Double vertex digraphs of digraphs

Yubin Gao *, Yanling Shao
Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, PR China

A R T I C L E I N F O

Article history:
Received 1 June 2005
Received in revised form 22 May 2008
Accepted 23 May 2008
Available online 2 July 2008

Keywords:
Digraph
Double vertex digraph
Primitive digraph
Exponent

A B S T R A C T

Let D be a digraph of order n. The double vertex digraph $S_2(D)$ of D is the digraph whose vertex set consists of all ordered pairs of distinct vertices of $V(D)$ such that there is an arc in $S_2(D)$ from (x, y) to (u, v) if and only if $x = u$ and there is an arc in D from y to v, or $y = v$ and there is an arc in D from x to u. In this paper, we establish some relationships between a digraph and its double vertex digraph.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

For a simple graph G (with no loops and multiple edges), in [1] the authors gave the following definition. The double vertex graph $U_2(G)$ of G is the graph whose vertex set consists of all 2-subsets of $V(G)$ such that two distinct vertices (x, y) and (u, v) are adjacent if and only if $|(x, y) \cap (u, v)| = 1$ and if $x = u$, then y and v are adjacent in G. The order and the size of $U_2(G)$ are $n(n - 1)/2$ and $q(n - 2)$, respectively, where n is the order and q is the size of G. As examples, we have $U_2(K_2) = K_4$, $U_2(K_3) = K_6$, and $U_2(K_{1, 3}) = C_6$. See Fig. 1 for an example of a graph and its double vertex graph.

Recently, there have been some papers concerning this topic, for example [1–3,5,7]. In particular, paper [3] reviews the recent results. In this paper, we extend the definition of the double vertex graph of a graph to a directed graph, and establish some relationships between a directed graph and its double vertex directed graph.

We need some concepts and notations on directed graphs. Let $D = (V(D), A(D))$ denote a directed graph (or digraph) with vertex set $V(D)$ and arc set $A(D)$. Loops and multiple arcs are not permitted. A walk of length k (or k-walk) is a sequence $v_1v_2 \ldots v_kv_{k+1}$ of vertices such that there is an arc in D from v_i to v_{i+1} for $i = 1, 2, \ldots, k$. The walk is a path if the vertices $v_1, \ldots, v_k, v_{k+1}$ are distinct. The walk is closed if $v_{k+1} = v_1$, and a cycle is a closed walk in which v_1, \ldots, v_k are distinct. For a vertex v of D, we denote by $d^+_D(v)$ (respectively, $d^-_D(v)$) the outdegree (respectively, indegree) of v in D. For two distinct vertices u and v of D, the distance from u to v, denoted by $d_D(u, v)$, is the length of the shortest walk from u to v. We agree that $d_D(u, u) = 0$ for any vertex u.

A digraph D is called Hamiltonian if it contains a cycle through all the vertices of D. A digraph D is called primitive if, for some positive integer k, there is a walk of length exactly k from each vertex u to each vertex v (possibly u again). If D is primitive, the smallest such k is called the exponent of D, denoted by $\text{exp}(D)$. It is well-known that (for example see [4]) D is primitive if and only if D is strongly connected and the greatest common divisor of all the cycle lengths of D is 1, and if $\text{exp}(D) = k$, then there is a walk of length k from each vertex u to each vertex v, and thus a walk from u to v of every length greater than k.

* This research was supported by NNSF of China (No. 10571163) and NSF of Shanxi (Nos 2007011017 and 2008011009).
* Corresponding author.
E-mail addresses: ybgao@nuc.edu.cn (Y. Gao), ylshao@nuc.edu.cn (Y. Shao).

0012-365X/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.05.054
2. Definition of the double vertex digraph of a digraph

Let \(D = (V, A) \) be a digraph of order \(n \) (\(n \geq 2 \)). The double vertex digraph, \(S_2(D) \), of \(D \) is the digraph whose vertex set consists of all ordered pairs of distinct vertices of \(V(D) \) such that there is an arc in \(S_2(D) \) from \((x, y)\) to \((u, v)\) if and only if \(x = u \) and there is an arc in \(D \) from \(y \) to \(v \), or \(y = v \) and there is an arc in \(D \) from \(x \) to \(u \).

We now give some examples of digraphs and their double vertex digraphs.

Example 2.1. The digraphs in Fig. 2 are the directed 4-cycle and its double vertex digraph.

Example 2.2. The digraphs in Fig. 3 are the double directed path of length 4 and its double vertex digraph.

In a general way, if \(P_n \) is the double directed path of length \(n \) (\(n \geq 2 \)), then the double vertex digraph, \(S_2(P_n) \), of \(P_n \) satisfies the following:

1. \(S_2(P_n) \) is a symmetric digraph with \(n(n - 1) \) vertices and \(4(n - 1)(n - 2) \) arcs.
2. \(S_2(P_n) \) is not strongly connected, and has two strongly connected components.
3. There is no arc in \(S_2(P_n) \) such that its two vertices are in different strongly connected components of \(S_2(P_n) \).

Example 2.3. The digraphs in Fig. 4 are the star \(D \) of order 4 and its double vertex digraph \(S_2(D) \).
3. Basic properties of the double vertex digraph

In this section, we establish some basic relationships between a digraph and its double vertex digraph. The first two theorems are clear, and we omit the proofs.

Theorem 3.1. Let \(D \) be a digraph with \(n \) vertices and \(q \) arcs. Then the double vertex digraph \(S_2(D) \) of \(D \) has \(n(n-1) \) vertices and \(2q(n-2) \) arcs.

Theorem 3.2. Let \(D \) be a symmetric digraph. Then the double vertex digraph \(S_2(D) \) of \(D \) is also symmetric.

Theorem 3.3. Let \(D \) be a bipartite digraph. Then the double vertex digraph \(S_2(D) \) of \(D \) is also a bipartite digraph.

Proof. Let \(D \) be a bipartite digraph and let \(A \) and \(B \) be the two partite sets of \(D \). Take \(X = \{(u, v) \mid u, v \in A \text{ or } u, v \in B\} \), and \(Y = V(S_2(D)) \setminus X \) (that is, \(Y = \{(u, v) \mid u \in A \text{ and } v \in B, \text{ or } u \in B \text{ and } v \in A\} \)). Clearly, \(X \) and \(Y \) are the two partite sets of \(S_2(D) \). Then \(S_2(D) \) is a bipartite digraph. \(\Box \)

Corollary 3.4. Let \(D \) be a bipartite digraph and the two partite sets of \(D \) have \(m \) and \(n \) vertices, respectively. Then \(S_2(D) \) is a bipartite digraph and the two partite sets of \(S_2(D) \) have \(m^2 + n^2 - m - n \) and \(2mn \) vertices, respectively.

Corollary 3.5. Let \(D \) be a bipartite digraph and the two partite sets of \(D \) have \(m \) and \(n \) vertices, respectively. If \(2mn \neq m^2 + n^2 - m - n \), then \(S_2(D) \) is not Hamiltonian.

Theorem 3.6. Let \(D \) be the double directed cycle of order \(n \geq 3 \). Then the double vertex digraph \(S_2(D) \) of \(D \) is a bipartite digraph.

Proof. If \(n \) is even, then \(D \) is a bipartite digraph, so \(S_2(D) \) is also a bipartite digraph by **Theorem 3.3**.

We now consider the case that \(n \) is odd. Let \(V(D) = \{1, 2, \ldots, n\} \). Take \(X = \{(i, j) \mid 1 \leq i < j \leq n, i + j \text{ is even}\} \cup \{(i, j) \mid 1 \leq j < i \leq n, i + j \text{ is even}\} \), and \(Y = V(S_2(D)) \setminus X \). Clearly, \(X \) and \(Y \) are the two partite sets of \(S_2(D) \). Then \(S_2(D) \) is a bipartite digraph. \(\Box \)

Note that if \(H \) is a subgraph of \(D \), then \(S_2(H) \) is also a subgraph of \(S_2(D) \). The following is clear.

Corollary 3.7. Let \(D \) be a digraph of order \(n \), and \(L(D) \) be the set of distinct cycle lengths of \(D \). If \(L(D) = \{2, n\} \), then \(S_2(D) \) is a bipartite digraph.

4. Strong connectivity of the double vertex digraph

In this section we study the relationship on strong connectivity between a digraph and its double vertex digraph. The main theorem of this section is **Theorem 4.6**. We first prove the following lemma.

Lemma 4.1. Let \(D \) be a digraph, and let \((u, v)\) and \((x, y)\) be two vertices (not necessarily distinct) of \(S_2(D) \). If there is a walk in \(S_2(D) \) from \((u, v)\) to \((x, y)\) with length \(m \), then there exist walks in \(D \) from \(u \) to \(x \), and \(v \) to \(y \), respectively, such that the sum of their lengths equals \(m \).

Proof. Let \(P \) be a walk in \(S_2(D) \) from \((u, v)\) to \((x, y)\) with length \(m \). Denote \(P = (u, v)(u_1, v_1)(u_2, v_2) \cdots (u_{m-1}, v_{m-1})(x, y) \), \(u_0 = u, u_m = x, v_0 = v, \) and \(v_m = y \). Consider the sequence of vertices

\[u_0u_1u_2 \cdots u_{m-1}u_m. \] (4.1)
If there exists $0 \leq i \leq m - 1$ such that $u_i = u_{i+1}$, then we delete u_i from (4.1). Carry on the above-mentioned operation again and again, we finally obtain a new sequence of vertices

$$u_1 u_2 \ldots u_i u_{m},$$

(4.2)

where $u_1 = u_0 = u$. It is not difficult to verify that (4.2) is a walk in D from u to x.

By a similar method, we can obtain a walk in D from v to y.

Note that for any two adjacent vertices (u_i, v_i) and $(u_{i+1}, v_{i+1}), 0 \leq i \leq m - 1$, in P, it must be that either $u_i = u_{i+1}$ and $v_i \neq v_{i+1}$, or $u_i \neq u_{i+1}$ and $v_i = v_{i+1}$. Then the last half of the lemma holds.

Corollary 4.2. Let D be a digraph. If $S_2(D)$ is strongly connected, then so is D.

Proof. Let u and v be any two distinct vertices of D. If $S_2(D)$ is strongly connected, then there is a walk in $S_2(D)$ from (u, v) to (v, u). By Lemma 4.1 there exist walks in D from u to v, and v to u, respectively. It implies that D is strongly connected. □

By Corollary 4.2, we can assume that D is strongly connected for considering the strong connectivity of $S_2(D)$.

Let D be a strongly connected digraph. Then $S_2(D)$ may be not strongly connected. As a example (or see Example 2.2), we let D be a double directed path of length n with vertex set $V(D) = \{1, 2, \ldots, n\}$. It is easy to see that for any $1 \leq i < j \leq n$, there does not exist a walk in $S_2(D)$ from (i, j) to (j, i). This implies that $S_2(D)$ is not strongly connected.

A more general natural question is: Given a strongly connected digraph D, under what circumstances is $S_2(D)$ strongly connected? In order to answer this problem, we first prove three lemmas.

Lemma 4.3. Let D be a strongly connected digraph of order n ($n \geq 3$), and not the double directed path of length n. Let u, v, w be three distinct vertices of D. Then there is a walk in $S_2(D)$ from (w, u) to (w, v).

Proof. Since D is strongly connected, for any two vertices x and y, there exist walks in D from x to y and from y to x, respectively. Take $Γ = (u_1 u_2 \ldots u_m v)$ to be the shortest path in D from u to v.

If the path $Γ$ does not contain the vertex w, it is easy to see that the sequence of vertices

$$(w, u)(w, u_1)(w, u_2) \cdots (w, u_k)(w, v)$$

is a walk in $S_2(D)$ from (w, u) to (w, v).

We now assume that the path $Γ$ contains the vertex w, and $w = u_m$ with $1 \leq m \leq k$. If there exists a walk in $S_2(D)$ from (w, u) to (u, w), noticing that the sequence of vertices

$$(u, w)(u, u_{m+1}) \cdots (u, u_k)(u, v)(u_1, v)(u_2, v) \cdots (w, v)$$

is a walk in $S_2(D)$ from (u, w) to (w, v), then there is a walk in $S_2(D)$ from (w, u) to (w, v). Thus we now only need to prove that there exists a walk in $S_2(D)$ from (w, u) to (u, w). Denote $u_0 = u$ and $P = uu_1 u_2 \ldots u_{m-1} w$ to be the shortest path in D from u to w. Consider the following three cases.

Case 1. D is a symmetric digraph.

Then for each vertex D, its outdegree and indegree are the same. Since D is not the double directed path, there is a vertex y of D such that $d_0^-(y) = d_0^+(y) \geq 3$.

If there is $1 \leq i \leq m - 1$ such that $d_0^-(u_i) = d_0^+(u_i) \geq 3$, then there is a vertex $z \in V(D) \setminus V(P)$ such that there are arcs in D from u_i to z, and from z to u_i, respectively. Thus the sequence of vertices

$$(w, u)(w, u_1) \cdots (w, u_i)(w, z)(u_{m-1}, z) \cdots (u_1, z)(u, z)(u, u_i) \cdots (u, u_m)(u, w)$$

is a walk in $S_2(D)$ from (w, u) to (u, w).

If $d_0^-(u_1) = d_0^+(u_1) \geq 3$, then there are two distinct vertices $z_1, z_2 \in V(D) \setminus V(P)$ such that there are arcs in D from u to z_i, and from z_i to u for $i = 1, 2$, respectively. Then the sequence of vertices

$$(w, u)(w, z_1)(u_{m-1}, z_1) \cdots (u_1, z_1)(u, z_1)(z_2, u_1)(z_2, u_2) \cdots (z_2, u)(w, u)$$

is a walk in $S_2(D)$ from (w, u) to (w, u).

If $d_0^-(u_i) = d_0^+(u_i) = 2$ for $i = 1, 2, \ldots, m - 1$ and there is a vertex $y \in V(D) \setminus V(P)$ such that $d_0^-(y) = d_0^+(y) \geq 3$, letting $P_1 = uu_1 u_2 \ldots u_i y$ and $P_2 = wu_i u_2 \ldots w_i y$ be the shortest paths from u to y, and from w to y, respectively, then $\{u_i, u_2, \ldots, u_i, y\} \cup \{u_1, u_2, \ldots, u_{i-1}, w\} = φ$, or $\{w_i, u_2, \ldots, w_i, y\} \cap \{u_1, u_2, \ldots, u_{i-1}, w\} = φ$. Without loss of generality, we assume that $\{u_1, u_2, \ldots, u_i, y\} \cap \{u_1, u_2, \ldots, u_{i-1}, w\} = φ$. Note that $d_0^-(y) = d_0^+(y) \geq 3$. Then there are
two distinct vertices $y_1, y_2 \in V(D) \setminus V(P_1)$ such that there are arcs in D from y to y_i, and from y_i to y for $i = 1, 2$, respectively. Thus the sequence of vertices

\[(w, u)(w, u')(w, y)(w, y_1)(u_{m-1}, y_1) \cdots (u_1, y_1)(u, y_1)(y_1)(y_2, y_1)\]
\[(y_2, y)(y_2, y_2)(y_2, u)(y_2, u_1) \cdots (y_2, u_m)(y_2, w)(y, u)(u, u_1) \cdots (u, u_m)(u, w)\]

is a walk in $S_2(D)$ from (w, u) to (u, w).

Case 2. D is not a symmetric digraph, and there is a path Q in D from w to u such that $V(P) \neq V(Q)$. Let $Q = wv_1v_2 \cdots v_{m-1}v_m$ and $w' \in V(P) \cup V(Q)$ but $w' \notin V(P) \cap V(Q)$. Without loss of generality, we assume that $w' \in V(P)$, and say $w'' = u_1$, $1 \leq j \leq m - 1$. Then the sequence of vertices

\[(w, u)(w, u_1) \cdots (w, u_j)(w, u)(u, u_1) \cdots (u, u_m)(u, w)\]

is a walk in $S_2(D)$ from (w, u) to (u, w).

Case 3. D is not a symmetric digraph, and for each path Q in D from w to u, $V(P) = V(Q)$. If there exist $0 \leq i, j \leq m$ with $i \leq j - 2$ such that there is an arc in D from u_i to u_j, let $Q_1 = wv_1 \cdots v_ju_i$ and $Q_2 = u_iu_{i+1} \cdots u_{j}$ be the shortest paths from w to u_j, and from u_i to u, respectively, it is clear that $u \notin V(Q_1)$ and $w \notin V(Q_2)$. Then the sequence of vertices

\[(w, u)(w, v_1)(w, u) \cdots (w, u_j)(w, u)(u, u_1) \cdots (u, u_m)(u, w)\]

is a walk in $S_2(D)$ from (w, u) to (u, w). Otherwise, $wv_{m-1} \cdots u_2u_1u$ is only one path in D from w to u. Note that D is not symmetric. There is a k-cycle γ in D with $k \geq 3$ such that γ has at least one vertex which is not in P. Let $\gamma = \gamma_1\gamma_2 \cdots \gamma_k$ and x_j be not in P. Take $R = wv_1 \cdots w_{i}u$ to be the shortest walk in D from w to u such that R contains all vertices of γ, and let $w_j = x_j$.

If $[u, w] \cap \{w_1', w_2', \ldots, w_l'\} = \emptyset$, then the sequence of vertices

\[(w, u)(w, w_1')(w, u)(w_2', u)(w, u)(w_1', u)(w, u)(w_1', u)(w, w)\]

is a walk in $S_2(D)$ from (u, w) to (u, w).

If $[u, w] \cap \{w_1', w_2', \ldots, w_l'\} \neq \emptyset$, without loss of generality, we assume that $[u, w] \cap \{w_1', w_2', \ldots, w_l'\} = \{w\}$, and $w_i' = w$. Then the sequence of vertices

\[(w, u)(w, u_1) \cdots (w, u_{m-1})(w, w)(w, w)(w, w)(w, w)(w, w)\]
\[(w, u_1)(w, u_2)(w, u_{m-1})(u_{m-1}, w)(u_{m-1}, w)(u_1, w)(u, w)\]

is a walk in $S_2(D)$ from (u, w) to (u, w).

The lemma now follows. \hfill \Box

By a similar proof method to Lemma 4.3, we can obtain the following.

Lemma 4.4. Let D be a strongly connected digraph of order n ($n \geq 3$), and not the double directed path of length n. Let u, v, w be three distinct vertices of D. Then there is a walk in $S_2(D)$ from (u, w) to (v, w).

Lemma 4.5. Let D be a strongly connected digraph of order n ($n \geq 3$), and not the double directed path of length n. Let (u, v) and (x, y) be two vertices of $S_2(D)$ with $u \neq x$ and $v \neq y$. Then there is a walk from (u, v) to (x, y) in $S_2(D)$.

Proof. By Lemmas 4.3 and 4.4, there is a walk from (u, v) to (x, y), and there is a walk from (x, v) to (x, y) in $S_2(D)$. Thus there is a walk from (u, v) to (x, y) in $S_2(D)$. \hfill \Box

Lemmas 4.3–4.5 and Example 2.2 immediately yield the following.

Theorem 4.6. Let D be a strongly connected digraph of order n ($n \geq 3$). Then $S_2(D)$ is strongly connected if and only if D is not the double directed path of length n.

5. **Primitivity of the double vertex digraph**

In this section, we study the primitivity of a double vertex digraph. The example below expresses that the double vertex digraph $S_2(D)$ of a primitive digraph D is not necessarily primitive.

Example 5.1. Let D be a double directed cycle with $n \geq 3$ vertices. Clearly, D is primitive if n is odd. Since all the cycle lengths of $S_2(D)$ are even by Theorem 3.6, the double vertex digraph $S_2(D)$ is not primitive for any $n \geq 3$.

The following two lemmas give the relationship on the cycle lengths between a digraph and its double vertex digraph.
Lemma 5.2. Let D be a digraph of order n, and C = v_1v_2...v_k be a k-cycle of D. Then the following properties hold.

1. If k < n, then, for any x ∈ V(D) \ {v_1, v_2, . . . , v_k} and 1 ≤ i ≤ k, the vertex (x, v_i) (respectively, (v_i, x)) is in a k-cycle of S_2(D).
2. For 1 ≤ i, j ≤ k and i ≠ j, the vertex (v_i, v_j) is in a 2k-cycle of S_2(D).

Proof. (1) Let x be not in C. Then the sequence of vertices

(x, v_1)(x, v_2)· · ·(x, v_{k−1})(x, v_k)(x, x)

is a k-cycle in S_2(D) containing the vertex (x, v_i), and the sequence of vertices

(v_1, x)(v_2, x)· · ·(v_{k−1}, x)(v_k, x)(v_1, x)

is a k-cycle in S_2(D) containing the vertex (v_i, x).

(2) Without loss of generality, we assume that i < j. It is not difficult to verify that the sequence of vertices

(v_i, v_j)(v_i, v_{j+1})· · ·(v_i, v_k)(v_{i+1}, v_k)· · ·(v_{k−1}, v_k)(v_{k−1}, v_i)· · ·(v_{k−1}, v_j)(v_k, v_j)(v_1, v_j)· · ·(v_1, v_j)

is a 2k-cycle in S_2(D) containing the vertex (v_i, v_j).

The lemma now follows. □

Lemma 5.3. Let D be a digraph and S_2(D) be the double vertex digraph of D. If there is an r-cycle in S_2(D), then there is an r-cycle in D, or there are some cycles with lengths r_1, r_2, . . . , r_s, respectively, in D such that r_1 + r_2 + · · · + r_s = r.

Proof. By Lemma 4.1, the lemma is clear. □

Lemma 5.4. Let r_i and s_i be positive integers for i = 1, . . . , k and j = 1, . . . , l. If gcd(r_1, . . . , r_k, s_1 + · · · + s_l) = 1, then gcd(r_1, . . . , r_k, s_1, . . . , s_l) = 1.

Proof. If gcd(r_1, . . . , r_k, s_1, . . . , s_l) = t > 1, then t | r_i for i = 1, 2, . . . , k, and t | s_j for j = 1, . . . , l. So t | s_1 + · · · + s_l. It implies that gcd(r_1 + s_1, r_2 + s_2, . . . , r_k + s_k) ≥ t, a contradiction. The lemma holds. □

Theorem 5.5. Let D be a digraph of order n, and L(D) be the set of distinct cycle lengths of D. Then S_2(D) is primitive if and only if D is primitive and L(D) ≠ [2, n].

Proof. Necessity. Let S_2(D) be primitive. Then S_2(D) is strongly connected and the greatest common divisor of all the cycle lengths of S_2(D) is 1. By Corollary 4.2 and Lemmas 5.3 and 5.4, D is also strongly connected, and the greatest common divisor of all the cycle lengths of D is 1. It implies that D is primitive, and so the necessity holds.

Sufficiency. Let D be primitive. Then D is strongly connected and the greatest common divisor of all the cycle lengths of D is 1. Clearly, S_2(D) is strongly connected by Theorem 4.6. Let L(D) = {r_1, r_2, . . . , r_k} with r_1 < r_2 < · · · < r_k, and L(S_2(D)) be the set of distinct cycle lengths of S_2(D). If r_k < n, then by Lemma 5.2, L(D) ⊆ L(S_2(D)), and so the greatest common divisor of all the cycle lengths of D is 1. If r_k = n, then r_k−1 ≥ 2 from the hypothesis, and {r_1, r_2, . . . , r_k−1} ⊆ L(S_2(D)) by Lemma 5.2. Let C_1 and C_2 be the n-cycle and r_k−1-cycle of D. Note that each vertex of C_2 is a vertex of C_1. Without loss of generality, we assume that C_1 = v_1v_2...v_n, C_2 = u_1u_2...u_{r_k−1}, u_{r_k−1} = v_n−1 and v_n ∉ V(C_2). It is easy to see that the sequence of vertices

(v_1, v_{n−1})(v_1, v_{n−1})· · ·(v_{n−2}, v_{n−1})(v_{n−2}, u_1)(v_{n−1}, u_1)(v_n, u_1)(v_n, u_2)· · ·(v_n, u_{r_k−1−1})(v_n, v_{n−1})

is a cycle in S_2(D) with length n + r_{k−1}, that is, n + r_{k−1} ∈ L(S_2(D)). Thus {r_1, r_2, . . . , r_{k−1}, r_k + r_{k−1}} ⊆ L(S_2(D)). Since gcd(r_1, r_2, . . . , r_{k−1}, r_k) = 1, we have that gcd(r_1, r_2, . . . , r_{k−1}, r_k + r_{k−1}) = 1. It implies that the greatest common divisor of all the cycle lengths of S_2(D) is 1. Then S_2(D) is primitive, and so the sufficiency holds. □

6. A special digraph — Wielandt digraph

The Wielandt digraph (as in Fig. 5) of order n ≥ 3 is the digraph with vertices 1, 2, . . . , n consisting of the cycle 1 → 2 → 3 · · · → n → 1 and the arc n → 2. It is known [6] that, up to isomorphism, the Wielandt digraph of order n has the largest exponent of primitive digraphs on n vertices, and that this exponent is n^2 − 2n + 2.

In this section, we consider the primitivity and the exponent of the double vertex digraph S_2(W_n) of the Wielandt digraph W_n. The main theorem of this section is Theorem 6.8.

We need some notations and techniques of graph theory. Let {s_1, s_2, . . . , s_p} be a set of relatively prime positive integers. The Frobenius number, φ(s_1, s_2, . . . , s_p), is the least integer such that the equation x_1s_1 + x_2s_2 + · · · + x_ps_p = m has a nonnegative integral solution x_1, x_2, . . . , x_p for all m ≥ φ(s_1, s_2, . . . , s_p).

Let D be a digraph, and L(D) the set of distinct cycle lengths of D. For any x, y ∈ V(D) and R = {a_1, a_2, . . . , a_r} ⊆ L(D) with gcd(a_1, a_2, . . . , a_r) = 1, the relative distance d_R(x, y) from x to y is defined to be the length of the shortest walk from x to y which meets at least one cycle of each length a_i, i = 1, 2, . . . , r. We have Lemma 6.1 obviously.
Lemma 6.1. Let D be the primitive digraph, and $R = \{a_1, a_2, \ldots, a_r\} \subseteq L(D)$ with $\gcd(a_1, a_2, \ldots, a_r) = 1$. For any $x, y \in V(D)$, and $m \geq d_R(x, y) + \phi(a_1, a_2, \ldots, a_r)$, there is a walk in D from x to y with length m.

Lemma 6.2. Let W_n be the Wielandt digraph of order $n \geq 4$. Then the following properties hold.

1. For any $2 \leq i \leq n$, the vertices $(1, i)$ and $(i, 1)$ are in some $(n - 1)$-cycles of $S_2(W_n)$.
2. For any $2 \leq i, j \leq n$ and $i \neq j$, the vertex (i, j) is in a $(2n - 2)$-cycle of $S_2(W_n)$.
3. All vertices of $S_2(W_n)$ are in some $(2n - 1)$-cycles and $2n$-cycles of $S_2(W_n)$.
4. Each of the $(2n - 1)$-cycles and $2n$-cycles of $S_2(W_n)$ contains at least one vertex of some $(n - 1)$-cycle of $S_2(W_n)$.

Proof. (1) Take

$$C_1 = (1, 2)(1, 3) \cdots (1, n)(1, 2),$$

$$C_2 = (2, 1)(3, 1) \cdots (n, 1)(2, 1).$$

Then C_1 and C_2 are two $(n - 1)$-cycles of $S_2(W_n)$, and they contain all vertices $(1, i)$ and $(i, 1)$ for $i = 2, 3, \ldots, n$. Then (1) holds.

(2) Since $2 \rightarrow 3 \rightarrow \cdots \rightarrow n \rightarrow 2$ is an $(n - 1)$-cycle of W_n, it is clear by Lemma 5.2 that for any $2 \leq i, j \leq n$ and $i \neq j$, the vertex (i, j) is in a $(2n - 2)$-cycle of $S_2(W_n)$.

(3) Let (i, j) be a vertex of $S_2(W_n)$. Without loss of generality, we assume $i < j$.

If $i = 1$, then the sequences of vertices

$$(1, j)(1, j + 1) \cdots (1, n)(2, n) \cdots (n - 1, n)(n - 1, 2)(n, 2)(1, 2) \cdots (1, j),$$

and

$$(1, j)(1, j + 1) \cdots (1, n)(2, n) \cdots (n - 1, n)(n - 1, 2)(n, 2)(1, 2) \cdots (1, j)$$

are a $(2n - 1)$-cycle and a $2n$-cycle, respectively, in $S_2(W_n)$ containing the vertex (i, j).

If $i > 1$, then the sequences of vertices

$$(i, j)(i, j + 1) \cdots (i, n)(i, 1)(i + 1, 1) \cdots (n, 1)(n, 2)(n, 3)(2, 3) \cdots (2, j)(3, j) \cdots (i, j),$$

and

$$(i, j)(i, j + 1) \cdots (i, n)(i, 1)(i + 1, 1) \cdots (n, 1)(n, 2)(1, 2)(1, 3) \cdots (1, j)(2, j) \cdots (i, j),$$

are a $(2n - 1)$-cycle and a $2n$-cycle, respectively, in $S_2(W_n)$ containing the vertex (i, j). Then (3) holds.

(4) Let D be the digraph obtained from W_n by deleting the vertex 1. If $S_2(D)$ has an r-cycle, then $r = k(n - 1)$ by Lemma 5.3, where k is a positive integer. So $S_2(D)$ has no $(2n - 1)$-cycles and $2n$-cycles. Thus each of the $(2n - 1)$-cycles and $2n$-cycles of $S_2(W_n)$ contains at least one vertex having the form $(1, i)$ or $(i, 1)$ $(2 \leq i \leq n)$. So (4) holds from (1). □

We remark that Lemma 6.2 implies $\{n - 1, 2n - 2, 2n - 1, 2n\} \subseteq L(S_2(W_n))$.

Lemma 6.3. For $n \geq 4$, $\gcd(n - 1, 2n - 1, 2n) = 1$, and

$$\phi(n - 1, 2n - 1, 2n) = \begin{cases} n^2 - 2n + 1, & \text{if } n \text{ is odd}, \\ n^2 - 3n + 2, & \text{if } n \text{ is even}. \end{cases}$$

Proof. Since $\gcd(n - 1, 2n - 1) = 1$, it is clear that $\gcd(n - 1, 2n - 1, 2n) = 1$.

Note that $\phi(n - 1, 2n - 1, 2n) \leq \phi(n - 1, 2n - 1) = 2n^2 - 6n + 4$. Denote

$$h(n) = \begin{cases} n^2 - 2n + 1, & \text{if } n \text{ is odd}, \\ n^2 - 3n + 2, & \text{if } n \text{ is even}. \end{cases}$$
We first prove that the equation
\[x_1(n - 1) + x_2(2n - 1) + x_3(2n) = m \]
has a nonnegative integral solution \(x_1, x_2, x_3\) for all integers \(h(n) \leq m \leq 2n^2 - 5n\).

Case 1. \(m = 2n^2 - kn\) with \(5 \leq k \leq n + 1\).

Since \((k - 1)(n - 1) + (n - k + 1)(2n - 1) = 2n^2 - kn\), Eq. (6.1) has a nonnegative integral solution \(x_1 = k - 1, x_2 = n - k + 1, x_3 = 0\).

Case 2. \(m = 2n^2 - kn - y\) with \(k\) even, \(6 \leq k \leq n + 1\) and \(1 \leq y \leq n - \frac{k}{2}\). Clearly, \(y(2n - 1) + (n - y - \frac{k}{2})(2n) = 2n^2 - kn - y\). Note \(n - y - \frac{k}{2} \geq 0\). Then Eq. (6.1) has a nonnegative integral solution \(x_1 = 0, x_2 = y, x_3 = n - y - \frac{k}{2}\).

Case 3. \(m = 2n^2 - kn - y\) with \(k\) even, \(6 \leq k \leq n + 1\) and \(n - \frac{k}{2} + 1 \leq y \leq n - 1\). Clearly, \((2y + k - 2n)(n - 1) + (2n - y - k)(2n - 1) = 2n^2 - kn - y\). Note \(2y + k - 2n \geq 2\) and \(2n - y - k \geq 0\). Then Eq. (6.1) has a nonnegative integral solution \(x_1 = 2y + k - 2n, x_2 = 2n - y - k, x_3 = 0\).

Case 4. \(m = 2n^2 - kn - y\) with \(k\) odd, \(5 \leq k \leq n + 1\) and \(1 \leq y \leq n - \frac{k-1}{2}\). Clearly, \((n - 1) + (y - 1)(2n - 1) + (n - y - \frac{k-1}{2})(2n) = 2n^2 - kn - y\). Note \(n - y - \frac{k-1}{2} \geq 0\). Then Eq. (6.1) has a nonnegative integral solution \(x_1 = 1, x_2 = y - 1, x_3 = n - y - \frac{k-1}{2}\).

Case 5. \(m = 2n^2 - kn - y\) with \(k\) odd, \(5 \leq k \leq n + 1\) and \(n - \frac{k-1}{2} + 1 \leq y \leq n - 1\). Clearly, \((2y + k - 2n)(n - 1) + (2n - y - k)(2n - 1) = 2n^2 - kn - y\). Note \(2y + k - 2n \geq 3\) and \(2n - y - k \geq 0\). Then Eq. (6.1) has a nonnegative integral solution \(x_1 = 2y + k - 2n, x_2 = 2n - y - k, x_3 = 0\).

Case 6. \(m = n^2 - 2n - y\) with \(n\) even and \(0 \leq y \leq n - 2\). If \(y\) is even, noticing that \(y(n - 1) + \frac{n^2 - y - 2}{2}(2n) = n^2 - 2n - y\), then Eq. (6.1) has a nonnegative integral solution \(x_1 = y, x_2 = 0, x_3 = -n + y - 2\). If \(y\) is odd, noticing that \((y - 1)(n - 1) + (2n - 1) + \frac{n^2 - y - 3}{2}(2n) = n^2 - 2n - y\), then Eq. (6.1) has a nonnegative integral solution \(x_1 = y - 1, x_2 = 1, x_3 = -n + y - 2\).

Combining Cases 1–6, we have that Eq. (6.1) has a nonnegative integral solution \(x_1, x_2, x_3\) for all integers \(h(n) \leq m \leq 2n^2 - 5n\). Notice \(2n^2 - 5n \geq 2n^2 - 6n + 4\). It implies that \(\phi(n - 1, 2n - 1, 2n) \leq h(n)\).

Next, we prove that when \(n\) is odd, \(\phi(n - 1, 2n - 1, 2n) = h(n) = n^2 - 2n + 1\), that is, Eq. (6.1) has no nonnegative integral solution \(x_1, x_2, x_3\) for \(m = n^2 - 2n\).

If there exist nonnegative integers \(x_1, x_2, x_3\) such that
\[x_1(n - 1) + x_2(2n - 1) + x_3(2n) = n^2 - 2n, \]
then
\[(x_1 + 2x_2 + 2x_3)n - (x_1 + x_3) = n(n - 2). \]

Thus the number \(x_1 + x_3\) is zero or a multiple of \(n\). If \(x_1 + x_2 = 0\), then \(x_1 = 0\) and \(x_2 = 0\). So \(2x_3 = n - 2\), a contradiction to the fact that \(n\) is odd. We now assume that \(x_1 + x_2 = kn\), where \(k\) is a positive integer. Thus
\[kn + x_2 + 2x_3 - k = n - 2. \]
(6.2)

Note that \(kn + x_2 + 2x_3 \leq n - 1\). Then (6.2) does not hold. Therefore \(\phi(n - 1, 2n - 1, 2n) = h(n) = n^2 - 2n + 1\) when \(n\) is odd.

Lastly, we prove that when \(n\) is even, \(\phi(n - 1, 2n - 1, 2n) = h(n) = n^2 - 3n + 2\), that is, Eq. (6.1) has no nonnegative integral solution \(x_1, x_2, x_3\) for \(m = n^2 - 3n + 1\).

If there exist the nonnegative integers \(x_1, x_2, x_3\) such that
\[x_1(n - 1) + x_2(2n - 1) + x_3(2n) = n^2 - 3n + 1, \]
then
\[(x_1 + 2x_2 + 2x_3)n - (x_1 + x_2 + 1) = n(n - 3). \]

Thus the number \(x_1 + x_2 + 1\) must be a multiple of \(n\). We assume that \(x_1 + x_2 + 1 = kn\), where \(k\) is a positive integer. Thus
\[kn + x_2 + 2x_3 - (k + 1) = n - 3. \]
(6.3)

Note that \(kn + x_2 + 2x_3 \leq (k + 1) \geq n - 2\). Then (6.3) does not hold. Therefore \(\phi(n - 1, 2n - 1, 2n) = h(n) = n^2 - 3n + 2\) when \(n\) is even. \(\square\)

Lemma 6.4. Let \(W_n\) be the Wielandt digraph of order \(n \geq 4\), and
\[l(n) = \begin{cases} n^2 - 3, & \text{if } n \text{ is even}, \\ n^2 - 1, & \text{if } n \text{ is odd}. \end{cases} \]

Let \((u, v)\) and \((x, y)\) be two vertices (not necessarily distinct) of \(S_2(W_n)\), and \(P\) be a walk in \(S_2(W_n)\) from \((u, v)\) to \((x, y)\) with length \(d(P)\). If \(0 \leq d(P) \leq 3n - 5\) with \(d(P) \neq 2n - 4\) and \(d(P) \neq 2n - 1\), then there is a walk in \(S_2(W_n)\) from \((u, v)\) to \((x, y)\) with length \(l(n)\).
Proof. We consider the following five cases.

Case 1. \(d(P) = 0\).

Clearly, \(u = x\) and \(v = y\). If \(n\) is odd, then the walk that starts at vertex \((u, v)\), goes around a \(2n\)-cycle \(\frac{1}{2}(n - 1)\) times, and an \((n - 1)\)-cycle, is a walk from \((u, v)\) to \((u, v)\) with length \(n^2 - 1\). If \(n\) is even, then the walk that starts at vertex \((u, v)\), goes around a \((2n - 1)\)-cycle, a \(2n\)-cycle \(\frac{1}{2}(n - 4)\) times, and an \((n - 1)\)-cycle \(2\) times, is a walk from \((u, v)\) to \((u, v)\) with length \(n^2 - 3\).

Case 2. \(1 \leq d(P) \leq n - 2\).

If \(n\) is even and \(d(P)\) is odd, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \(2n\)-cycle \(\frac{1}{2}(n - d(P) - 3)\) times, and a \((2n - 2)\)-cycle \(\frac{1}{2}(d(P) + 3)\) times (or an \((n - 1)\)-cycle \((d(P) + 3)\) times), is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

If both \(n\) and \(d(P)\) are even, and \(d(P) \neq n - 2\), then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 1)\)-cycle, a \(2n\)-cycle \(\frac{1}{2}(n - d(P) - 4)\) times, and an \((n - 1)\)-cycle \((d(P) + 2)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

If \(n\) is even and \(d(P) = n - 2\), then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \(2n\)-cycle \(\frac{1}{2}(n - 2)\) times, and an \((n - 1)\)-cycle, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

If \(n\) is odd and \(d(P)\) is even, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \(2n\)-cycle \(\frac{1}{2}(n - d(P) - 1)\) times, and an \((n - 1)\)-cycle \((d(P) + 1)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 1\).

If both \(n\) and \(d(P)\) are odd, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 1)\)-cycle, a \(2n\)-cycle \(\frac{1}{2}(n - d(P) - 2)\) times, and an \((n - 1)\)-cycle \((d(P)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 1\).

Case 3. \(d(P) = n - 1\).

If \(n\) is odd, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \(2n\)-cycle \(\frac{1}{2}(n - 1)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 1\). If \(n\) is even, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 1)\)-cycle, a \(2n\)-cycle \(\frac{1}{2}(n - d(P) - 2)\) times, and an \((n - 1)\)-cycle \((d(P)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

Case 4. \(1 \leq d(P) \leq 2n - 2\) and \(d(P) \neq 2n - 4\).

If \(n\) is odd, and \(d(P)\) is odd, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 1)\)-cycle, a \(2n\)-cycle \(\frac{1}{2}(2n - d(P) - 3)\) times, and an \((n - 1)\)-cycle \((d(P) - n)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 1\).

If \(n\) is odd, and \(d(P)\) is even, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 2)\)-cycle \(\frac{1}{2}(d(P) - n + 1)\) times (or an \((n - 1)\)-cycle \((d(P) - n + 1)\) times), and a \(2n\)-cycle \(\frac{1}{2}(2n - d(P) - 2)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 1\).

If \(n\) is even, and \(d(P) = 2n - 2\), then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 1)\)-cycle, and a \(2n\)-cycle \(\frac{1}{2}(n - 4)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

If \(n\) is even, and \(d(P) = 2n - 3\), then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \(2n\)-cycle \(\frac{1}{2}(n - 2)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

If \(n\) is even, and \(d(P) \neq 2n - 5\), then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 1)\)-cycle, a \(2n\)-cycle \(\frac{1}{2}(2n - d(P) - 5)\) times, and an \((n - 1)\)-cycle \((d(P) - n + 2)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

If \(n\) is odd, and \(d(P)\) is even with \(n \leq d(P) \leq 2n - 6\), then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 1)\)-cycle, a \(2n\)-cycle \(\frac{1}{2}(3n - d(P) - 4)\) times, and an \((n - 1)\)-cycle \((d(P) - 2n)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

Case 5. \(2n \leq d(P) \leq 3n - 5\).

If both \(n\) and \(d(P)\) are odd, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \(2n\)-cycle \(\frac{1}{2}(3n - 3 - d(P))\) times, and an \((n - 1)\)-cycle \((d(P) - 2n + 1)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 1\).

If \(n\) is odd, and \(d(P)\) is even, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \(2n\)-cycle \(\frac{1}{2}(3n - d(P) - 5)\) times, and a \((2n - 2)\)-cycle \(\frac{1}{2}(d(P) - 2n + 3)\) times (or an \((n - 1)\)-cycle \((d(P) - 2n + 3)\) times), is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

If both \(n\) and \(d(P)\) are even, then the walk that starts at vertex \((u, v)\), follows \(P\) to vertex \((x, y)\) and along the way goes around a \((2n - 1)\)-cycle, a \(2n\)-cycle \(\frac{1}{2}(3n - d(P) - 6)\) times, and a \((2n - 2)\)-cycle \(\frac{1}{2}(d(P) - 2n + 2)\) times, is a walk from \((u, v)\) to \((x, y)\) with length \(n^2 - 3\).

This completes the proof. □

In order to give the exponent of \(S_2(W_n)\), we still need the following three lemmas.
Lemma 6.5. Let D be a digraph, and $C = v_1v_2\ldots v_kv_1$ be a k-cycle of D with $k \geq 3$. Then for any $1 \leq i, j \leq k$ and $i \neq j$, there is a path in $S_2(D)$ from (v_i, v_j) to (v_j, v_i) with length k.

Proof. Without loss of generality, we assume that $i < j$. If $i < j - 1$, then the sequence of vertices

$$(v_i, v_j)(v_{i+1}, v_j)\cdots (v_{j-1}, v_j)$$

is a path in $S_2(D)$ from (v_i, v_j) to (v_j, v_i) with length k, where $v_{k+1} = v_1$.

If $i = j - 1$, then the sequence of vertices

$$(v_i, v_j)(v_{i+1}, v_j)\cdots (v_{j-1}, v_{j+1})(v_j, v_{j+1})$$

is a path in $S_2(D)$ from (v_i, v_j) to (v_j, v_i) with length k, where $v_{k+1} = v_1$ and $v_{k+2} = v_2$. □

Lemma 6.6. Let W_n be the Wielandt digraph of order $n \geq 4$, x, y and z be three distinct vertices, and their relative positions on the n-cycle counter-clockwise be x, y, z. Then there are two paths in $S_2(W_n)$ from (x, z) to (x, y) with lengths k and $k + 1$, respectively, such that $n \leq k \leq 2n - 2$.

Proof. Consider the following four cases.

Case 1. $1 \not\in \{x, y, z\}$.

By Lemma 6.5 there are two paths in $S_2(W_n)$ from (x, z) to (z, x) with lengths $n - 1$ and n, respectively. Note that the sequence of vertices

$$(z, x)(z, x + 1)\cdots (z, y)(z + 1, y)\cdots (x, y)$$

is a path in $S_2(D)$ from (z, x) to (x, y) with length $d_{W_n}(z, y)$. Clearly, $2 \leq d_{W_n}(z, y) \leq n - 2$. Then there are two paths in $S_2(W_n)$ from (x, z) to (x, y) with lengths k and $k + 1$, respectively, such that $n + 1 \leq k \leq 2n - 2$.

Case 2. $x = 1$.

It is easy to see that the sequences of vertices

$$(x, z)\cdots (x, n)(2, n)(3, n)(3, 2)(4, 2)\cdots (n, 2)(x, 2)\cdots (x, y)$$

and

$$(x, z)\cdots (x, n)(2, n)(3, n)(3, 1)(3, 2)(4, 2)\cdots (n, 2)(x, 2)\cdots (x, y)$$

are two paths in $S_2(D)$ from (x, z) to (x, y) with lengths $n - 1 + d_{W_n}(z, y)$ and $n + d_{W_n}(z, y)$, respectively. Note that $1 \leq d_{W_n}(z, y) \leq n - 2$. Then the lemma holds.

Case 3. $y = 1$.

It is easy to see that the sequences of vertices

$$(x, z)\cdots (n, z)(n, z + 1)\cdots (n, n - 1)(2, n - 1)(2, n)(2, y)(3, y)\cdots (x, y)$$

and

$$(x, z)\cdots (n, z)(n, z + 1)\cdots (n, n - 1)(1, n - 1)(2, n - 1)(2, n)(2, y)(3, y)\cdots (x, y)$$

are two paths in $S_2(D)$ from (x, z) to (x, y) with lengths $n - 1 + d_{W_n}(z, y)$ and $n + d_{W_n}(z, y)$, respectively. Note that $2 \leq d_{W_n}(z, y) \leq n - 1$. Then the lemma holds.

Case 4. $z = 1$.

It is easy to see that the sequences of vertices

$$(x, z)(x + 1, z)\cdots (n, z)(n, 2)(n, 3)(2, 3)\cdots (2, y)\cdots (x, y)$$

and

$$(x, z)(x + 1, z)\cdots (n, z)(n, 2)(n, 3)(1, 3)(2, 3)\cdots (2, y)\cdots (x, y)$$

are two paths in $S_2(D)$ from (x, z) to (x, y) with lengths $n - 1 + d_{W_n}(z, y)$ and $n + d_{W_n}(z, y)$, respectively. Note that $2 \leq d_{W_n}(z, y) \leq n - 1$. Then the lemma holds.

This completes the proof. □

By a similar method to the proof of Lemma 6.6, the following lemma is clear.

Lemma 6.7. Let W_n be the Wielandt digraph of order $n \geq 4$, x, y and z be three distinct vertices, and their relative positions on the n-cycle counter-clockwise be x, y, z. Then there are two paths in $S_2(W_n)$ from (x, y) to (z, y) with lengths k and $k + 1$, respectively, such that $n \leq k \leq 2n - 2$.

We now give the main theorem of this section.
Theorem 6.8. Let W_n be the Wielandt digraph of order $n \geq 4$. Then $S_2(W_n)$ is primitive, and
\[
\exp(S_2(W_n)) = \begin{cases}
 n^2 - 3, & \text{if } n \text{ is even,} \\
 n^2 - 1, & \text{if } n \text{ is odd.}
\end{cases}
\] (6.4)

Proof. The primitivity of $S_2(W_n)$ is clear by Theorem 4.6 and Lemma 6.2.
Take $R = \{n - 1, 2n - 1, 2n\}$, and
\[
l(n) = \begin{cases}
 n^2 - 3, & \text{if } n \text{ is even,} \\
 n^2 - 1, & \text{if } n \text{ is odd.}
\end{cases}
\]

We first prove that for each ordered pair $(u, v), (x, y)$ of vertices of $S_2(W_n)$, there is a walk in $S_2(W_n)$ from (u, v) to (x, y) with length $l(n)$. Consider the following three cases.

Case 1. $|u, v, x, y| = 2$.
Subcase 1.1. $u = x$ and $v = y$.
By Lemma 6.4, there is a walk in $S_2(W_n)$ from (u, v) to (u, v) with length $l(n)$.
Subcase 1.2. $u = y$ and $v = x$.
Clearly, $d_R((u, v), (v, u)) \leq n$ by Lemma 6.5. By Lemmas 6.1 and 6.3, there is a walk in $S_2(W_n)$ from (u, v) to (v, u) with length $l(n)$.

Case 2. $|u, v, x, y| = 3$.
Subcase 2.1. $u = x$ and $v \neq x$ or $v = y$ and $u \neq x$.
We consider the following cases according to their relative positions on the n-cycle of W_n.
Subcase 2.1.1. The vertices u, v and y on the n-cycle counter-clockwise are u, v, y.
Let P be the shortest path in $S_2(W_n)$ from (u, v) to (u, y). Clearly, the length $d(P)$ of P satisfies that $1 \leq d(P) \leq n - 2$. By Lemma 6.4, there is a walk in $S_2(W_n)$ from (u, v) to (u, y) with length $l(n)$.
Subcase 2.1.2. The vertices u, v and y on the n-cycle counter-clockwise are u, v, x.
From the proof of Lemma 6.6, $d_R((u, v), (u, y)) \leq 2n - 2$. By Lemmas 6.1 and 6.3, there is a walk in $S_2(W_n)$ from (u, v) to (u, y) with length $l(n)$.

Subcase 2.2.2. The vertices u, v and x on the n-cycle counter-clockwise are u, v, x.
Then $d_R((u, v), (u, x)) \leq d_R((u, v), (v, u)) + d_R((v, u), (u, x)) \leq n + (n - 2) = 2n - 2$. By Lemmas 6.1 and 6.3, there is a walk in $S_2(W_n)$ from (u, v) to (u, x) with length $l(n)$.

Case 3. $|u, v, x, y| = 4$.
We consider the following cases according to their relative positions on the n-cycle of W_n.
Subcase 3.1. Four vertices u, v, x and y on the n-cycle counter-clockwise are u, x, v, y.
Let $P = P_1 + P_2$, where P_1 and P_2 are the shortest paths from (u, v) to (x, v), and (x, v) to (x, u), respectively. Then P is a walk from (u, v) to (x, u), where $1 \in \{u, v, x, y\}$, then the length of P does not exceed $n - 1$, so $d_R((u, v), (x, y)) \leq n - 1$ and there is a walk in $S_2(W_n)$ from (u, v) to (x, y) with length $l(n)$ by Lemmas 6.1 and 6.3. If $1 \notin \{u, v, x, y\}$, then the length of P does not exceed $n - 2$, and so, by Lemma 6.4, there is a walk in $S_2(W_n)$ from (u, v) to (x, y) with length $l(n)$.

Subcase 3.2. Four vertices u, v, x and y on the n-cycle counter-clockwise are u, y, x, v.
Let $P = P_1 + P_2$, where P_1 and P_2 are the shortest paths in $S_2(W_n)$ from (u, v) to (x, v), and (x, v) to (x, y), respectively. We use $d(P)$, $d(P_1)$ and $d(P_2)$ to denote the lengths of P, P_1 and P_2, respectively. Then P is a walk from (u, v) to (x, y) with length $d(P) = d(P_1) + d(P_2)$. It is not difficult to verify that $1 \leq d(P_1) \leq n - 3$. By Lemma 6.6, we can choose P_2 such that $n + 1 \leq d(P) \leq 3n - 5, d(P) \neq 2n - 1$ and $d(P) \neq 2n - 4$. By Lemma 6.4, there is a walk in $S_2(W_n)$ from (u, v) to (x, y) with length $l(n)$.

Subcase 3.3. Four vertices u, v, x and y on the n-cycle counter-clockwise are u, x, v, y.
Clearly, $d_R((u, v), (u, y)) \leq d_R((u, v), (x, y)) \leq n - 2$. Then by Lemma 6.4, there is a walk in $S_2(W_n)$ from (u, v) to (x, y) with length $l(n)$.

Subcase 3.4. Four vertices u, v, x and y on the n-cycle counter-clockwise are u, y, x, v.
Then $d_R((u, v), (x, y)) \leq d_R((u, v), (v, u)) + d_R((v, u), (x, y)) \leq n + (n - 2) = 2n - 2$. By Lemmas 6.1 and 6.3, there is a walk in $S_2(W_n)$ from (u, v) to (x, y) with length $l(n)$.

Subcase 3.5. Four vertices u, v, x and y on the n-cycle counter-clockwise are u, v, y, x.
Let $P = P_1 + P_2$, where P_1 is the shortest path in $S_2(W_n)$ from (u, v) to (y, x), and P_2 is a path in $S_2(W_n)$ from (u, y) to (x, y). We use $d(P), d(P_1)$ and $d(P_2)$ to denote the lengths of P, P_1 and P_2, respectively. Then P is a walk from (u, v) to (x, y).
with length \(d(P) = d(P_1) + d(P_2) \). It is not difficult to verify that \(1 \leq d(P_1) \leq n - 3 \). By Lemma 6.7, we can choose \(P_2 \) such that \(n + 1 \leq d(P) \leq 3n - 5 \), \(d(P) \not\equiv 2n - 1 \) and \(d(P) \not\equiv 2n - 4 \). By Lemma 6.4, there is a walk in \(S_2(W_n) \) from \((u, v) \) to \((x, y) \) with length \(l(n) \).

Subcase 3.6. Four vertices \(u, v, x \) and \(y \) on the \(n \)-cycle counter-clockwise are \(u, v, x \).

Let \(P = P_1 + P_2 \), where \(P_1 \) and \(P_2 \) are the shortest paths in \(S_2(W_n) \) from \((u, v) \) to \((u, y) \), and \((u, y) \) to \((x, y) \), respectively. Then \(P \) is a walk from \((u, v) \) to \((x, y) \). We denote by \(d(P) \) the length of \(P \). If \(1 \in \{ u, v, x, y \} \), then \(d_\delta((u, v), (x, y)) = d(P) \leq 2n - 4 \). By Lemmas 6.1 and 6.3, there is a walk in \(S_2(W_n) \) from \((u, v) \) to \((x, y) \) with length \(l(n) \). If \(1 \not\in \{ u, v, x, y \} \), then \(d(P) \not\equiv 2n - 6 \) so there is a walk in \(S_2(W_n) \) from \((u, v) \) to \((x, y) \) with length \(l(n) \) from Lemma 6.4.

To combine the above discussions, we have that \(\exp(S_2(W_n)) \leq l(n) \).

On the other hand, we show that there does not exist a walk in \(S_2(W_n) \) from \((1, 2) \) to \((n, 1) \) with length \(n^2 - 2 \) for odd \(n \) and from \((1, 2) \) to \((n, n - 1) \) with length \(n^2 - 4 \) for even \(n \) respectively.

Case 1. \(n \) is odd.

Assume to the contrary that there exists a walk in \(S_2(W_n) \) from \((1, 2) \) to \((n, 1) \) with length \(n^2 - 2 \). By Lemma 4.1, there exist walks \(P_1 \) and \(P_2 \) in \(W_n \) from \(1 \) to \(n \) and from \(2 \) to \(1 \), respectively, such that \(d(P_1) + d(P_2) = n^2 - 2 \). Since the length of the only path in \(W_n \) from \(1 \) to \(n \) is \(n - 1 \), and the length of the only path in \(W_n \) from \(2 \) to \(1 \) is \(n - 1 \), there are nonnegative integers \(a_i \) and \(b_i \), \(i = 1, 2 \), such that

\[
\begin{align*}
\begin{cases}
 d(P_1) &= n - 1 + a_1 n + b_1(n - 1), \\
 d(P_2) &= n - 1 + a_2 n + b_2(n - 1).
\end{cases}
\end{align*}
\]

(6.5)

So

\[n^2 - 2 = n - 1 + a_1 n + b_1(n - 1) + n - 1 + a_2 n + b_2(n - 1), \]

that is,

\[n^2 - 2n = (a_1 + a_2)n + (b_1 + b_2)(n - 1). \]

(6.6)

Note that \(\phi(n, n - 1) = n^2 - 3n + 2 \). Then

\[\phi(n, n - 1) - 1 = (a_1 + a_2)n + (b_1 + b_2 - 1)(n - 1). \]

If \(b_1 + b_2 \geq 1 \), then it contradicts the definition of \(\phi(n, n - 1) \). So \(b_1 = b_2 = 0 \). From (6.6) and (6.5), \(a_1 + a_2 = n - 2 \), \(P_1 \) consists of the only path from \(1 \) to \(n \) and \(a_1 \) \(n \)-cycles, and \(P_2 \) consists of the only path from \(2 \) to \(1 \) and \(a_2 \) \(n \)-cycles. From the Wielandt digraph \(W_n \), it is easy to see that \(a_1 = a_2 \). But \(a_1 \) and \(a_2 \) have different parity from the fact that \(n - 2 \) is odd and \(a_1 + a_2 = n - 2 \). It is a contradiction. Thus there does not exist a walk in \(S_2(W_n) \) from \((1, 2) \) to \((n, 1) \) with length \(n^2 - 2 \).

Case 2. \(n \) is even.

Assume to the contrary that there exists a walk in \(S_2(W_n) \) from \((1, 2) \) to \((n, n - 1) \) with length \(n^2 - 4 \). By Lemma 4.1, there exist walks \(P_3 \) and \(P_4 \) in \(W_n \) from \(1 \) to \(n \) and from \(2 \) to \(n - 1 \), respectively, such that \(d(P_3) + d(P_4) = n^2 - 4 \). Since the length of the only path in \(W_n \) from \(1 \) to \(n \) is \(n - 1 \), and the length of the only path in \(W_n \) from \(2 \) to \(n - 1 \) is \(n - 3 \), there are nonnegative integers \(a_i \) and \(b_i \), \(i = 3, 4 \), such that

\[
\begin{align*}
\begin{cases}
 d(P_3) &= n - 1 + a_3 n + b_3(n - 1), \\
 d(P_4) &= n - 3 + a_4 n + b_4(n - 1).
\end{cases}
\end{align*}
\]

(6.7)

So

\[n^2 - 4 = n - 1 + a_3 n + b_3(n - 1) + n - 3 + a_4 n + b_4(n - 1), \]

that is,

\[n^2 - 2n = (a_3 + a_4)n + (b_3 + b_4)(n - 1). \]

(6.8)

Then

\[\phi(n, n - 1) - 1 = (a_3 + a_4)n + (b_3 + b_4 - 1)(n - 1). \]

If \(b_3 + b_4 \geq 1 \), then it contradicts the definition of \(\phi(n, n - 1) \). So \(b_3 = b_4 = 0 \). From (6.8) and (6.7), \(a_3 + a_4 = n - 2 \), \(P_3 \) consists of the only path from \(1 \) to \(n \) and \(a_3 \) \(n \)-cycles, and \(P_4 \) consists of the only path from \(2 \) to \(n - 1 \) and \(a_4 \) \(n \)-cycles. From the Wielandt digraph \(W_n \), it is easy to see that \(a_3 = a_4 \). But \(a_3 \) and \(a_4 \) have the same parity from the fact that \(n - 2 \) is even and \(a_3 + a_4 = n - 2 \). It is a contradiction. Thus there does not exist a walk in \(S_2(W_n) \) from \((1, 2) \) to \((n, n - 1) \) with length \(n^2 - 4 \).

Combining Cases 1 and 2, \(\exp(S_2(W_n)) \geq l(n) \). Therefore \(\exp(S_2(W_n)) = l(n) \). The theorem holds. \(\square \)

Acknowledgments

The authors thank the referees for many helpful suggestions.
References