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Abstract

Using a general resolution of barycentric systems we give a generalization of Tutte’s theorem on convex drawing of planar
graphs. We deduce a characterization of the edge coverings into pairwise non-crossing paths which are stretchable: such a system is
stretchable if and only if each subsystem of at least two paths has at least three free vertices (vertices of the outer face of the induced
subgraph which are internal to none of the paths of the subsystem). We also deduce that a contact system of pseudo-segments is
stretchable if and only if it is extendible.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is a classical result established independently by Wagner [11], Fáry [2] and Stein [7] (which is also a consequence
of the Steinitz theorem on convex polytopes [8]) that a simple planar graph has a straight line representation in the plane.

In the early 60s, Tutte [9,10] proved that a planar graph admits a convex embedding (in which each interior vertex is
the barycenter of its neighbors) if and only if it is a subdivision of a 3-connected graph. The proof given by Tutte may
be extended to the case where the barycentric coefficients giving the position of a vertex are arbitrary strictly positive
values summing up to 1.

Both results may be viewed in a more general framework where we ask that vertices in a given subset are barycenters
of a given subset of their neighbors with prescribed (possibly null) coefficients summing up to 1:

Problem 1. Assume we are given a connected plane graph G, a subset S of vertices (which are “free”) and a weight
function � : (V (G)\S) × V (G) → [0, 1] such that, for any (x, y) ∈ (V (G)\S) × V (G):

�(x, y) > 0 ⇒ {x, y} ∈ E(G), (1)∑
y∈V (G)

�(x, y) = 1. (2)

� Expanded version of a talk presented at Graph Drawing 2003 conference (Perugia, September 2003).
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Does there exist a function � : V (G) → R2, such that

∀x ∈ V (G)\S, �(x) =
∑

y∈V (G)

�(x, y)�(y) (3)

and such that � induces a planar straight line drawing of G homeomorphic to the original one?

In such a formalism, Fáry’s theorem means that the problem has a positive answer whenever S = V (G), and Tutte’s
theorem asserts that the problem also has a positive answer when G is a subdivision of a 3-connected planar graph, S

is the vertex set of the outer face of G and �(x, y) > 0 for any couple (x, y) of adjacent vertices (where x /∈ S).
As a special instance of the problem, one may also ask when a decomposition of the edge set of G into disjoint

pairwise non-crossing paths can be “stretched”:

Problem 2. Let G be a connected plane graph, and let P be a covering of E(G) with edge-disjoints and pairwise
non-crossing paths. Does there exists a planar straight line embedding of G homeomorphic to the original one, such
that all the vertices belonging to a path in P are collinear?

The latter problem may in turn be viewed as a stretching problem for contact systems of pseudo-segments:

Problem 3. Let A be a contact system of pseudo-segments. Is it possible to “stretch” A into a homeomorphic contact
system of straight line segments?

We shall give a precise answer to the first problem by proving the necessity and sufficiency of some simple combi-
natorial properties. We will derive a simplified statement for the second problem and an answer to the third problem in
terms of extendibility of the contact system.

Notice that if crossings are allowed in Problems 2 and 3, these problem become NP-hard, as proved by Mnëv [3,4]
(see also [5,6]).

The paper is organized as follows: Section 2 will be concerned with general resolutions of barycentric systems
defined on graphs; in Section 3, we shall give a generalization of Tutte’s theorem that will answer Problem 1; Problem
2 will be given a solution in Section 4, while we shall give a topological solution of Problem 3 in Section 5.

2. Barycentric systems

2.1. Definitions and notation

Let G be a graph and let A ⊆ V (G). We use the notation GA for the subgraph of G induced by A.

Definition 4. A barycentric system � is a triple (G, S, �), where the ground graph G of � is a simple connected finite
graph, the source set S of � is a subset of vertices of G, the weight function � of � is a function from (V (G)\S)×V (G)

to [0, 1], and where, for x ∈ V (G)\S and y ∈ V (G):

�(x, y) �= 0 ⇒ {x, y} ∈ E(G), (4)

∑
v∈V (G)

�(x, v) = 1. (5)

Given a function f : S → Rk , a solution of � for f is a function � : V (G) → Rk , such that:

�(x) =
{

f (x) if x ∈ S,∑
v∈V (G)�(x, v)�(v) otherwise.

� is non-singular if any function f : S → Rk gives rise to a unique solution �(f ); it is singular, otherwise.
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Lemma 5. A barycentric system is non-singular if and only if it has a unique solution for some function.
If a barycentric system � is non-singular, the mapping f 	→ �(f ) is a linear function.

Proof. Let �= (G, S, �) and let n be the order of G. Consider a fixed numbering of the vertices of G. Define the n×n

square matrix A (with coefficients in [0, 1]) by

Ai,j =
{

�(vi, vj ) if vi /∈ S,

0 otherwise,

and, given any function f : S → Rk , define the n column matrix F (with coefficients in Rk) by

Fi =
{

f (vi) if vi ∈ S,

0 otherwise.

Then the solutions of � for f correspond to the solutions � of the equation � = A� + F . Hence, a barycentric system
� has a unique solution for a function f if and only if (I − A) is non-singular. Hence, � has a unique solution for any
function if and only if it has a unique solution for some function.

Moreover, if � is non-singular, � = (I − A)−1F and thus f 	→ �(f ) is a linear function. �

Definition 6. Let � = (G, S, �) be a barycentric system and let A be a subset of V (G). The relative source set
Source(�, A) of A is defined by

Source(�, A) = (S ∩ A) ∪ {x ∈ A\S : ∃v /∈ A, �(x, v) �= 0}.
That is, ∀x ∈ A:

x /∈ Source(�, A) ⇐⇒ x /∈ S and
∑
v∈A

�(x, v) = 1.

Notice that, according to this definition, Source(�, V (G)) = S.

Lemma 7. Let G be a simple graph, let � = (G, S, �) be a barycentric system, let A be a subset of V (G), let SA =
Source(�, A) and let �A be the restriction of � to (A\SA) × A.

If � is a solution of � for some function f, then �A = (GA, SA, �A) is a barycentric system and the restriction of �
to A is a solution of �A for �|SA

.

Proof. According to the definition of Source(�, A), the function �A is such that

∀(x, y) ∈ (A\SA) × A, �(x, y) �= 0 ⇒ {x, y} ∈ E(GA),

∀x ∈ A\SA,
∑

v∈A
�(x, v) = 1.

Thus, �A is a barycentric system, obviously having �|A as a solution for �|SA
. �

Definition 8. Let � = (G, S, �) be a barycentric system.
The flow graph �D� of � is the directed graph with vertex set V (G), having S as its set of sources and whose arcs are

the (x, y) ∈ V (G) × (V (G)\S) such that �(y, x) �= 0 (see Fig. 1). The distance function dist� : V (G) → N ∪ {∞}
associated with � is defined as the minimum length of a directed path in �D� from S to a vertex, or ∞ is such a path
does not exist.

2.2. General resolution

In the next lemmas, �=(G, S, �) is a barycentric system. Elements of Rk are compared with respect to lexicographic
order.
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Fig. 1. Example of a flow graph defined by a barycentric system � = (G, S, �).

Lemma 9. If supv∈V (G) dist�(v) < ∞, any solution � of � for some function f reaches its extremal values on S and,

for any vertex x, there exists in �D�:

• a directed path P +
x from S to x such that (�, dist�) is strictly increasing on P +

x with respect to lexicographic order;
• a directed path P −

x from S to x such that (�, −dist�) is strictly decreasing on P −
x with respect to lexicographic

order.

Proof. We only have to prove the existence of P +
x since the existence of the directed path P −

x is then obtained by
considering −� instead of �, and the monotony of these paths implies that the extrema of � are reached on S.

For a vertex v, note P +
v some directed path from S to v such that (�, dist�) is strictly increasing on P +

v with respect
to lexicographic order, when such a directed path exists. Assume there is at least one vertex v such that such a path P +

v

does not exist, and choose the one with the smallest possible value of (�(v), dist�(v)). Obviously, v does not belong
to S. So,

�(v) =
∑

(w,v)∈E( �D�)

�(v, w)�(w)� min
(w,v)∈E( �D�)

�(w).

• If there exists an arc (x, v) ∈ E( �D�) such that �(x) < �(v), then a directed path P +
x exists (by minimality

assumption on v) and the directed path P +
v = P +

x + (x, v) contradicts the hypothesis.
• Otherwise, any edge (x, v) ∈ E( �D�) is such that �(x) = �(v). As there exists an edge (x, v) ∈ E( �D�), such that

dist�(x) = dist�(v) − 1 the directed path P +
x exists, and P +

v = P +
x + (x, v) contradicts the hypothesis.

In both cases, we are led to a contradiction. �

Lemma 10. If supv∈V (G) dist�(v) < ∞, then � is non-singular.

Proof. According to Lemma 5, � is non-singular if and only if � has a unique solution for the constant function f0
mapping S to 0. But this is an implication of the previous result, which asserts that the extrema of a solution of a
barycentric system are reached on its source set, that is that a solution has the same extremal values as f0. �
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Lemma 11. If supv∈V (G) dist�(v) = ∞, the barycentric system has an infinite set of solutions for any function f.

Proof. Let VS be the subset of V (G)\S reachable from S by means of a directed path. For any value c ∈ Rk , define
the function f ′ : V (G) − VS → Rk by f ′(v) = f (v) if v ∈ S, and f ′(v) = c, otherwise. According to Lemma 10,
the barycentric system (G − VS, V (G) − VS, �) has a solution � for f ′, which is also a solution of �. This solution is
such that �|V (G)−VS

≡ c, and thus we get an infinite set of solutions of �. �

Theorem 12. Let � = (G, S, �) be a barycentric system and let f be a function from S to Rk .
Then � has at least a solution for f and the following conditions are equivalent:

(1) the solution of � for f is unique,
(2) � is non-singular (that is: for any function f ′ : S → Rk , the solution of � for f ′ is unique),
(3) any vertex of the flow graph �D� may be reached from S by a directed path,
(4) Source(�, A) is non-empty for any non-empty subset A of vertices of G.

If � is non-singular, the solution � = �(f ) of � for f reaches its extremal values on S and, for any vertex x, there
exists in �D�:

• a directed path P +
x from S to x such that (�, dist�) is strictly increasing on P +

x (with respect to lexicographic order),
• a directed path P −

x from S to x such that (�, −dist�) is strictly decreasing on P −
x (with respect to lexicographic

order).

Proof. The existence of at least a solution for any function and the equivalence of (2) and (3) is ensured by Lemmas
10 and 11, while the equivalence of (1) and (2) is given by Lemma 5.

If � is non-singular, the properties of �(f ) stated in the theorem are those stated in Lemma 9.
On the one hand, these properties obviously imply that Source(�, A) is non-empty for any non-empty subset A of

vertices of G: if x ∈ A, the first intersection of P +
x and A belongs to Source(�, A). Hence (3) implies (4).

On the other hand, assume (4) holds and (3) does not. Then, there exists a vertex x of �D� that cannot be reached
from S by a directed path. Let A be the set of vertices of �D� that may reach x through a (possibly empty) directed path.
Then Source(�, A) = ∅, which contradicts (4). Thus (4) implies (3). �

3. Planarity of a barycentric representation

3.1. Topological convexity

Let A be a subset of vertices of a connected plane graph G.

Definition 13. The topological closure TC(A) of A is the subset of the vertices of G that are either on GA or inside
GA.

In other words, TC(A) is the maximal subset of V (G), such that the outer face of GTC(A) is the same as the outer
face of GA.

A subset A ⊆ V (G) is topologically convex/if TC(A) = A. A vertex x ∈ A is an extremal vertex of A if x belongs
to the outer face of GA. We denote Extr(A) the set of the extremal vertices of A.

Remark 1. Notice that the topological closure operator is

• extensive: A ⊆ TC(A),
• isotone: A ⊆ B ⇒ TC(A) ⊆ TC(B),
• idempotent: TC(TC(A)) = TC(A),
• convex: TC(A) = TC(B) and A ⊆ X ⊆ B ⇒ TC(X) = TC(A).
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Fig. 2. The topological closure of the cycle � may be greater than the interior of � (because of external chords), but has a cycle for external face (�′):
the interior of � is dark shaded, the topological closure of � is the union of the two shaded regions, that is, the interior of �′.

The topological closure operator actually defines a convex geometry on V (G) (hence the term of “topologically
convex”) and we have

• TC(A) = TC(B) ⇒ Extr(A) = Extr(B).
• TC(A) = TC(Extr(A)).
• For any topological convex A and any x ∈ A, A − x is a topological convex if and only if x ∈ Extr(A).

Notice that a topological convex set needs not to induce a connected subgraph of G.

Definition 14. A disk of G is the topological closure of a cycle of G.

Remark 2. If A is a disk of G, Extr(A) is the vertex set of a cycle of G: by definition, there exists a cycle � of G so
that A =TC(V (�)). Hence, the outer face of GA is 2-connected and thus is a cycle �′, with V (�′) ⊆ V (�) (see Fig. 2).

Definition 15. A plane graph G is internally maximal if every inner face of G is a triangle.

3.2. Admissibility of a barycentric system

Definition 16. Let G be a plane graph and let � = (G, S, �) be a barycentric system.
The interface of a subset A ⊆ V (G) in � is the set

Interface(�, A) = Source(�, A) ∩ Extr(A).

� is admissible if, for any subset A �= ∅ of vertices of G inducing a connected subgraph:

|Interface(�, A)| > 0,

|Interface(�, A)| = 1 ⇒ |A| = 1,

|Interface(�, A)| = 2 ⇒ GA is a path.

Remark 3. According to Theorem 12, an admissible barycentric system � is non-singular, as Interface(�, A) ⊆
Source(�, A) is non-empty for any non-empty subset A of vertices.

Lemma 17. For any subset A of vertices of G:

Interface(�,TC(A)) ⊆ Interface(�, A). (6)
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Proof. First notice that (TC(A) ∩ S) ∩ Extr(A) = S ∩ Extr(A) = (A ∩ S) ∩ Extr(A). Thus, Interface(�,TC(A)) ∩
S = Interface(�, A) ∩ S.

Let x ∈ Interface(�,TC(A))\S. Then there exists y /∈TC(A), such that �(x, y) > 0. As y /∈TC(A) ⊇ A and
x ∈ Extr(A) ⊆ A, x ∈ Source(�, A) and thus x ∈ Interface(�, A). �

Lemma 18. Let G be a connected plane graph and let � = (G, S, �) be an admissible barycentric system.
Then any vertex in V (G)\S has indegree at least 2 in �D�.

Proof. Assume there exists x ∈ V (G)\S having indegree at most 1 in �D�. Then, either x has indegree 1 and x has
a neighbor y, so that |Source(�, {x, y})| = 1, or x has indegree 0 and |Source(�, {x})| = 0. Both cases contradict the
admissibility of �. �

Lemma 19. Let G be a connected plane graph and let � = (G, S, �) be an non-singular barycentric system. Assume
that all vertices in V (G)\S have indegree at least 2 in �D�.

Then, for any subset A ⊆ V (G) inducing a tree, |Interface(�, A)| is at least equal to the number of leaves of A.

Proof. A leaf of GA belongs to Interface(�, A), as it either belongs to S or has at least one incoming arc in �D� from
a vertex outside A. �

Lemma 20. Let G be a connected plane graph and let � = (G, S, �) be a non-singular barycentric system. Assume
that all vertices in V (G)\S have indegree at least 2 in �D�, and let A be a connected topological convex of G different
from a tree.

If |Interface(�, D)|�3 for any disk D ⊆ A, then |Interface(�, A)|�3 and there exists v1, v2, v3 ∈ Interface(�, A),
such that GA is contractible to the triangle {v1, v2, v3}.

Proof. The proof is by induction on |A|.
Assume there exists x ∈ A having degree 1 in GA. Then x ∈ Extr(A) and either x belongs to S or x has at

least one incoming arc in �D� from a vertex outside A. Thus, x ∈ Interface(�, A). Moreover, A − x is a topological
convex and the neighbor of x is the only vertex that may belong to Interface(�, A − x)\Interface(�, A). By induction,
|Interface(�, A−x)|�3 and there exists v1, v2, v3 ∈ Interface(�, A−x) such that GA−x is contractible to the triangle
{v1, v2, v3}. Hence, if x is adjacent to vi (we may assume i = 1) GA is contractible to the triangle {v2, v3, x} ⊆
Interface(�, A) and, otherwise, GA is contractible to the triangle {v1, v2, v3}Interface(�, A).

Otherwise, if GA is 2-connected, then A is a disk and thus |Interface(�, A)|�3. Given any three vertices v1, v2, v3 ∈
Interface(�, A), GA is contractible to the triangle {v1, v2, v3}.

Otherwise, let x be a cut-vertex of GA and let A1, . . . , Ap (p�2) be the vertex sets of the blocs of GA hav-
ing x as common intersection. Obviously, A1, . . . , Ap are connected topological convexes of G and each of the
GAi

has at least one cycle, for otherwise there would exist a vertex of degree 1 in GA. Let B = A\A1 ∪ {x}.
By induction, |Interface(�, B)|�3 and there exists v1, v2, v3 ∈ B such that GB is contractible to the triangle
{v1, v2, v3}. Moreover, it is easily checked that Interface(�, A)\{x} = Interface(�, A1)\{x} ∪ Interface(�, B)\{x}.
Thus, as |Interface(�, A1)|�3, |Interface(�, A)|�3. If x is different from v1, v2, v3, then GA is contractible to
the triangle {v1, v2, v3} ⊆ Interface(�, A). Otherwise, if x = v1, let y ∈ Interface(�, A)\{x}. By connectivity
of GA1 , there exists a path in GA1 joining x to y. Thus, GA is contractible to the triangle {y, v2, v3} ⊆
Interface(�, A). �

Lemma 21. Let G be a connected plane graph and � = (G, S, �) a non-singular barycentric system.
Then � is admissible if and only if the two following conditions hold:

• any vertex in V (G)\S has indegree at least 2 in �D�,
• for any disk A of G, |Interface(�, A)|�3.

Proof. Assume � is admissible. According to Lemma 18, condition (1) holds. Moreover, since any disk includes a
cycle, (2) also holds.
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Assume (1) and (2) hold. Assume A ⊆ V (G) induces a connected subgraph of G. According to Lemma 17,
Interface(�,TC(A)) ⊆ Interface(�, A). According to Lemmas 19 and 20, |Interface(�,TC(A))|=1 if |TC(A)|=1
(hence |A| = 1), |Interface(�,TC(A))|�2 if GTC(A) is a path (hence GA is a path) and |Interface(�,TC(A))|�3
otherwise. Thus � is admissible. �

3.3. Augmentation

In this section, we shall prove that a connected plane graph G with an admissible barycentric system � = (G, S, �)

may be augmented into a maximal plane graph G+ with an admissible barycentric system �+ = (G+, T , �+) such that

• G is a topological induced subgraph of G+,
• T is the vertex set of the outer face of G+,
• � is the restriction of �+ to (V (G)\S) × V (G).

Here, topological induced subgraph means that the embedding of the graph G corresponds to the restriction of the
embedding of the graph G+ to its subgraph induced by V (G).

This augmentation will be performed in two steps: first, we augment the graph to a 2-connected plane graph, then
we augment it to a maximal plane graph.

Definition 22. Let G be a connected plane graph and let � = (G, S, �) be a barycentric system. Let x ∈ V (G).
The vertex x is neutral for � if the union of the faces of G including x is a wheel, and if either x ∈ S or �(x, y) > 0

for any neighbor y of x.
The vertex x is strongly neutral for � if x and all its neighbors are neutral for �.

Remark 4. Let A ⊆ V (G). A vertex of Extr(A) which is neutral for � belongs to Interface(�, A).

Lemma 23. A connected plane graph G with an admissible barycentric system � = (G, S, �) may be augmented into
a 2-connected plane graph G+ with an admissible barycentric system � = (G+, T , �+), so that

• G is a topological induced subgraph of G+,
• S ⊆ T ,
• � is the restriction of �+ to (V (G)\S) × V (G).

Proof. Assume x is a cut-vertex of G, let u and v be two consecutive neighbors of x belonging to the same face of G
and to different blocs (i.e. 2-connected components) of G. We add a vertex s and the edges {s, u} and {s, v} to G, while
preserving the planarity (and the embedding, see Fig. 3).

Let G+ be the so-obtained graph, T = S ∪ {s}, let �+ be the extension of � to (V (G+)\T ) × V (G+) defined by
�+(x, s)=0, ∀x ∈ V (G+)\T and let �+ =(G+, T , �+). As � is non-singular, any vertex of V (G+)\T =V (G)\S may
be reached from S by a directed path in �D�, and thus it may be reached from T ⊇ S by a directed path in �D�+ ⊇ �D�.
Hence �+ is non-singular. Moreover, any vertex in V (G+)\T = V (G)\S has indegree at least 2 in �D�+ .

Fig. 3. Augmentation at a cut-vertex.
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Let A be a disk of G+. If s /∈ Extr(A), then

|Interface(�+, A)| = |Interface(�, A\{s})|�3.

Otherwise, A − s has x as cut-vertex and

|Interface(�, A\{s})\{x}|�2.

Hence |Interface(�+, A)|�3 and �+ is admissible, according to Lemma 21.
By iterating this process, we eventually obtain a topological supergraph G+ of G and a barycentric system �+ having

the required properties. �

Lemma 24. Let G be a 2-connected plane graph and let � = (G, S, �) be an admissible barycentric system.
Then there exists a maximal plane graph G+ with outer face vertex set T ={r1, r2, r3} and an admissible barycentric

system �T = (G+, T , �+), such that

• G is a topological induced subgraph of G+,
• V (G)\S ⊆ V (G+)\T and � is the restriction of �+ to (V (G)\S) × V (G).

Proof. The graph G+ and a partition of V (G+)\V (G) into three sets A, B, C is obtained as follows (see Figs. 4 and
5): starting with A = B = C = ∅, for each face F = (v1, . . . , vk) of G,

• planarly add vertices c1, . . . , ck so that ci is adjacent to vi and vi+1 (or v1 if i = k) and put them in C;
• planarly add vertices b1, . . . , bk so that bi is adjacent to ci, vi and ci−1 (or ck if i = 1) and put them in B;

Fig. 4. Augmentation of an internal face.

Fig. 5. Augmentation of the external face.
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• if F is an inner face of G, planarly add a vertex a adjacent to c1, . . . , ck, b1, . . . , bk and put it in A; other-
wise, planarly add three mutually adjacent vertices r1, r2, r3 adjacent to the vertices in {ck, b1, c1, . . . , bp, cp},
{cp, bp+1, cp+1, . . . , bq, cq} and {cq, bq+1, cq+1, . . . , bk, ck}, respectively, where 1�p < q < k, so that {r1, r2, r3}
will be the new outer face of the graph, and put r1, r2, r3 in A.

Let T = {r1, r2, r3}. Clearly, G+ is a maximal plane graph having T as the vertex set of its outer face. Define
�+ : V (G+)\T to [0, 1] by

�+(x, y) =

⎧⎪⎨
⎪⎩

�(x, y) if (x, y) ∈ (V (G)\S) × V (G),
1

d(x)
if x ∈ (V (G+)\T )\(V (G)\S) and {x, y} ∈ E(G+),

0 otherwise.

Let �+ = (G+, T , �+). By construction, each vertex in S is neutral for �+ and the sets A, B, C have the following
properties:

• vertices in A are strongly neutral for �+ and T ⊆ A;
• each vertex in B is neutral for �+ and has, in circular order, a neighbor in C, a neighbor in V (G), a neighbor in C

and a neighbor in A;
• each vertex in C is neutral for �+ and has two consecutive neighbors in V (G) and its other neighbors in A ∪ B.

We shall first prove that �+ is non-singular. Let A ⊆ V (G+)\T :

• If the outer face of G+
A includes a vertex x in A ∪ B ∪ C ∪ S, this vertex is neutral for �+ and thus has a neighbor y

outside A so that �(x, y) > 0. Hence, |Interface(�+, A)| > 0.
• Otherwise, GA∩V (G) has the same outer face as G+

A and, as � is admissible, |Interface(�, A ∩ V (G))| > 0. As
Interface(�, A ∩ V (G)) ∩ S = ∅, there exists, in the outer face of GA∩V (G) (that is: the outer face of G+

A) a vertex x
having a neighbor y in V (G)\A, so that �(x, y) > 0. Thus |Interface(�+, A)| > 0.

According to Theorem 12, �+ is non-singular.
Moreover, any vertex x in V (G+) has indegree at least 2 in �D�+ : either x ∈ V (G)\S and then x has indegree at least

2 in �D� according to Lemma 18, or x ∈ A ∪ B ∪ C ∪ S and x has indegree at least 2 in �D�+ as it is neutral for �+ and
has degree at least 3 in G+.

Assume there exists a disk A of G+ such that |Interface(�+, A)|�2, and assume A is minimal for the inclusion.

• Assume the outer face of G+
A includes a vertex v ∈ A, the two neighbors of v on the outer face of A are neutral for

�+. Thus |Interface(�+, A)|�3, a contradiction;
• otherwise, assume the outer face of G+

A includes a vertex v ∈ B and let v1, v2 be the two neighbors of v on the outer
face of G+

A . Then, either v1 and v2 are non-consecutive neighbors of v and thus belong to C, in which case they are
neutral and |Interface(�+, A)|�3, a contradiction, or {v, v1, v2} is a face of G+. In the latter case, either A − v is a
disk and thus |Interface(�+, A)|�3, a contradiction, or A − v is reduced to {v1, v2} and |Interface(�+, A)| = 3, a
contradiction;

• otherwise, assume the outer face of G+
A includes a vertex v ∈ C and let v1, v2 be the neighbors of v on the outer face

of G+
A . Then either v1 and v2 are non-consecutive neighbors of v and thus belong to A ∪ B, in which case they are

neutral and |Interface(�+, A)|�3, a contradiction, or {v, v1, v2} is a face of G+. In the latter case, either A − v is a
disk and thus |Interface(�+, A)|�3, a contradiction, or A − v is reduced to {v1, v2} and |Interface(�+, A)| = 3, a
contradiction;

• otherwise, the outer face of G+
A is included in V (G). Hence A ∩ V (G) is a disk of G and GA∩V (G) and G+

A have the
same outer face. Let x ∈ Interface(�, A ∩ V (G)). Then either x has a neighbor y in G (thus in G+) such that y /∈ A

and �(y, x) > 0, or x ∈ S and thus x is neutral for �+. Thus x ∈ Interface(�+, A). As � is admissible and A∩V (G)

is a disk of G, |Interface(�, A ∩ V (G))|�3. Hence |Interface(�+, A)|�3, a contradiction.

Thus, any disk A of G+ is such that |Interface(�+, A)|�3 and, according to Lemma 21, �+ is admissible. �
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3.4. Good barycentric systems

Definition 25. Let G be a connected plane graph and let � = (G, S, �) be a non-singular barycentric system.
� is good if, for some function f from S to the plane, �(f ) induces a planar straight line drawing of G homeomorphic

to G.

The aim of this section is to prove that a barycentric system is good if and only if it is admissible.
Let G be a 2-connected planar graph. A straight line drawing of G is a convex drawing if each face of the graph is

drawn as a convex polygon. The drawing is strictly convex if the vertices of a face are mapped to the extremal points
of the polygon corresponding to the face. Convex drawings are deeply related to good barycentric systems:

Lemma 26. Let G be a 2-connected plane graph. A straight line representation of G (with the same embedding) is
convex if and only it is induced by a solution f of a good barycentric system � = (G, S, �), where S is the vertex set of
a face of G and f embeds S in a convex polygon (in a compatible order).

Proof. Consider a convex drawing of G and let S be the vertex set of the external face. Let v be an internal vertex. As
the faces including v are convex, we may augment the neighborhood of v to a wheel by adding straight line segments
between consecutive non-adjacent neighbors while preserving planarity. Thus, v belongs to the convex hull of its
neighbors. Hence, the drawing is induced by the solution of a good barycentric system � = (G, S, �) mapping S to a
convex polygon.

Conversely, assume S is the vertex set of a face of G embedded in a convex polygon of the plane. Assume the
representation includes a non-convex internal face, and let v1, v2, v3 be three consecutive vertices of such a face
defining a concave angle at v2. Then v2 does not belong to the convex hull of its neighbors, a contradiction. �

Lemma 27. Let G be a maximal planar graph and let � : [0, 1] × V (G) → R2 be a mapping such that

• �(0, ·) induces a plane straight line representation of G,
• �(·, x) is continuous for any vertex x of G,
• ∀t ∈]0, 1] and for all triangle (x1, x2, x3) of G, �(t, x1), �(t, x2) and �(t, x3) are not collinear.

Then, �(t, ·) induces a plane straight line representation of G for every t in [0, 1].

Proof. First notice that �(0, ·) induces a plane straight line representation of G by hypothesis and that we only have to
consider the case where t ∈]0, 1].

In order to check if a straight line representation of a maximal planar graph is plane, it is sufficient to check that
no edge has null length, that no two adjacent edges are overlapping and that the circular orders of the edges around a
vertex define a planar map. The first two cases cannot occur, as they imply the existence of a flat triangle. As �(·, x) is
continuous for any vertex x, the circular order around a vertex may only change if two consecutive edges overlap for
some t > 0, which would give rise to a contradiction. �

Theorem 28. Let G be a connected plane graph and let � = (G, S, �) be a barycentric system. Then � is good if and
only if it is admissible.

Proof. Assume � is good. Consider a function f from S to the plane inducing a straight line drawing homeomorphic to G
and let �=�(f ). Then, for any subset A of V (G), any point in �(A) belongs to the convex hull of �(Interface(�, A)).
Thus, if GA is connected, the three conditions of admissibility are obviously satisfied.

Now, assume � is admissible. According to Lemmas 23 and 24, we may assume that G is a maximal plane graph
with outer face S = {s1, s2, s3}. It is a classical result [2,7,11] that G has a straight line embedding � with external face
{s1, s2, s3}. Let f : S → R2 be the function which maps the vertices in S to the corresponding points of the straight
line embedding �. According to Lemma 26, this embedding is induced by the solution for f of some barycentric system
�′ = (G, S, �′). Let �t = (1 − t)�′ + � and let �t = (G, S, �t ), for t ∈ [0, 1].
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For 0 < t < 1 and x, y ∈ V (G), �t (x, y) > 0 if and only if �(x, y) > 0 or �′(x, y) > 0. Thus, for any subset A ⊆ V (G)

inducing a connected subgraph, Interface(�t , A) ⊆ Interface(�, A) and hence the barycentric system �t is admissible
for any 0 < t �1.

Let � : [0, 1] × V (G) → R2 be defined by �(t, ·) = �t (f ). This function continuously depends on t.
Assume there exists t0 ∈]0, 1] and a triangle {x1, x2, x3} of G, such that �(t0, x1), �(t0, x2) and �(t0, x3) are collinear.

Let ax+by+c=0 be an equation of the straight line � including these points. Denote fx and fy the x and y coordinates
of f. Let f� = af x + bf y + c and let �� = �t0(f�) be the solution of the barycentric system �t0 for f�. According
to Lemma 5, the mapping g → �t0(g) is linear and thus ��(v) = a�x(t0, v) + b�y(t0, v) + c, where �x(t0, v) and
�y(t0, v) denote the x and y coordinates of �(t0, v). Hence ��(x1) = ��(x2) = ��(x3) = 0, as �(t0, x1), �(t0, x2)

and �(t0, x3) belong to �. Let A be the vertex set of the connected component of G�−1
� (0)

including the vertices
x1, x2, x3.

Let G+ be the planar graph obtained from G by adding two vertices 	− and 	+ and the edges {	−, s} (for s ∈
S and ��(s)�0), the edges {	+, s} (for s ∈ S and ��(s)�0) and the edge {	−, 	+}.

For each vertex ai ∈ Interface(�t0 , A)\S, there exists a vertex v such that (v, ai) is an arc of �D�t0 and ��(v) �= 0.
From the equation

∑
(x,ai )∈E( �D�t0 )

��(x) = ��(ai) = 0,

we deduce that, for each such ai , there exist two vertices xi and yi , such that (xi, ai) and (yi, ai) are arcs of �D�t0 and
such that ��(xi) < 0 < ��(yi). According to Theorem 12, for each such ai , there exist in �D�t0 directed paths P +

ai
and

P −
ai

, whose vertices (except ai) have a negative (resp., positive) ��-value.
Thus, for each ai ∈ Interface(�, A), there exist in G+ paths P1(ai) and P2(ai) from 	− (resp., 	+) to ai , which

vertices (except ai) have a negative (resp., positive) ��-value. Hence, for any a, a′ in Interface(�, A):

P1(a) ∩ P2(a
′) = ∅,

P1(a) ∩ P2(a) = P1(a) ∩ A = P2(a) ∩ A = {a},
	− ∈ P1(a) and 	+ ∈ P2(a).

According to Lemma 20, there exist a1, a2, a3 ∈ Interface(�t0 , A), such that GA is contractible to the triangle
{a1, a2, a3}. Thus, GA, the paths Pi(aj ) (i ∈ {1, 2}, j ∈ {1, 2, 3}), and the edge {	−, 	+} may be contracted to
K5, contradicting the planarity of G+ (Fig. 6).

Thus, there exists no t ∈]0, 1], such that some triangle (x1, x2, x3) of G is that �(t, x1), �(t, x2) and �(t, x3) are
collinear. According to Lemma 27, �(f )=�(1, ·) defines a barycentric representation of G (obviously homeomorphic
to �) and thus � is good. �

Fig. 6. When �(t0, x1),�(t0, x2) and �(t0, x3) are collinear, a K5 minor of G+ is exhibited (thick edges may be contracted to a triangle).
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4. Stretching paths

In this section, we consider a connected plane graph G, a covering P = (P1, . . . , Pk) of G by edge disjoint and
pairwise non-crossing paths and a function � : V (G) × V (G) → [0, 1], such that

• �(x, y) > 0 if and only if x is internal to a path in P in which y is adjacent to x,
• ∑

y∈V (G)�(x, y) = 1 if x is internal to a path in P.

We note by S the set of vertices of G which are internal to no path in P and �= (G, S, �) the barycentric system defined
by G, S and �.

Definition 29. Let P′ be a subset of P. A vertex x ∈ V (G) is a free vertex of P′ if it belongs to the outer face of⋃
P∈P′P and if it is interior to no path in P′.

Remark 5. According to the definition of �, the set of the free vertices of P′ ⊆ P is Interface(�,
⋃

P∈P′V (P )).

Definition 30. We define the function l : P → N and, for P ∈ P, the function 
P : {0, 1, . . . , l(P )} → V (G) by

• l(P ) is the length of the path P ∈ P,
• 
P (i) is the ith vertex of the path P (vertices are numbered from one end to the other).

Definition 31. The closure closP(A) of a subset A ⊆ V (G) of at least two vertices inducing a connected subgraph of
G is the smallest subset of P, such that A ⊆ ⋃

P∈closP(A)V (P ) and such that any path in P\closP(A) share at most
one vertex with

⋃
P∈closP(A)V (P ).

Notice that closP(A) may easily be computed as follows:

• let X = ∅;
• while there exists P ∈ P\X, such that P shares at least two vertices with A ∪ ⋃

P ′∈XV (P ′), let X = X ∪ {P };
• let closP(A) = X.

Lemma 32. Let A be a subset of at least two vertices of G inducing a connected subgraph. Let A+ be the vertex set
of the union of the paths in closP(A). Then |Interface(�, A)|� |Interface(�, A+)|, that is: |Interface(�, A)| is at least
equal to the number of free vertices of closP(A).

Proof. As GA is not reduced to an isolated vertex, A is a subset of A+. Thus, it is sufficient to prove the property for
the addition to A of the vertex set of a path P ∈ P sharing at least one edge with A.

If there exists x, y ∈ A ∩ V (P ) so that the subpath Px,y of P from x to y does not meet A except at x and y, then
Interface(�, A ∪ V (Px,y)) ⊆ Interface(�, A), as the added vertices have all their incoming edges (in �D�) in V (Px,y).

Otherwise, if P�GA, there exists x ∈ A such that the subpath Pa,x from an extremity of P to x does not meet
A except at x. Notice that x has in P one neighbor outside A and one neighbor in A (for otherwise, the previous
case would apply). Then x ∈ Interface(�, A) (as (a, x) ∈ �D�). Moreover, as in the previous case Interface(�, A ∪
V (Pa,x)) does not contain any vertex internal to P ∩ GA∪V (Pa,x), so it does not contain any vertex in V (Pa,x)\{a}.
Hence Interface(�, A ∪ V (Pa,x)) ⊆ Interface(�, A)\{x} ∪ {a} and |Interface(�, A ∪ V (Pa,x))|� |Interface
(�, A)|. �

Theorem 33. Let G be a connected plane graph and let P = (P1, . . . , Pk) be a covering of G by edge disjoint and
pairwise non-crossing paths. Then there exists an embedding of G, such that each path in P is stretched if and only if
any subset of P of at least two paths has at least three free vertices.

Moreover, in this case, for any family of strictly increasing functions �P : {0, 1, . . . , l(P )} → [0, 1] indexed by P
such that �P (0) = 0 and �P (l(P )) = 1 (for any P ∈ P), there exists an embedding of G, such that each path in P is
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stretched and such that, for P ∈ P and i ∈ {0, 1, . . . , l(P )}:

�P (i) = ‖
P (0)
P (i)‖
‖
P (0)
P (l(P ))‖ . (7)

Proof. Let S be the set of vertices of G which are internal to no path in P. Let (x, y) ∈ (V (G)\S) × V (G). As x is
internal to exactly one path P ∈ P, it is equal to exactly one 
P (i) (with 0 < i < l(P )). Define �(x, y) as follows:

�(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�P (i) − �P (i − 1)

�P (i + 1) − �P (i − 1)
if y = 
P (i + 1),

�P (i + 1) − �P (i)

�P (i + 1) − �P (i − 1)
if y = 
P (i − 1),

0 otherwise

and let � = (G, S, �).
Assume that any subset of P of at least two paths has at least three free vertices. Let A be a subset of V (G) inducing

a connected subgraph. If |A|=1, |Interface(�, A)|=1. Otherwise, according to Lemma 32, |Interface(�, A)| is at least
equal to the number of free vertices of closP(A), thus at least 2, and at least 3 if |closP(A)| > 1 (hence at least 3 if GA

is not a path). Thus � is admissible and, according to Theorem 28, � is good. The embedding induced by � is then such
that each path in P is stretched and such that (7) holds for P ∈ P and 0� i� l(P ) (according to the definition of �).

Conversely, assume G has an embedding such that each path in P is stretched, and consider such an embedding. Let
P′ ⊆ P be a subset of at least 2 paths. Then all the vertices of the paths in P′ belong to the convex hull of the set of
the free vertices of P′. If a path in P′ has an extremity which is not a free vertex or if P′ contains a cycle, the vertices
in P′ are all not collinear, so that P′ has at least three free vertices. Otherwise, P′ has |P′| + 1�3 free vertices. �

5. Pseudo-segments contact systems

5.1. Introduction

A Jordan arc is an arc of the plane homeomorphic to a straight line segment. A set of Jordan arcs is called a
family of pseudo-segments if every pair of arcs in the set intersect in at most one point. A contact system is a set of
pseudo-segments such that two arcs intersect at most once at a point which is internal to at most one arc. A contact
system is stretchable if there exists a homeomorphism which transforms it into a contact system whose arcs are straight
line segments. A pseudo-line is an arc of the plane homeomorphic to a straight line; an arrangement of pseudo-lines
is a family of pseudo-lines, such that any two pseudo-lines in the family intersect at most once. A contact system
is extendible if there exists an arrangement of pseudo-lines such that each pseudo-segment of the contact system is
included in a corresponding pseudo-line of the family. See [1] for a discussion about extendible pseudo-segments.

5.2. Extendibility and extremal points

An extremal point of a contact system is a point of the union of the arcs which is interior to no arc. Notice that the
notion of an extremal point is clearly equivalent to the one of a free vertex, when considering the plane graph induced by
the union of the arcs (where points are the points and the edges are the arc portions between two consecutive vertices)
and the partition of the edge set into paths corresponding to the arcs in A. A maximal contact system is a contact system
whose extremal points belong to the unbounded region. A contact system A = (A1, . . . , Ak) is expandable if there
exists a maximal contact system A′ = (A′

1, . . . , A
′
k), such that Ai ⊆ A′

i for each i ∈ {1, . . . , k}.
Remark 6. If a contact system is extendible, it is expandable to a maximal contact system, which in turn is extendible.

Let A be a maximal contact system extendible to an arrangement of pseudo-lines L.

• Let p be an interior point of an arc A (but of no other arc) on the unbounded region of A.
• Let L be the pseudo-line extending A in L, and let L− and L+ be the two halves of L delimited by p.
• Let H be a half pseudo-line having its endpoint at p and having no other intersection in A.
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Fig. 7. Partitioning a contact system.

Then, L and H induce a “partition” of A into three new contact systems A−, A+ and A0 (see Fig. 7):

• H, L− and L+ define three unbounded regions R−,R+ and R0 having H ∪ L−, H ∪ L+ and L as respective
frontiers.

• We define J−, J+ and J 0 as the sub-arcs of H ∪ L−, H ∪ L+ and L strictly including all the intersections of these
later pseudo-lines with A.

These regions define three contact systems of pseudo-segments:

A− = {J−} ∪ {A ∩ R− : A ∈ A and A ∩ R− �= ∅},
A+ = {J+} ∪ {A ∩ R+ : A ∈ A and A ∩ R+ �= ∅},
A0 = {J 0} ∪ {A ∩ R0 : A ∈ A and A ∩ R0 �= ∅}.

These three contact systems have some nice properties:

Lemma 34. The contact systems A−,A+ and A0 are maximal and extendible.

Proof. The maximality is straightforward, as the extremal points of these contact systems are either extremal points
of A or the extremities of J−, J+ or J 0.

The contact systems A− and A+ are homeomorph to the contact systems where J− (resp., J+) is replaced by J 0.
Then, the arrangement of pseudo-lines which extends A is an extension of all of the contact systems. �

Lemma 35. If the arc A includes no extremal point of A, we have

2� |A−| < |A|, 2� |A+| < |A|, 3� |A0|� |A|,
and each of A−,A+ and A0 has an arc including two extremal points.

Proof. As A includes no extremal point of A the extremity of A in A− (resp., A+) is interior to some arc B− (resp.,
B+). As A may not intersect an arc twice, we have B− �= B+. Moreover, each of these arcs intersects at most once the
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extension L of A, and hence the arc B− (resp., B+) does not meet the region R+ (resp., R−). Thus, |A+|� |A| − 1
and the same holds for |A−|. Notice also that A− and A+ include at least two arcs: J− (resp., J+) with two extremal
points on it and the non-empty portion of B− (resp., B+) in R− (resp., R+). Moreover, A0 includes at least three arcs:
J 0 (with two extremal points on it) and the portions of B− and B+ in R0. �

Lemma 36. Any extendible contact system has at least three extremal points, unless it has cardinality at most one.

Proof. First notice that, according Remark 6 and the fact that the expanded contact system cannot have more extremal
points than the original one, we can only prove the lemma for maximal contact systems.

The lemma is straightforward for contact systems of cardinality at most two. So, assume that for 2� i < k, the lemma
holds for maximal contact systems of cardinality i and assume there exists a maximal contact system A of cardinality
k having at most two extremal points.

Notice that at least three arcs of A meet the unbounded region in a sub-arc. Otherwise, the contact system would be
bounded by a single arc or by two arcs intersecting each other twice, and the system would not be extendible.

• Assume A has two extremal points belonging to a same arc.
From the previous construction and according to Lemma 34, A− and A+ are extendible and, according to Lemma
35, have a smaller cardinality than A but include at least two arcs. By induction, they have at least three extremal
points. Among these, there is one which is an extremal point of A belonging to the interior of R− (resp., R+).
Notice that these extremal points do not belong to a same arc: otherwise, this arc would intersect A twice. Hence, as
the contact system A has an arc with two extremal points on it, it has at least three extremal points, what leads to a
contradiction.
Hence, the lemma holds for maximal contact system with at most k arcs having two extremal points belonging to
the same arc.

• Assume A does not include two extremal points belonging to the same arc.
From the same construction and according to Lemma 34, the contact systemA0 is maximal and, according to Lemma
35, it has cardinality at most k and has two extremal points belonging to the same arc. According to the previous
case, it has at least three extremal points. Among these, one is an extremal point of A belonging to the interior of
R0. Together with the two extremal points of A belonging to the interior of R− and R+ (as in the previous case),
we get three extremal points, a contradiction. �

Lemma 37. Any extendible contact system A is expandable to a maximal contact system, each subsystem of which
has at least three extremal points unless it has cardinality at most one.

Proof. As any subsystem A′ of the expansion of A into a maximal contact system is extendible to a weak arrangement
of pseudo-lines, the result follows from Lemma 36. �

Theorem 38. Let A be a contact system of pseudo-segments. Then, the following conditions are equivalent:

1. A is stretchable,
2. each subsystem of A has at least three extremal points, unless it has cardinality at most one,
3. A is extendible.

Proof. It is straightforward that (1) implies (3). The equivalence of (1) and (2) results from Theorem 33. According
to Lemma 37, (3) implies that A is expendable to a maximal contact system, each subsystem of which has at least
three extremal points or has cardinality at most one, thus implying (2) on the expanded contact system and thus the
stretchability of the expanded contact system (and thus (1)). �
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