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ABSTRACT
T-cell homeostasis is regulated by several molecules; among these, interleukin (IL)-7 plays an essential role in
the survival and homeostatic proliferation of peripheral naive T cells. In a previous study, we investigated
whether human mesenchymal stromal cells (MSCs) could be engineered with the IL-7 gene to produce
functional level of this cytokine. In the present study, we analyzed the impact of different quantities of IL-7
produced by MSCs on the survival and proliferation of a negative immunoselected naive (CD3�/CD45RA�)
T-cell population. Co-cultivation of peripheral naive T cells with MSCs producing low (16 pg/mL) or high
(1000 pg/mL) IL-7 levels or in the presence of exogenous IL-7 (0.01 ng/mL and 100 ng/mL) maintained the
CD3�/CD45RA� naive T-cell phenotype. Chemokine receptor CCR7� expression was also maintained among
this T-cell population. Naive T-cell molecular characteristics were maintained as assessed by the V� spectra-
typing complexity score, which showed the maintenance of a broad T-cell repertoire. No Th1 or Th2
differentiation was observed, as assessed by interferon-� or IL-4 accumulation. In contrast, only MSCs
producing high amounts of IL-7 caused increased activation (CD25 31.2% � 12% vs 10% � 3.5%; P < .05),
proliferation (CD71 17.8�7% vs 9.3%�3, P < .05), apoptosis (assessed by annexin V: 18.6% � 5% vs 14.9%
� 2.6%; P > .05), and the phase S cell cycle (15% vs 6.9%, P > .05). Exogenous IL-7 exhibited no significant
effect. In conclusion, we demonstrated that IL-7 produced by MSCs has a dose-independent effect on naive
T-cell survival while exerting a dose-dependent effect on activation/proliferation. Due to the continuous
production of IL-7 by engineered cells, our system is more efficacious than exogenous IL-7.
© 2006 American Society for Blood and Marrow Transplantation
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NTRODUCTION

The common leucocyte antigen (CD45) has 2
soforms, 1 of which, CD45RA, is expressed on naive

cells (ie, T cells that have not yet encountered
ntigens), and the other, CD45RO, is expressed on
emory T cells (CD45RA�CD45RO�) [1]. Interac-

ions with dendritic cells activate naive T cells into
ffector and memory T cells, generating primary im-
une responses. Both naive and memory T-cell pop-
lations are highly dependent on interleukin (IL)-7, a m

250
leiotrophic cytokine secreted by stromal cells in the
one marrow and thymus [2-6]. IL-7 appears to keep
aive T cells alive and maintain the naive phenotype
D3�CD45RA� without the acquisition of
D3�CD45RO� phenotype expression, by delivering

ignals that inhibit apoptosis [7]. Expression of BCL-2
nd other mediators of cell survival is enhanced by
ngagement of IL-7 through its receptor (IL-7R),
hich is composed of an � chain (CD127) and the

ommon cytokine � chain (CD132) [8,9]. Naive and

emory T-cell responses to IL-7 are controlled by
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Effects of Interleukin-7–Engineered Mesenchymal Cells on Naive T-Cells 1251
egulation of IL-7R expression, T-cell receptor
TCR) triggering, and, obviously, the availability of
L-7 [10,11].

Besides supporting survival of naive T cells in the
esting state, IL-7 is also required for homeostatic
roliferation of peripheral T cells in response to se-
ere T-cell depletion [7,12,13]. Indeed, in humans,
-cell depletion due to disease or related therapies,

uch as hematopoietic stem cell transplantation, is
ssociated with a rise in circulating IL-7 levels [14].
espite this, therapy with IL-7 in T-cell–depleted

osts is controversial in terms of triggering autoim-
unity and graft-versus-host disease [15-17], as well

s enhancing human immunodeficiency virus replica-
ion [18].

In the allogeneic transplantation setting, T and B
ymphocytes may be deficient in number and function
or up to 1 year posttransplantation, and recovery of
aive CD4�CD45RA� T cells is particularly slow
19]. IL-7 is believed to reconstitute posttransplanta-
ion immune competence by accelerating thymic T-
ell development and expanding the peripheral pool of
aive T cells [20-24]. Consequently, IL-7–engineered
ells could be an ideal vehicle for hastening immuno-
ogic reconstitution after allogeneic bone marrow
ransplantation.

With the development of gene delivery systems
hat allow genetic engineering of cells to express high
evels of a specific cytokine, we hypothesized that
ontinuous production of IL-7 by engineered cells
ould be more efficacious than exogenous cytokine

dministration. Mesenchymal stromal cells (MSCs)
ppear to be an ideal vehicle for this. MSCs can be
xpanded in vitro from a single bone marrow aspira-
ion to produce millions of cells [25] and are easily
ransduced with retroviral vectors to produce several
olecules for long periods [26]. Bone marrow stromal

ells (BMSCs), the progenitors of multiple mesenchy-
al lineages, constitutively produce growth factors

nd cytokines [27]. On interacting with their ligands,
uch as fibronectin, collagens, glycosaminoglycans,
nd proteoglycans (ie, the bone marrow extracellular
atrix) [28], these cytokines regulate pluripotent stem

ell proliferation and differentiation and serve to me-
iate their homing and to transmit regulatory signals
29]. Indeed, in vitro studies have shown that BMSC
ultures provide required adhesion sites for immature
hymocytes; continued feeding of these cultures re-
ults in steady production of replicating immature T
ells [30].

We previously demonstrated that MSCs can be
ransduced to produce IL-7 and that the naive
D45RA�CCR7� phenotype remains unchanged,
ith cells protected from apoptosis and low-profile
roliferation maintained [31]. In the present study, we
ave developed engineered MSCs to produce differ-

nt amounts of IL-7 for studying the effects of differ- a
nt dosages on survival and proliferation of a
D45RA�-enriched peripheral T-cell population.

ATERIALS AND METHODS

etroviral Vector and Packaging Cell Line

Construction of the LXSN-NeoR/IL-7 and pB-
BE-NeoR/IL-7 retroviral vectors started from the
oloney murine leukemia virus (MMLV) [32]. The

ector contains the IL-7 gene under the control of a
romoter within the LTR sequence and the neomy-
in-resistance gene (NeoR) under the control of the
V-40 virus. The Pstl-KpnI fragment containing the
L-7 cDNA (500 pb) was blunted and then cloned in
he HpaI cleaving site of the LXSN retroviral vector
nd in the SnabI cleaving site of the pBABE retroviral
ector.

The GP�envAM12/LXSN-NeoR/IL-7 and
P�envAM12/pBABE-NeoR/IL-7 vector-produc-

ng cell lines were obtained using the ping-pong am-
lification procedure [33] and had a titer of 1 � 106

etroviral particles/mL.

uman MSC Cultures and Transduction

MSCs were obtained from bone marrow aspirate
rom healthy subjects who had given informed con-
ent, as described elsewhere [34]. After centrifugation
n a Ficoll-Hypaque density gradient (1.077 g/mL),
arrow mononuclear cells were resuspended at a con-

entration of 2 � 106 cells/mL in complete culture
edium. Medium contained alpha-MEM (GIBCO
RL Life Technologies, Grand Island, NY), 10%
uman serum, L-glutamine (2 mmol/L), 2-mercapto-
henol (10�4 mol/L), inositol (0.2 mmol/L), folic acid
20 �mol/L), and hydrocortisone (10�6mol/L). Cells
ere cultured in 175-cm2 flasks and incubated at 37°C
% CO2 in a humidified thermostat for 2-4 weeks
ntil the confluent layer was formed. Then, 24 hours
fter the packaging cells (6 � 106) were seeded on
75-cm2 flasks, the medium was recovered and filtered
hrough 0.45-�m pore filters. After 15 days of long-
erm culture, MSCs were infected at a concentration
f 3 � 104/mL by adding the viral supernatant in a
atio of 1:1 to the culture medium in the presence of
olybrene (8 �g/mL). The cell suspension was kept
or 24 hours at 37°C, 5% CO2 in a humidified ther-

ostat. After 2 infection cycles, cells were selected for
0 days in G418 (0.6 mg/mL). MSCs were detached
sing trypsin EDTA, washed, resuspended in phos-
hate-buffered saline, supplemented with human se-
um fetal bovine serum (1%), and incubated at a con-
entration of 1 � 106/mL for 30 min at 4°C with
uorescein isothiocyanate (FITC)-conjugated or phy-
oerythrin (PE)-conjugated monoclonal antibodies,
ncluding CD45-FITC, CD14-FITC, CD90-FITC,

nd CD105-FITC (Beckman Coulter, Hialeah, FL)
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P. Sportoletti et al.1252
nd STRO-I-PE (Caltag Laboratories, Burlingame,
A). Each fluorescence analysis included appropriate
ITC- and PE-conjugated negative isotype controls.
ells were analyzed using an Epics XL cytometer

Beckman Coulter).

olecular Analysis of Transduced Populations

The presence of the NeoR gene was confirmed by
olymerase chain reaction (PCR) in producing cells
nd the engineered MSCs. A sample of 1 � 106 cells
as lysed in 500 �L of buffer containing Tris HCl 10
mol, KCl 50 mmol, MgCl2 2.5 mmol, gelatin 0.1%,
P40 0.45%, Tween 20 0.45%, and proteinase K 100
g/mL for 60 minutes at 56°C, followed by 10 min-

tes at 95°C. A 10-�L sample of lysate was used in the
CR reaction with the following NeoR-specific prim-
rs: 5=-GGT GGA GAG GCT ATT CGG CTA
GA-3= and 5=-TCC TGA TCG ACA AGA CCG
CT TCC-3=. As an internal control, the �-actin

ene was also amplified using the same reaction pro-
ocol. The reaction was performed under standard
onditions with 35 total cycles, each of which included
enaturing at 94°C for 30 seconds, followed by 55°C
or 30 seconds, 72°C for 45 seconds, and final exten-
ion at 72°C for 10 minutes. Amplified fragments were
eparated by electrophoresis on 2% agarose gel and
isualized with ethidium bromide.

L-7 Production Assay

IL-7 production capacity was tested in producing
ells and transduced MSCs. After transduction with
he vector containing IL-7 cDNA, cells were seeded in

well plates containing 1 mL of complete medium
DMEM � NCS 10%). After 24 and 48 hours of
ulture, the supernatant (corresponding to 100% con-
uence) was centrifuged and stored at �20°C until
L-7 production was determined using 2 different
nzyme-linked immunosorbent assay (ELISA) kits
R&D Systems, Minneapolis, MN; Beckman
oulter), according to the manufacturer’s instruc-

ions. Results are expressed as pg/mL.

aive T cells: Isolation

Blood samples were collected from healthy do-
ors; peripheral blood mononuclear cells (PBMCs)
ere isolated by Ficoll-Hypaque density gradient cen-

rifuge. The CD45RA�CD45RO� population was
solated by a round of negative immunoselection with

agnetic beads (Dynal, Lake Success, NY), in accor-
ance with the manufacturer’s instructions. Briefly,
oat anti-mouse magnetic beads were preincubated
ith mouse anti-human CD45RO antibody (PharM-

ngen, San Diego, CA) for 30 minutes at room tem-
erature. Antibody-coated beads were then incubated

ith PBMCs for 30 minutes at 4°C [35]. m
aive T Cells: In Vitro Culture

Naive (CD3�CD45RA�) enriched T cells were
ultured for 7 days in 0.2 mL of RPMI-1640 medium
GIBCO BRL, Grand Island, NY) supplemented with
0% heat-inactivated human AB serum (Sigma, St
ouis, MO), 1% penicillin/streptomycin (GIBCO-
RL), and 2 mmol of L-glutamine (GIBCO-BRL).
ells were cultured (a) alone and with (b) 4 �g/mL of
hytohemagglutenin (PHA), (c) 0.01 ng/mL of human
L-7, (d) 100 ng/mL of human IL-7, (e) untransduced

SCs, or (f) MSCs engineered with the IL-7 gene.
e assessed the activity of MSC-produced IL-7 by

valuating maintenance of the naive T-cell phenotype,
poptosis rate, and cell cycle. Cell phenotype was
etermined using a panel of monoclonal antibodies
irected against the following antigens: CD3, CD4,
D8, CD14, CD25, CD71, CD45RA, and CD45RO

Beckman Coulter) and CCR7 (Becton Dickinson
ioscience, San Jose, CA) using a direct fluorescence

abeling method. Cells were analyzed using an Epics
L cytometer (Beckman Coulter) on days 0, �1, and
7 of culture. Apoptosis was detected by determining

hosphatidylserine exposure by annexin V binding
sing an Annexin V-FITC kit (Beckman Coulter)
36]. The cell cycle was assessed by flow cytometry
nalysis measuring DNA-bound propidium iodide flu-
rescence [37].

CR V CDR3 Size Spectratyping

The CDR3 size distribution of 26 distinct TCR V
amilies was determined by reverse-transcriptase PCR
RT-PCR) as described previously [38]. In brief, RNA
as extracted and cDNA was synthesized using
MLV-RT (Amplimedical, Turin, Italy). PCR was

erformed with a forward primer specific for each of
he 26 TCR V families along with a constant C re-
erse primer labelled with fluorescent FAM [39]. RT-
CR products were analyzed on an ABI PRISM 310
enetic analyzer using GeneScan software (Applied
iosystems, Foster City, CA). The normal TCR V
DR3 size was characterized by a Gaussian distribu-

ion containing 8-10 peaks for each V subfamily. The
verall complexity of TCR V subfamilies was
etermined by spectratype scoring as described
reviously [40].

lispot Assay

Naive T-cell production of interferon (IFN)-�
nd IL-4 was determined in the presence of PHA (10
g/mL final concentration) and nonengineered or en-
ineered mesenchymal cells. PHA (10 �g/mL final
oncentration)-activated T lymphocytes were used as
nternal control. IFN-� and IL-4 were determined at
ay �7 of culture using the ELISPOT kit (Ampli-

edical) according to the manufacturer’s instructions.



T
E

S

a
t
p
e

R

R

e
o
o
d
v
t

M

s
p
e
N
d
w
i

e
d
w
f
t
s
t
t
M
c
n
C

M

I
I
h
c
p
t
p
t
t

d
p
e

E
P

P
(
C
a
a
4
(

p
p
f
a
(
p
p
p
1
o
t
T
T
n
C
7
	

c
t

F
C
d
I
e

Effects of Interleukin-7–Engineered Mesenchymal Cells on Naive T-Cells 1253
he resulting spots were counted with an automatic
lispot reader.

tatistical Analysis

Data were analyzed using 1-factor analysis of vari-
nce to determine the significance of variations. Sta-
istical significance was set at � .05. Results are ex-
ressed as mean 	 standard deviation of 5 different
xperiments for each analysis.

ESULTS

etroviral Vectors and Producing Cell Lines

GP�env�AM12/NeoR-pBabe/IL-7– and GP�
nv�AM12/NeoR-LXSN/IL-7– producing cell lines were
btained after ping-pong amplification, as described previ-
usly [41], in a titer of 1 � 106 cfu/mL of medium, as
emonstrated by titration of the RAT-2 cell line. The
ector-producing cell line was free of replication-compe-
ent viruses, as assessed by mobilization assay [42].

SC Infection

Infections with both vectors were performed as de-
cribed previously [31]. Briefly, a mean of 10,000 MSCs
er mL of medium were transduced with GP�
nv�AM12/NeoR-pBabe/IL-7 and GP�env�AM12/
eoR-LXSN/IL-7 retroviral supernatants. After 10

ays of G418 (0.6 mg/mL) selection, 95%–99% cells
ere infected with the NeoR gene [31]. No differences

n infection rates were seen between the 2 vectors.
Crystal violet staining demonstrated no differ-

nces in cell morphology in untransduced, trans-
uced/unselected, and transduced/selected MSCs
ith either vector. After transduction, the MSCs re-

ormed the confluent layer with 100% viable cells at
he confluence. Flow cytometry analysis revealed no
ignificant differences in immunophenotypes of un-
ransduced and transduced MSCs, demonstrating that
he infection/selection procedures did not modify

SC surface expression of molecules. After 15 days of
ulture, MSCs engineered with both vectors were
egative for CD45 and CD14 and positive for CD90,
D105, and STRO-1.

SC Production of IL-7

ELISA assays on GP�env�AM12/NeoR-LXSN/
L-7 cells showed that they released 2000 pg/mL of
L-7 when the supernatant was collected after 24
ours of culture. pBabe retroviral vector-producing
ells released around 60 pg/mL IL-7, as described
reviously [41]. In untransduced MSCs, IL-7 produc-
ion was 0.6 pg/mL. At 30 days after infection, IL-7
roduction was 16 pg/mL in MSCs engineered with
he pBabe packaging cell line and 1000 pg/mL in cells

ransduced using the LXSN packaging cell line. At 60 M
ays after transduction, IL-7 production in MSC su-
ernatant was unchanged, indicating stable transgene
xpression for both engineered MSC cultures.

ffects of IL-7–Transduced MSCs on Naive T-Cell
henotype

After CD45RO�-negative immunoselection,
BMCs were enriched for CD3�CD45RA� cells

83.9% 	 11.6%), with a low percentage of
D3�CD45RO� cells (13.5% 	 1.9%). The percent-

ge of CD3�CD4�-positive cells was 52.2% 	 1.3%,
nd that of CD3�CD8�-positive cells was 36.6% 	
.1%. No monocytes were found in the final fraction
mean percentage of CD14� cells, 0.014%).

After 7 days of culture with transduced MSCs
roducing 16 pg/mL of IL-7, CD3�CD45RA� ex-
ression did not differ significantly from the starting
raction (78% 	 8.2% vs 83.9% 	 11.6%; P 
 .05),
nd CD3�CD45RO� percentage remained low
11.5% 	 1.9%). In the presence of transduced MSCs
roducing 1000 pg/mL of IL-7, CD3�CD45RA� ex-
ression remained stable at 83.4% 	 13.4%, and the
ercentage of CD3�CD45RO� increased slightly to
6.8% 	 10.2% (P 
 .05) (Figure 1). The percentage
f CD3�CD45RA� did not differ significantly be-
ween high and low IL-7–producing MSCs (P 
 .05).
reatment of the naive (CD3�CD45RA�) enriched
-cell population with either 0.01 ng/mL or 100
g/mL of exogenous IL-7 did not modify
D3�CD45RA� expression (78% 	 11% and 80% 	
.7%; P 
 .05). CD3�CD45RO remained low (12.8%

4.5% and 13% 	 5.4%), as in the starting fraction.
When naive T cells were cultured with PHA as a

ontrol, the percentage of CD3�CD45RO� increased
o 40.4% 	 12.5% (P � .05). Interestingly, culturing

igure 1. CD3�CD45RA� and CD3�CD45RO� expression on a
D45RA�–enriched T-cell population on day 0 (A) and after 7
ays of culture in the presence of PHA (B), 0.01 ng/mL of human
L-7 (C), 100 ng/mL of human IL-7 (D), untransduced MSCs (E),
ngineered MSCs producing 16 pg/mL of IL-7 (F), and engineered

SCs producing 1000 pg/mL of IL-7 (G).
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P. Sportoletti et al.1254
he T-cell population with transcduced MSCs pro-
ucing 1000 pg/mL of IL-7 produced a CD45RA�/
D45RO� double-positive population of 8.8% 	
.5%.

We analyzed the CCR7 expression patterns in the
D3/CD45RA and CD3/CD45RO populations after 7
ays of culture under different conditions. The 50.9% 	
% starting fraction of naive T cells characterized by
o-expression of CD3�CD45RA�CCR7� rose to
6.3% 	 3.5% after 7 days of culture with IL-7 MSCs
roducing 16 pg/mL and to 64.8% 	 2% after culture
ith IL-7 MSCs producing 1000 pg/mL (P � .05 vs

tarting fraction for both). No significant difference in
D3/CD45RA/CCR7 expression was seen after culture
ith MSCs producing 16 pg/mL versus MSCs produc-

ng 1000 pg/mL (P 
 .05), demonstrating that different
L-7 dosages modified the naive T-cell phenotype in the
ame way (Figure 2). PHA reduced the percentage of

igure 2. CCR7 expression patterns in CD3�CD45RA�. Expressi
nd with PHA (B), 0.01 ng/mL of human IL-7 (C), 100 ng/mL of
roducing 16 pg/mL of IL-7 (F), and engineered MSCs producing
D3�CD45RA�CCR7� (37.7% 	 12%). IL-7 treat- o
ent of the enriched CD3�CD45RA� population with
ither 0.01 ng/mL or 100 ng/mL of exogenous cytokine
id not modify CD3�CD45RA�CCR7� expression
57.6% 	 6.3% and 58% 	 3.8%, respectively; P 
 .05
s starting fraction).

The residual CD3�CD45RO� memory T cells
resent in the CD45RA�–enriched T-cell population
ere analyzed after culture only with transduced mes-
nchymal cells producing 1000 pg/mL of IL-7. We
ound that the CD3�CD45RO�CCR7� subset (cen-
ral memory cells) increased slightly from a starting
raction of 1.5% 	 1.4% to 10.9% 	 6.9% (P � .05),
hereas the CD3�CD45RO�CCR7� subset (effector
emory cells) remained unchanged (starting fraction,

.2% 	 6.6% vs 6.9% 	 4.9%; P 
 .05). Nonengi-
eered MSCs (controls) increased the percentage of
entral memory cells slightly but did not affect the
ffector memory cells. PHA increased the percentage

D45RA and CCR7 after 7 days culture of naive T cells alone (A)
IL-7 (D), untransduced mesenchymal cells (E), engineered MSCs

pg/mL of IL-7 (G).
on of C
human
f central memory cells (from 1.5% 	 1.4% to 13.7%
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Effects of Interleukin-7–Engineered Mesenchymal Cells on Naive T-Cells 1255
2.2%; P � .05), but not of effector memory cells
from 9.2% 	 6.6% to 7.8% 	 8.1%; P 
 .05).

Among the naive T-cell population, the percent-
ges of CD4� and CD8� cells remained unvaried
fter 7 days of culture with engineered MSCs produc-
ng 16 pg/mL of IL-7, confirming previously reported
esults [31]. In co-culture with transduced MSCs pro-
ucing 1000 pg/mL, the percentage of CD8� dropped
o 25.8% 	 5.4% from a starting fraction of 36.1% 	
.1% (P 
 .05), and the percentage of CD4� in-
reased to 62.9% 	 10.3% from a starting fraction of
2.2% 	 1.3% (P 
 .05).

ffects of IL-7–Transduced MSCs on Activation
nd Proliferation Markers in Naive T Cells

Evaluation of CD25 and CD71 at 24 hours of
ulture revealed no significant change in surface ex-
ression molecules. Analysis of CD25 and CD71 ex-
ression of the naive enriched T-cell population after
days of culture under different culture conditions

howed mean CD 25 and CD71 expression in naive T
ells alone of 9.7% 	 4% and 8.7% 	 1.5%, respec-
ively. As a control, the PHA treatment of naive T
ells up-regulated the CD25 and CD71 expression to
7.3% 	 10% and 71% 	 4.6% (P � .05), respec-
ively. In naive T cells cultured with 0.01 ng/mL of
L-7, CD25 expression was 14.7% 	 9.2% and CD71
xpression was 12.7% 	 8.3%; in 100 ng/mL of IL-7,
hese values were 8.8% 	 3.1% and 7.35% 	 5.1%,
espectively (P 
 .05 for both).

In CD45RA�–enriched T-cells co-cultured with
ntransduced MSCs, CD25 expression was 12.4% 	
.4% (P 
 .05) and CD71 expression was 9.7% 	
.4% (P 
 .05). The naive T-cell population co-

igure 3. CD25/CD71 expression. Expression of CD25 and CD71
fter 7 days culture of naive T cells alone (A) and with PHA (B),
.01 ng/mL of human IL-7 (C), 100 ng/mL of human IL-7 (D),
ntransduced MSCs (E), engineered MSCs producing 16 pg/mL of
L-7 (F), and engineered MSCs producing 1000 pg/mL of IL-7 (G).
ultured with engineered MSCs producing 16 pg/mL 1
f IL-7 did not modify CD25 and CD71 expression
10% 	 3.5% and 9.3% 	 3%,respectively) compared
ith naive T cells alone (P 
 .05). In naive enriched T

ells co-cultured with engineered MSCs producing
000 pg/mL of IL-7, CD25 and CD71 expression was
p-regulated to 31.2% 	 12% and 17.8% 	 7%,
espectively (P � .05 vs naive T cells alone, vs naive T
ells cultured with r-IL-7, vs untransduced MSCs, and
s MSCs producing 16 pg/mL of IL-7) (Figure 3).
he engineered MSCs maintained significantly
igher naive T-cell counts after 7 days of culture of
aive T cells alone, naive T cells with 0.01 or 100
g/mL of human recombinant IL-7, or untransduced
tromal cells [31]. Despite a trend toward significance
ith high-dose IL-7 MSCs, a comparison of high-
ose and low-dose IL-7–engineered MSCs revealed
o significant difference in naive T-cell counts.

ffects of IL-7–Transduced Mesenchymal Cells on
aive T-Cell Apoptosis

The apoptosis rate of naive T cells cultured with
ngineered MSCs producing 1000 pg/mL of IL-7
ncreased to 18.6 	 5, compared with 14.1 	 6.39
P 
 .05) in freshly isolated cells and 14.9 	 2.6 (P 

05) in engineered MSCs producing 16 pg/mL of
L-7. As expected, the apoptosis rate increased to
7.33 	 7.5 in the PHA-treated enriched T cells
Figure 4). Interestingly, exogenous IL-7 treatment of
D3�CD45RA�–enriched T cells at either 0.01 or
00 ng/mL did not significantly increase the apoptosis
ate (13.6 	 7.5 vs 11.8 	 3.3; P 
 .05). No significant
ifferences in necrosis and secondary apoptosis rates
ere seen (data not shown).

igure 4. Apoptosis and cell cycle analyses: Apoptosis rates ex-
ressed as percentage of annexin V on a CD45RA�–enriched T-
ell population after 7 days of culture of T cells alone (A) and in the
resence of PHA (B), 0.01 ng/mL of human IL-7 (C), 100 ng/mL
f human IL-7 (D), untransduced MSCs (E), engineered MSCs
roducing 16 pg/mL of IL-7 (F), and engineered MSCs producing

000 pg/mL of IL-7 (G).
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ffects of IL-7–Transduced MSCs on Naive T-Cell
ycle Progression

Cell cycle analysis showed that the percentage of
hase S cells was 6.5% 	 2.4% when the CD45RA�–
nriched T-cell population was cultured alone for 7
ays. PHA-induced cell cycle progression, with ap-
roximately 45% 	 4.2% of the T cells entering the S
hase of the cell cycle. IL-7 treatment with either low
r high exogenous cytokine was similar to untreated
ulture, with only 4.7% 	 1% and 4.4% 	 3% cells
ntering the S phase of the cell cycle. The percentage
id not change significantly when naive T cells were
o-cultured with nonengineered MSCs or with engi-
eered MSCs producing 16 pg/mL of IL-7 (4.4% 	
% vs 6.9% 	 1%; P 
 .05). With engineered MSCs

igure 5. Apoptosis and cell cycle analyses: Cell cycle phase S
rogression of a CD45RA�–enriched T-cell population after 7 days
f culture of T cells alone (A) and in the presence of PHA (B), 0.01
g/mL of human IL-7 (C), 100 ng/mL of human IL-7 (D), un-
ransduced MSCs (E), engineered MSCs producing 16 pg/mL of
L-7 (F), and engineered MSCs producing 1000 pg/mL of IL-7 (G).

igure 6. V spectratyping complexity score. The CDR3 size distr

nriched T-cell population on day 0 (A) and after 7 days of culture with e
roducing 1000 pg/mL of IL-7, the percentage of
ells entering the S phase rose to 15% 	 3% (P 
 .05
s mesenchymal cells producing 16 pg/mL of IL-7)
Figure 5).

ffects of IL-7–Transduced MSCs on Naive T- Cell
xpression of Type 1/Type 2 Cytokines

The effects of engineered and nonengineered
SCs on naive T-cell differentiation to Th1 or Th2
as determined by assessing secretion of IFN-� and

L-4, respectively, after 7 days of culture. No cytokine
ccumulation was detected. PHA used as a positive
ontrol exhibited cytokine accumulation in 50 spots.

ffects of IL-7–Transduced MSCs on Naive TCR V
DR3 Size Spectratyping

The V spectratyping complexity score of T cells
fter 7 days of culture with IL-7–engineered MSCs
id not differ significantly from the starting fraction
174 and 155 vs 167; P 
 .05), indicating a broad
-cell repertoire (Figure 6).

ISCUSSION

The present results demonstrate that MSCs engi-
eered to produce IL-7 exert a dose-dependent effect
n CD3�CD45RA� naive T-cell activation/prolifer-
tion and a dose-independent effect on survival.

hen naive T cells were co-cultured with engineered
SCs producing 16 pg/mL of IL-7, the
D45RA�CD45RO� phenotype was maintained,

onfirming previous findings that IL-7 does not lead
o CD45RO up-regulation [43-46]. Interestingly,
hen the enriched T-cell population was co-cultured

of 26 distinct TCR V families was determined on a CD45RA�–
ibution

ngineered MSCs producing 1000 pg/mL of IL-7.
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ith MSCs producing 1000 pg/mL of IL-7, the naive
-cell phenotype was maintained, as demonstrated by
D3�CD45RA�CCR7� expression, lack of Th1 or
h2 differentiation, and a broad T-cell repertoire. At

he same time, increases were found in T-cell prolif-
ration/activation markers, apoptosis rate, and cell cy-
le progression.

Several in vitro studies have reported conflicting
esults after administration of different dosages of
L-7 to naive adult or cord blood T cells or to thy-
ocytes. After 7 days of treatment with 1000 U/mL of

L-7, naive T cells proliferated without acquiring the
rimed CD45RO phenotype [35]. In vitro doses of
-100 ng/mL of human recombinant IL-7 did not
nduce naive T-cell proliferation, but did prevent cell
eath and atrophy [47]. Adding 5 ng/mL of IL-7 to
aive adult and cord blood T cells prevented apoptosis
nd induced cell cycling in up to 20% of naive T cells
43]. After treatment with 10 ng/mL of exogenous
L-7, naive adult peripheral blood T cells did not
ivide [48]. A recent report claimed that exogenous
dministration of IL-7 had no significant effect on
mmune reconstitution in major histocompatibility
omplex–compatible and partially incompatible set-
ings [49].

A key difference between the present study and
he studies cited above is the IL-7 delivery system. In
ur in vitro model, MSC-mediated delivery of IL-7
as more efficacious than exogenous administration,
robably because T-cell precursor development de-
ends not only on cytokines, but also on interactions
etween thymocyte precursors and stromal cells,
hich involve cell surface molecules, extracellular ma-

rix (ECM) components, and soluble growth factors
50]. IL-7–engineered MSCs present IL-7 in a bioac-
ive state, which, through MSC expression of ECM
omponents, may modulate adhesive interactions with
aive T cells [51].

Evidence in support of these findings comes from
ur observation of a dose-dependent effect of the
L-7–engineered MSCs on proliferation of
D45RA�–enriched T-cells. MSCs producing 16
g/mL of IL-7 were associated with a low prolifera-
ion profile, whereas MSCs engineered to produce
000 pg/mL of IL-7 up-regulated activation/prolifer-
tion markers (CD25/CD71) and increased the per-
entage of cells in phase S. Interestingly, Managlia et
l [52] reported that IL-7 up-regulated activation
arkers (CD25/CD71) but did not induce cell cycle

roliferation of CD4�CD45RA�CD45RO� T cells.
gain, different doses and delivery systems may ac-
ount for the differences.

The IL-7 dose–dependent effect is illustrated by
poptosis rates of CD45RA�–enriched T-cells in the
resence of 2 different IL-7–engineered MSC types.
ow IL-7 concentrations are associated with a low

poptosis rate, whereas high IL-7 levels tend to in- C
rease apoptosis, in contrast to other observations
ndicating that IL-7 maintains naive T-cell survival.
L-7 has been reported to prevent cell death and
trophy of naive T cells independent of dosage [47].
hrough transduction, MSCs may improve the
CM-mediated presentation of IL-7 to naive T cells,

ikely facilitating use of cytokine by T-cell precursors
nd enhancing activation, proliferation, and apoptosis.

Strangely, the dose-dependent effect was not con-
rmed by differentiation to either Th1 or Th2 phe-
otypes, because even the high IL-7 concentration
as not sufficient to induce differentiation. This ob-

ervation confirms that IL-4 and IFN-� naive T-cell
xpression remains minimal after phorbol 12-my-
istate 13-acetate (PMA) or ionomycin stimulation
ven after IL-7 stimulation [53]. On the other hand,
anaglia et al [52] found that the IL-7–treated
D4�CD45RA�CD45RO� T cells produce IFN-�
ut not IL-4. Spectratyping analysis of the T-cell
epertoire complexity indicated that IL-7–engineered

SCs did not exert a dose-dependent effect, because
broad T-cell repertoire was always maintained.

One could hypothesize that our in vitro system
eproduces 2 in vivo models illustrating IL-7–related
odulation of peripheral T-cell homeostasis [4]. “Ho-
eostatic cycling” describes naive or memory cell

urnover in T-cell–replete hosts, which does not mod-
fy the functional profile of the cycling population. In
ur model, engineered MSCs producing low IL-7
oncentrations induce homeostatic cycling without al-
ering the naive phenotype. “Homeostatic peripheral
xpansion” refers to T-cell expansion in T-cell–de-
leted hosts, which is associated with naive T cells
eveloping into memory T cells. In our system, al-
hough engineered MSCs producing high IL-7 con-
entrations do not switch the CD45RA� phenotype to
CD45RO� phenotype, they do modify other prolif-

ration/activation parameters. Whether these modifi-
ations signify homeostatic peripheral expansion is a
atter of debate.

In our model, when naive enriched T cells were
ultured with IL-7–engineered MSCs, the
D3�CD45RA�CCR7� population, which identifies

he naive phenotype, remained unchanged. When we
nalyzed the effects of engineered MSCs producing
000 pg/mL of IL-7 on the CD45RO� residual sub-
opulation in the CD45RA�–enriched T-cell popula-
ion, we observed that the central memory cell subset
CD3�CD45RO�CCR7�) expanded more than the ef-
ector memory cell subset (CD3�CD45RO�CCR7-).

ur results do not concur with previous findings that
xogenous IL-7 administration expands the effector
emory cell subset more than the central memory cell

ubset [54]; however, that previous study analyzed the
ffects of IL-7 on CD4� cells, whereas the present in-
estigation analyzed the effects on CD4� cells and the

D8 subset.
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In conditions of T-cell depletion, naive T cells
ndergo spontaneous “homeostatic” proliferation
hen exposed to certain cytokines [55-57]. The effi-

acy of these cytokines in driving cell survival and
omeostatic proliferation appears to differ in CD4�

nd CD8� cells. In fact, although exogenous IL-4,
L-7, and IL-15 enhance homeostatic proliferation of
aive CD8� cells in vitro, CD4� cells are less sensi-
ive. Exposure to exogenous IL-7 expands the CD8�

ubpopulation more than the CD4� subpopulation
35], and the present study shows that MSCs engi-
eered to express high IL-7 concentrations expand the
D8� and the CD4� subpopulations in the same way.

Insertional mutagenesis is a major risk factor as-
ociated with virus-based vector systems [58], and ef-
orts are being made to alleviate this problem. For
xample, alterations within the lentiviral vector long-
erminal repeats are being created to disable enhancer
ctivity and reduce the potential for interference with
ost gene expression after transgene integration [59].
n alternative approach is to develop expression sys-

ems that, because they are designed as sustained non-
iral, nonintegrated vectors, are free of major safety
roblems [60]. Should continuous IL-7 secretion from
SCs increase the risk of lymphoproliferative disease,

o-transduction with a suicide gene, such as the thy-
idine kinase gene, will eliminate unwanted cells by

reatment with ganciclovir [61].
In conclusion, MSCs engineered to produce IL-7

t low and high concentrations maintain the naive
-cell phenotype (CD3�CD45RA�CCR7�) with no
p-regulation of CD45RO� and no changes in V beta
pectratyping. High IL-7–producing MSCs enhance
poptosis and increase the number of T cells in the
hase S cell cycle and activation/proliferation markers

n the naive enriched T-cell population. Therefore,
L-7 produced by MSCs has a dose-independent ef-
ect on naive T-cell survival and a dose-dependent
ffect on proliferation. Administering high-dose IL-
–engineered MSCs may hasten de novo T-cell re-
onstitution after allogeneic bone marrow transplan-
ation.
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