1/4, then a = 1/5. Again we proceed as in Case (1). Here

O=(x+arx,+ "')—“2‘*‘%(«"3"‘ "')2_}1(«\'4‘*' "')Z_Qz,u,

where Q, , represents a with 0 <a < (54%)'”. Since d/3 <a=1/5 we have
d < 3/5.Therefore x < 1/2. In this case (5.7) can be written as

0< —(x4+ -V +4[x,+ - —alxs+ )V —x;+v' ] <dd+ 3. (5.12)

Since 2 <4d+ 3/5<3, by Lemma 7(a), (5.12} is soluble if we can solve

P<4lxi+ o —alxs+ P —axi4+v" ] <1 +4d + 2,
le.,
’ > 27
O<x,+ - —alxs+ )" —a'xg+ v"<d+87r {5.13)

Consider the section
01.3(x3, X4, x5, 0) = %(xz + )= %(.t4+ )’ —ot.\‘g.

By Lemma 5, it represents a number k with |k| < (2/30)'°. Also k| =
a=1/5 and so «>6/25. Therefore a +d+27/80>1 and hence (5.13) 1s
soluble by Lemma 11",

LEMMA 22, The inequality (1.1) is soluble if a<0, d/3<|a|<2/9 or
a=—1/4.

Proof. For convenience, writing —a« instead of a, we have d/3 <a<2/9
or a=1|/4 and

Q=(x1+ - )xs—alxy+ by x4 +bsxs+ b xe)* + Q) 5,

where @, , is a non-zero form of determinant —A/a=3d®/16a. By
Lemma4, Q,, represents b with 0<b<(3d%4a)'”. Let b be the
smallest such number and write Q, , =5h(x,+ Asxs+ 26Xe)° — Q5 . where
0<is<l, 0<i <t

Now proceeding as in the proof of Lemma 21, using Lemma 7(b), one
can easily see that it is enough to prove that

. 3
0 < (X, 4+ dyXat )+ h(xa+Asxs+ Agxe) — O o+ v<d+—4‘f, (5.14)

is soluble.
Proceeding as in Lemma 21, it is easy to see that either
—a(xy+byx,)? +bx] is equivalent to —a(xi+x;x,—x3) or 2a<hbh,
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b+d+3u/4>1 and b<d+3a/4. Taking x,=x+c;, x,=1 x,=y+c,
and (xg, xo)=(c¢s, ¢e) (mod 1) arbitrarily and applying Lemma I1’, it
follows that (5.14) is soluble unless

(1) b=12and dj+c4+Asxs+ Agxq=1/2 (mod 1), or

(i) b=5a/4 and —a(x;+b,x)* +bxi~ —a(x?+ x3x,—x3).

If  b=35a¢4 and —alx;+byx,)* +bxs~ —a(x3+ x3x, — x3) ~
a(x3+x,x,—x2) then a binary section of @, ; represents a and so the
result follows as in case (ii) of Lemma 21.

Now we are left with b=1/2 and a)+ ¢4+ Asxs+ Agxs=1/2 (mod 1).
Taking vs=¢5 and 1 + ¢, this congruence implies that i;=0 (mod 1).
Since 0 < 45 < 1/2, we get A5 =0. Similarly 4, =0. Therefore

Q=(x)+arx,+ )Xy —a(xs+byxg+ ) + 35— 05 (x5, X).
By Lemma 2, Q, , represents ¢ such that

6\ 1,2 s\ 12
0<(-<<33’d—> <<%~> <d (5.15)

because a > d/3 and 4 < 3/4. Without loss of generality we can suppose that
Qro=clxs+ - )2+ -

If ¢<1/2, then (1/2)—¢>0 is a value of @, , and is less than 1/2=25,
which 1s not possible by definition of b. Therefore ¢ > 1/2. If ¢ =1/2, then
Q1,=(1/2)x; —(1/2)(xs+---)*+ --- is rationally equivalent to a zero
form, which is not the case. If ¢>1/2, then choose x,=x+¢,, x,=1,
(X3, X4, Xg)=(C3, ¢4, ) and xs=y+c¢s and apply Lemma 11'. Since
12 <c<d, by (5.15), it follows by Lemma 11’ that (3.1) is soluble in this
case.

6. EXCEPTIONAL CASES: Q) s ~pG,, i=1,2,3, p>0

Case (i) Q1= —pl[x3+x2+xi—xl—xo(x;+x,+x5)], p>0.

Here Q=(x,+ - ---)x,+ Q,: and (7/16)p* = D = (3d®/64), so that
p=1(3d%/28)"". Since p is a value of O, by Lemma 12, we can suppose

65 174
d (3(1) < d d (6.1)

S<p=(2) <= ><
3P T8 248 0 P73

which gives
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By Lemma 19, it remains to discuss the following cases

(i) =0, 1/\/§<d<1’
(ii) C2=0, d<|6‘2|

First suppose that ¢,=0 and 1/./3<d<1. Then p=(3d%28)">
d(1/28)" > d/2.48, so that (6.1) gives p = d/2 and hence d > 3/4. Take x, =
x+c, xs=1, x3=y+cs, (X4, Xs,Xg)=(C4.Cs5,¢¢). By Lemmall’,
it is easy to see that (3.1) is soluble unless p=1/2. If p=1/2, then d=
(7/12)V¢ = 00914, .... Taking x,=1, (3.1) can be written as

O<(x;+dr+asx,+ )
— M3+ i+l x] = XX — Xy X — X Xg) < d.
By Lemma 7(a), it is soluble if we can solve
0< x| +ayXs+asXs+apXxe+v—Hxi+xI—3x]—xyx,—xsx)<d. (6.3)

Taking x,=x4c¢;, xe=y+¢, and (x4, x5}=(c4, ¢5) 1t reduces to an
inequality of the type (2.2). Since d>5/8, taking a=5/8 and 4=d in
Lemma 11, it follows that the inequality is soluble.

Now suppose that ¢,#0 and d<|c,| <1/2. Let d'=d/|c,|] and
p'=p/lc,]. Then p' < p/d=(3d?/28)"* < 1/2. Taking x, = ¢, it is enough to
solve

O<+(x,+ )= pLx3— X2 —3x2— -] <d. (6.4)
Taking x,=x4c¢;, xXs=y+cs, (X4, X5)=(c4,¢5) it reduces to an
inequality of the type (2.2) with ¢ and A replaced by p’ and d’ respectively.

By Lemma 11’, it is soluble if p'+d’' > 1 or p +d> |c¢,|, which is satisfied
if d>3/8 and p > d/3. Otherwise suppose that

pHd<|e,| <} and d

A
L)

(6.5)
(6.4) can be rewritten as

0< c l~c L 2+§ ;2
' 5 e 2p'a3 X

F(X a3 Xs+asXxgtasxs+dagXeg)/p+v

—[xg+xi+ - ]<—==—.
pop
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Since 2 < d/p <3, by Lemma 7(a) it is soluble if we can solve

1 s
Z<—x;+(,\‘l +drXsHasXstasxs+agx)/p+v

B

’

—[xi+xi—x xg—Xsx,] < ;)—,+ 1,

ie.,
Sp’ 2 ’ ’ 2 2 ' 3 '
0<.\'1+---+T.\‘g+v—p[x;+xg~x4x6—x5x(,]<d +‘—1p. {6.6)
Now
5p' ) 5p 5<3d2>"4 5 3<3>2 14
= N<H<5150 ) <55 lx =
R AT 4|28 \3 } <3
Since
5p 3 2
~”~+d'+—”=d'+zp'=(d+2p>/|.\-3|>2<d+£>
4 4 3
=%’>1, by (6.2).

Therefore taking x, =X+ ¢, X¢ = + Cq. (X4, Xs) ={(c4, ¢5) and 5p'/4 and
d'+3p'/4 in place of a and 4 in Lemma 11', it follows that (6.6) is soluble.

Case (1)

Q1 1= —p[Xi+ xaxy— X+ 2(x3+ x5x,+ x5)] = pG, or

Q) 1= —pl2AX3+ X35, — X3+ X1+ X5X6 + X7 ] = pG.
Here

O=(x,4+drx,+ -+ +agxe) x>+ Q4 1.

In this case (15/16)p*=D=(3/64)d® so that p=(d®/20)"*. Since p is
a value of Q. therefore d/3<p=(d420)"* and hence d?>20/81. By
Lemma 19, (3.1) is soluble if either ¢, #0 and d> |¢,}, or c;=0and d> 1,
or c;=0and d< 1/\/3.

Suppose first that ¢; #0 and d<|c,| < 1/2. We want to solve

0<(x;4+ ) —plxi+x vy —x3+2xi+xsx,+xp)1<d  (67)

641 55211
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and
O<(xi+ - )x,—pl2Ax;+x3X,— X+ X2+ xsx,+x2]<d.  (6.8)

Take x;=x4¢), X;=0¢,, (X4, X¢) =(C4, ¢¢) and (x;, x5)=(y +c¢;, ¢s) or
(¢3, ¥+ ¢5) according as inequality is (6.7) or (6.8), respectively. Then these
inequalities reduce to an inequality of the type (2.2) with ¢ =p/|c,| and
A=d/|c;|]. Since (p+d)/|c;|=Z4d/|c,| 28d/3>1 and p/le,l <pld=
(d?/20)9 < (1/80)"4 < 1/2, therefore the inequality is soluble by
Lemma 11",

Now suppose that ¢, =0 and 1/\/§<d<1 and hence p < 1/2. Take
(Xpy e Xg)={(x+c, 1, y+c3, €4, 50 o) OT (X, 1, €3, €4y Y+ s, Co)
according as inequality considered is (6.7) or (6.8) respectively. By
Lemma 11’ with a=p and 4 =d, these inequalities are soluble if p +d > 1
which 1s satisfied if ¢ > 3/4. Otherwise suppose that p +d <1 and d <3/4,
then 2 <d/p <3. Taking x, =1, (6.7) and (6.8) can be written as

, ! 1 5
0<(x,+agx4+a5x5+a(,x(,+v)/p—{<x3+§x4—5a3> —Zx;]

R d
—2xi4+ - <,
P
and

1 1 23,
0<(x1+a3.‘c3+114x4+a’(,x(,+v)/pv[<x5+§x6—§;a§> +Z,\‘g}
d

it <

By Lemma 7(a) these are soluble if we can solve

S5p 5 3
0<x,+-~-+v’+—f.\'3—2pxg+-~-<d+~f, (6.9)
and
3 5 3
0<x,-+---~+v’+~4£,\‘§—2px_;+-~<d+7p. (6.10)

Take (x,, x4, X5, Xg)=(x+cC,, y+c4, Cs5, ) In (6.9) and (x,, x3, x4,
Xe)={(x+c¢y, ¢35, ¢4, y+¢6) In (6.10). They reduce to an inequality of the
type (2.2). By Lemma 11’, (6.9) and (6.10) are soluble if d +3p/4 + 5p/4 > 1
and d + 3p/4 + 3p/4 > 1, respectively. Otherwise suppose that

3
d+2p<] and d+ 7'0 < 1, respectively.



It

INDEFINITE QUADRATIC FORMS 283

1s easy to see that 2p < 1/2 in each case. Then taking (x,, x4, X5, X¢) =

(x+c¢, cq, yHcs,06) In(69) and (x|, x5, X4, Xg)=(x 4+, Y+ 3, €4, Cg)
in (6.10) and applying Lemma 11°, these inequalities are soluble since
d+3p/d+2p=d+1lp/a>d+11d/12 > 1. This completes the proof of case
(1i).

10.
11

Lemmas 1-22 along with Section 6 complete the proof of the theorem.
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