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Abstract

We present a new technique for proving the empirical process invariance principle for stationary
processes (Xn)n≥0. The main novelty of our approach lies in the fact that we only require the central limit
theorem and a moment bound for a restricted class of functions ( f (Xn))n≥0, not containing the indicator
functions. Our approach can be applied to Markov chains and dynamical systems, using spectral properties
of the transfer operator. Our proof consists of a novel application of chaining techniques.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Let (Xn)n≥0 be a stationary ergodic process of R-valued random variables with marginal
distribution function F(t) = P(X0 ≤ t). Define the empirical distribution function (Fn(t))t∈R
and the empirical process (Un(t))t∈R by

Fn(t) :=
1
n

n∑
i=1

1(−∞,t](X i ), t ∈ R,
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Un(t) :=
√

n(Fn(t)− F(t)), t ∈ R.

The empirical process plays a prominent role in non-parametric statistical inference about the
distribution function F . In all statistical applications, information about the distribution of the
empirical process is needed.

For the case of i.i.d. observations, Donsker [8] proved in 1952 that the empirical process
converges in distribution to a Brownian bridge process, thus confirming an earlier conjecture
of Doob [9]. In 1968, Billingsley [2] extended Donsker’s theorem to some weakly dependent
processes, specifically to functionals of φ-mixing processes. One of the applications of
Billingsley’s theorem is to the empirical process of data generated by the continued fraction
dynamical system T : [0, 1] → [0, 1], T (x) := 1

x . Since 1968, many authors have studied the
empirical process of weakly dependent data. Invariance principles for the empirical distribution
of strong mixing random variables were proved in 1977 by Berkes and Philipp [1] and in 1980 for
the multivariate case by Philipp and Pinzur [20]. Later, absolutely regular processes were studied
by Doukhan et al. [10] and Borovkova et al. [3]. Many other weak dependence conditions have
been studied, for examples by Doukhan and Louhichi [11], Prieur [21], Dedecker and Prieur [7],
Wu and Shao [23] or Wu [22]. From the point of view of dynamical systems, an empirical process
invariance principle for some uniformly expanding maps of the interval was proved by Collet
et al. [5]. Recently, a similar result concerning intermittent maps was given by Dedecker [6].
Another one for ergodic torus automorphisms was proved by Durieu and Jouan [15].

Proofs of empirical process invariance principles usually consist of two parts, establishing
finite dimensional convergence and tightness of the empirical process. Finite dimensional
convergence, i.e. convergence in distribution of the sequence of vectors (Un(t1), . . . ,Un(tk))n≥1,
is an immediate consequence of the multivariate CLT for partial sums of the process

(1(−∞,t1](Xn), . . . , 1(−∞,tk ](Xn))n≥1.

Tightness is far more difficult to establish. One ingredient is usually a probability bound on the
increments of the empirical process

Un(t)−Un(s) =
1
√

n

n∑
i=1

{1(s,t](X i )− (F(t)− F(s))},

for a fixed pair s < t . Such bounds can in the simplest approach be obtained from bounds on
the fourth moments of Un(t)−Un(s). Other results require higher order moment bounds or even
exponential bounds.

The traditional approach to empirical process invariance principles, as outlined above,
works well in situations when the sequence of indicator variables (1(s,t](Xn))n≥0 inherits good
properties from the original process (Xn)n≥0. This holds, for example, when (Xn)n≥0 is strong
(uniform, beta) mixing, because then (1(s,t](Xn))n≥0 has the same property. There are, however,
situations where this is not the case or at least not easy to establish. For some kinds of Markov
processes and dynamical systems (see e.g. [18]), one has good control over the properties
of ( f (Xn))n≥0 when f is a Lipschitz function, but not for indicator functions. For example,
Gouëzel [17] gave a uniformly expanding map of the interval which has a spectral gap on the
space of Lipschitz functions but not on the space of bounded variation functions. In this paper,
we develop an approach that is strictly based on properties of Lipschitz functions f (X i ) of
the original data. We make two basic assumptions, namely that the partial sums of Lipschitz
functions satisfy the CLT and that a suitable fourth-moment bound is satisfied.
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For our proof we develop a variant of the classical chaining technique that uses only Lipschitz
functions at all stages of the chaining argument. We replace the usual finite dimensional
convergence plus tightness approach by a method of approximation by a sequence of finite
dimensional processes, which are different from the coordinate projections (Un(t1), . . . ,Un(tk)).
We show convergence in distribution of the finite dimensional processes and prove that the
finite dimensional process approximates the empirical process. In the final step, we use an
improved version of a theorem of Billingsley [2] (see our Theorem 2) to establish convergence
in distribution of the empirical process.

In the present paper, we make two assumptions concerning the process (X i )i≥0:

1. For any Lipschitz function f , the CLT holds, i.e.

1
√

n

n∑
i=1

{ f (X i )− E f (X i )}
D
→ N (0, σ 2), (1)

where N (0, σ 2) denotes a normal law with mean zero and variance

σ 2
= E( f (X0)− E f (X0))

2
+ 2

∞∑
i=1

Cov( f (X0), f (X i )).

2. A bound on the fourth central moments of partial sums of ( f (X i ))i≥0, f bounded Lipschitz
with E( f (X0)) = 0, of the type

E

{
n∑

i=1

f (X i )

}4

≤ Cm3
f

(
n‖ f (X0)‖1 logα (1+ ‖ f ‖)

+ n2
‖ f (X0)‖

2
1 logβ (1+ ‖ f ‖)

)
, (2)

where C is some universal constant, α and β are some nonnegative integers,

‖ f ‖ = sup
x
| f (x)| + sup

x 6=y

| f (x)− f (y)|

|x − y|

and

m f = max{1, sup
x
| f (x)|}.

Remark 1.1. These assumptions can be verified for a large class of Markov chains and
dynamical systems. Concerning the CLT for Lipschitz functions, many results can be found in the
literature; see e.g. [18] for the spectral gap method and [4] for the mixing approach. Durieu [14]
has established fourth-moment bounds of the type (2) for Markov chains and dynamical systems
under spectral properties. For more details and concrete examples see Section 4 of the present
paper.

We shall assume some regularity for the distribution function of X0. We define the modulus
of continuity of a function f : R −→ R by

ω f (δ) = sup {| f (s)− f (t)| : s, t ∈ R, |s − t | < δ} .

We can now state our main result.
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Theorem 1. Let (X i )i≥0 be an R-valued stationary ergodic random process such that the
conditions (1) and (2) hold. Assume that X0 has a distribution function F satisfying the following
condition:

ωF (δ) ≤ D| log(δ)|−γ for some D > 0 and γ > max
{α

2
, β
}
. (3)

Then

(Un(t))t∈R
D
−→ (W (t))t∈R,

where W (t) is a mean-zero Gaussian process with covariances

EW (s) ·W (t) = Cov(1(−∞,s](X0), 1(−∞,t](X0))+

∞∑
k=1

Cov(1(−∞,s](X0), 1(−∞,t](Xk))

+

∞∑
k=1

Cov(1(−∞,s](Xk), 1(−∞,t](X0)).

Further, almost surely, (W (t))t∈R has continuous sample paths.

Remark 1.2. In particular, if X0 has a Hölder continuous distribution function then (3) holds.

Remark 1.3. If the X i ’s are i.i.d., (W (t))t∈R is a Brownian bridge, but this is not always the case
for dependent variables, as in [2] or [5].

In order to prove Theorem 1, we apply the following theorem, which is a stronger version
of Theorem 4.2 of Billingsley [2] for the complete case. We do not need to assume a priori that
X (m) has a limit in distribution.

Theorem 2. Let (S, ρ) be a complete separable metric space and let Xn, X (m)n and X (m),
n,m ≥ 1, be S-valued random variables satisfying

X (m)n
D
−→ X (m) as n→∞,∀m (4)

lim
m→∞

lim sup
n→∞

P(ρ(Xn, X (m)n ) ≥ ε) = 0, ∀ε > 0. (5)

Then there exists an S-valued random variable X such that

Xn
D
−→ X as n→∞.

Moreover X (m)
D
−→ X as m →∞.

Both theorems are proved in Sections 2 and 3.

2. Proof of Theorem 1

2.1. The bounded case

We first prove the result for bounded variables. Let (X i )i≥0 be a [0, 1]-valued stationary
ergodic random process such that (1)–(3) hold.
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In our approach we work with Lipschitz continuous approximations to the indicator functions
1(−∞,t](x). Given a partition

0 = t ′0 < · · · < t ′m = 1

we define

t j = F−1(t ′j )

where F−1 is given by

F−1(t) = sup{s ∈ [0, 1] : F(s) ≤ t}.

Thus, by continuity of F , we have a partition

0 ≤ t0 < · · · < tm = 1.

We introduce the functions ϕ j : [0, 1] → R by

ϕ j (x) = ϕ

(
x − t j−1

t j−1 − t j−2

)
, for j = 2, . . . ,m

where

ϕ(x) = 1(−∞,−1](x)− x1(−1,0](x) (6)

and ϕ1 ≡ 0.
The function ϕ j will serve as a Lipschitz continuous approximation to the indicator function

1(−∞,t j−1](x). Note that ϕ j (x) depends on the partition, not only on the point t j−1. We now
define the process

F (m)n (t) =
1
n

n∑
i=1

m∑
j=1

1[t j−1,t j )(t)ϕ j (X i )

=

m∑
j=1

(
1
n

n∑
i=1

ϕ j (X i )

)
1[t j−1,t j )(t).

Note that F (m)n (t) is a piecewise constant approximation to the empirical distribution function
Fn(t). For t ∈ [t j−1, t j ], we have the inequality

Fn(t j−2) ≤ F (m)n (t) ≤ Fn(t j−1).

We define further

F (m)(t) = E
(

F (m)n (t)
)
=

m∑
j=1

E
(
ϕ j (X0)

)
1[t j−1,t j )(t),

and finally the centered and normalized process

U (m)
n (t) =

√
n
(

F (m)n (t)− F (m)(t)
)
. (7)

Our proof of Theorem 1 now consists of two parts, each of which will be formulated separately
as a proposition below. The theorem will follow by application of Theorem 2, where (S, ρ) is
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the space of cadlag functions D[0, 1] provided with the Skorohod topology and the metric d0;
see [2, p. 113]. Note that (D[0, 1], d0) is a complete separable metric space.

Proposition 2.1. For any partition 0 = t ′0 < · · · < t ′m = 1, there exists a piecewise constant
Gaussian process

(
W (m)(t)

)
0≤t≤1 such that(

U (m)
n (t)

)
0≤t≤1

D
−→

(
W (m)(t)

)
0≤t≤1

.

The sample paths of the processes
(
W (m)(t)

)
0≤t≤1 are constant on each of the intervals [t j−1, t j ),

1 ≤ j ≤ m, and W (m)(0) = 0. The vector (W (m)(t1), . . . ,W (m)(tm)) has a multivariate normal
distribution with mean zero and covariances

Cov(W (m)(ti−1),W (m)(t j−1)) = Cov(ϕi (X0), ϕ j (X0))+

∞∑
k=1

Cov(ϕi (X0), ϕ j (Xk))

+

∞∑
k=1

Cov(ϕi (Xk), ϕ j (X0)).

Proof. Using (1) and the Cramér–Wold device, we can show that for any Lipschitz functions
f1, . . . , fk , the multivariate CLT holds, i.e.

1
√

n

n∑
i=1

{( f1(X i ), . . . , fk(X i ))− E( f1(X0), . . . , fk(X0))}
D
→ N (0,Σ f1,..., fk ),

where N (0,Σ f1,..., fk ) denotes a multivariate normal law with mean zero and covariance matrix

Σ f1,..., fk = (σ fi , f j )1≤i, j≤k

where for any Lipschitz functions f, g we define

σ f,g = Cov( f (X0), g(X0))+

∞∑
k=1

Cov( f (X0), g(Xk))+

∞∑
k=1

Cov( f (Xk), g(X0)).

This result proves the proposition. �

Proposition 2.2. For any ε, η > 0 there exists a partition 0 = t ′0 < · · · < t ′m = 1 such that

lim sup
n→∞

P

(
sup

0≤t≤1

∣∣∣Un(t)−U (m)
n (t)

∣∣∣ > ε

)
≤ η.

Proof. By a variant of the well known chaining technique we will control

P

(
sup

0≤t≤1

∣∣∣Un(t)−U (m)
n (t)

∣∣∣ ≥ ε) ,
and then show that this probability can be made arbitrarily small by choosing a partition
0 = t ′0 < · · · < t ′m = 1 that is fine enough. From here on we assume that the partition

0 = t ′0 < · · · < t ′m = 1 is uniformly distributed (i.e. t ′j =
j

m ). Let h = 1
m = t ′j − t ′j−1, for

j = 1, . . . ,m.
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On the interval [t ′j−1, t ′j ] we introduce a sequence of refining partitions

t ′j−1 = s′(k)0 < s′(k)1 < · · · < s′(k)
2k = t ′j

by

s′(k)l = t ′j−1 + l ·
h

2k , 0 ≤ l ≤ 2k .

Let us define

s(k)l = F−1(s′(k)l ), 0 ≤ l ≤ 2k .

We now have partitions of [t j−1, t j ],

t j−1 = s(k)0 < s(k)1 < · · · < s(k)
2k = t j .

For convenience, we also consider the points

s(k)
−1 = F−1

(
t ′j−1 −

h

2k

)
and the points

s(k)
2k+1
= F−1

(
t ′j−1 + (2

k
+ 1)

h

2k

)
.

For any t ∈ [t j−1, t j ) and k ≥ 0 we define the index

l(k, t) = max
{

l : s(k)l ≤ t
}
.

In this way we obtain a chain

t j−1 = s(0)l(0,t) ≤ s(1)l(1,t) ≤ · · · ≤ s(k)l(k,t) ≤ t ≤ s(k)l(k,t)+1,

linking the left endpoint t j−1 to t . Note that for t ∈ [t j−1, t j ) we have by definition U (m)
n (t) =

U (m)
n (t j−1). We define the functions ψ (k)l , k ≥ 0, 0 ≤ l ≤ 2k , by

ψ
(k)
l (x) = ϕ

(
x

s(k)l − s(k)l−1

)
,

where ϕ is defined as in (6). Note that ψ (0)l(0,t)(x − s(0)l(0,t)) = ϕ j (x). To be consistent, in the case

j = 1, we have to fix ψ (k)0 ≡ 0, for all k ≥ 0. We build a chain bridging the gap between

Fn(t) =
1
n

n∑
i=1

1(−∞,t](X i )

and

F (m)n (t) =
1
n

n∑
i=1

ϕ j (X i )
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by the functions

ϕ j (x) = ψ
(0)
l(0,t)(x − s(0)l(0,t))

≤ ψ
(1)
l(1,t)(x − s(1)l(1,t))

≤ · · ·

≤ ψ
(K )
l(K ,t)(x − s(K )l(K ,t))

≤ 1(−∞,t](x)

≤ ψ
(K )
l(K ,t)+2(x − s(K )l(K ,t)+2),

where K is some integer to be chosen later. In this way we get

Fn(t)− F (m)n (t) =
K∑

k=1

1
n

n∑
i=1

(
ψ
(k)
l(k,t)(X i − s(k)l(k,t))− ψ

(k−1)
l(k−1,t)(X i − s(k−1)

l(k−1,t))
)

+
1
n

n∑
i=1

(
1(−∞,t](X i )− ψ

(K )
l(K ,t)(X i − s(K )l(K ,t))

)
. (8)

Observe that by definition of s(k)l(k,t) and of ψ (K ),

0 ≤ 1(−∞,t](X i )− ψ
(K )
l(K ,t)(X i − s(K )l(K ,t))

≤ ψ
(K )
l(K ,t)+2(X i − s(K )l(K ,t)+2)− ψ

(K )
l(K ,t)(X i − s(K )l(K ,t)).

From (8) we get by centering and normalization

Un(t)−U (m)
n (t) =

K∑
k=1

1
√

n

n∑
i=1

{(
ψ
(k)
l(k,t)(X i − s(k)l(k,t))− Eψ (k)l(k,t)(X i − s(k)l(k,t))

)
−

(
ψ
(k−1)
l(k−1,t)(X i − s(k−1)

l(k−1,t))− Eψ (k−1)
l(k−1,t)(X i − s(k−1)

l(k−1,t))
)}

+
1
√

n

n∑
i=1

{ (
1(−∞,t](X i )− F(t)

)
−

(
ψ
(K )
l(K ,t)(X i − s(K )l(K ,t))− Eψ (K )l(K ,t)(X i − s(K )l(K ,t))

)}
.

For the last term on the r.h.s. we have the following upper and lower bounds:

1
√

n

n∑
i=1

{(
1(−∞,t](X i )− F(t)

)
−

(
ψ
(K )
l(K ,t)(X i − s(K )l(K ,t))− Eψ (K )l(K ,t)(X i − s(K )l(K ,t))

)}
≤

1
√

n

n∑
i=1

{(
ψ
(K )
l(K ,t)+2(X i − s(K )l(K ,t)+2)− Eψ (K )l(K ,t)+2(X i − s(K )l(K ,t)+2)

)
−

(
ψ
(K )
l(K ,t)(X i − s(K )l(K ,t))− Eψ (K )l(K ,t)(X i − s(K )l(K ,t))

)}
+
√

n
(

Eψ (K )l(K ,t)+2(X i − s(K )l(K ,t)+2)− F(t)
)
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and

1
√

n

n∑
i=1

{(
1(−∞,t](X i )− F(t)

)
−

(
ψ
(K )
l(K ,t)(X i − s(K )l(K ,t))− Eψ (K )l(K ,t)(X i − s(K )l(K ,t))

)}
≥ −
√

n
(

F(t)− Eψ (K )l(K ,t)(X i − s(K )l(K ,t))
)
.

Now choose K = 4+
⌊

log
(√

nh
ε

)
log−1(2)

⌋
and note that

ε

24 ≤
√

n
h

2K ≤
ε

23

and thus
√

n
∣∣∣Eψ (K )l(K ,t)+2(X i − s(K )l(K ,t)+2)− Eψ (K )l(K ,t)(X i − s(K )l(K ,t))

∣∣∣
≤
√

n
∣∣∣F(s(K )l(K ,t)+2)− F(s(K )l(K ,t)−1)

∣∣∣
≤
ε

2
.

Thus we get for all t ∈ [t j−1, t j ],∣∣∣Un(t)−U (m)
n (t)

∣∣∣ ≤ K∑
k=1

1
√

n

∣∣∣∣∣ n∑
i=1

{(
ψ
(k)
l(k,t)(X i − s(k)l(k,t))− Eψ (k)l(k,t)(X i − s(k)l(k,t))

)
−

(
ψ
(k−1)
l(k−1,t)(X i − s(k−1)

l(k−1,t))− Eψ (k−1)
l(k−1,t)(X i − s(k−1)

l(k−1,t))
)} ∣∣∣∣∣

+
1
√

n

∣∣∣∣∣ n∑
i=1

{(
ψ
(K )
l(K ,t)+2(X i − s(K )l(K ,t)+2)− Eψ (K )l(K ,t)+2(X i − s(K )l(K ,t)+2)

)
−

(
ψ
(K )
l(K ,t)(X i − s(K )l(K ,t))− Eψ (K )l(K ,t)(X i − s(K )l(K ,t))

)} ∣∣∣∣∣+ ε2 .
Note that by definition of l(k, t) and of s(k)l , we have s(k−1)

l(k−1,t) ∈ {s
(k)
l(k,t), s(k)l(k,t)−1} and thus

l(k − 1, t) =

⌊
l(k, t)

2

⌋
.

Therefore

sup
t j−1≤t≤t j

∣∣∣Un(t)−U (m)
n (t)

∣∣∣ ≤ K∑
k=1

1
√

n
max

0≤l≤2k−1

∣∣∣∣∣ n∑
i=1

(
(ψ

(k)
l (X i − s(k)l )

− Eψ (k)l (X i − s(k)l ))− (ψ
(k−1)
b

l
2 c

(X i − s(k−1)
b

l
2 c

)− Eψ (k−1)
b

l
2 c

(X i − s(k−1)
b

l
2 c

))

) ∣∣∣∣∣
+

1
√

n
max

0≤l≤2K−1

∣∣∣∣∣ n∑
i=1

(
(ψ

(K )
l+2 (X i − s(K )l+2 )− Eψ (K )l+2 (X i − s(K )l+2 ))

− (ψ
(K )
l (X i − s(K )l )− Eψ (K )l (X i − s(K )l ))

) ∣∣∣∣∣+ ε2 .
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Now take εk :=
ε

4k(k+1) and note that
∑K

k=1 εk ≤
ε
4 .

Then we obtain

P

(
sup

t j−1≤t≤t j

∣∣∣Un(t)−U (m)
n (t)

∣∣∣ ≥ ε)

≤

K∑
k=1

2k
−1∑

l=0

P

(
1
√

n

∣∣∣∣∣ n∑
i=1

{(
ψ
(k)
l (X i − s(k)l )− Eψ (k)l (X i − s(k)l )

)
−

(
ψ
(k−1)
b

l
2 c

(X i − s(k−1)
b

l
2 c

)− Eψ (k−1)
b

l
2 c

(X i − s(k−1)
b

l
2 c

)

)} ∣∣∣∣∣ ≥ εk

)

+

2K
−1∑

l=0

P

(
1
√

n

∣∣∣∣∣ n∑
i=1

{(
ψ
(K )
l+2 (X i − s(K )l+2 )− Eψ (K )l+2 (X i − s(K )l+2 )

)
−

(
ψ
(K )
l (X i − s(K )l )− Eψ (K )l (X i − s(K )l )

)} ∣∣∣∣∣ ≥ ε

4

)
.

At this point we use Markov’s inequality together with the fourth-moment bound (2):

P

(
sup

t j−1≤t≤t j

∣∣∣Un(t)−U (m)
n (t)

∣∣∣ ≥ ε)

≤ C
K∑

k=1

2k
−1∑

l=0

{
1

nε4
k

∥∥∥∥ψ (k)l (X0 − s(k)l )− ψ
(k−1)
b

l
2 c

(X0 − s(k−1)
b

l
2 c

)

∥∥∥∥
1

× logα
(

1+

∥∥∥∥ψ (k)l − ψ
(k−1)
b

l
2 c

∥∥∥∥)+ 1

ε4
k

∥∥∥∥ψ (k)l (X0 − s(k)l )− ψ
(k−1)
b

l
2 c

(X0 − s(k−1)
b

l
2 c

)

∥∥∥∥2

1

× logβ
(

1+

∥∥∥∥ψ (k)l − ψ
(k−1)
b

l
2 c

∥∥∥∥)
}

+C
2k
−1∑

l=0

{
44

nε4

∥∥∥ψ (K )l+2 (X0 − s(K )l+2 )− ψ
(K )
l (X0 − s(K )l )

∥∥∥
1

logα
(

1+
∥∥∥ψ (K )l+2 − ψ

(K )
l

∥∥∥)
+

44

ε4

∥∥∥ψ (K )l+2 (X0 − s(K )l+2 )− ψ
(K )
l (X0 − s(K )l )

∥∥∥2

1
logβ

(
1+

∥∥∥ψ (K )l+2 − ψ
(K )
l

∥∥∥)}.
Note that∥∥∥∥ψ (k)l (X0 − s(k)l )− ψ

(k−1)
b

l
2 c

(X0 − s(k−1)
b

l
2 c

)

∥∥∥∥
1
≤

∣∣∣∣F(s(k)l )− F(s(k−1)
b

l
2 c−1

)

∣∣∣∣
≤

∣∣∣F(s(k)l )− F(s(k)l−3)

∣∣∣
=

3h

2k

and ∥∥∥ψ (K )l+2 (X0 − s(K )l+2 )− ψ
(K )
l (X0 − s(K )l )

∥∥∥
1
≤

∣∣∣F(s(K )l+2 )− F(s(K )l−1 )

∣∣∣
=

3h

2K .
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If (3) is satisfied,∥∥∥ψ (k)l

∥∥∥ ≤ 1+
[

inf
{

s > 0 : ∀t, F(t + s)− F(t) ≥
h

2k

}]−1

≤ 1+
[

inf
{

s > 0 : D| log(s)|−γ ≥
h

2k

}]−1

= 1+ exp

(D2k

h

) 1
γ

 .
Thus we have

P

(
sup

t j−1≤t≤t j

∣∣Un(t)−Un(t j )
∣∣ ≥ ε)

≤ 44C
K∑

k=1

2k (k(k + 1))4

ε4

1
n

3h

2k logα

2+ exp

(D2k

h

) 1
γ


+ 44C

K∑
k=1

2k (k(k + 1))4

ε4

(3h)2

22k
logβ

2+ exp

(D2k

h

) 1
γ


+ 44C2K 1

ε4

1
n

3h

2K logα

2+ exp

(D2k

h

) 1
γ


+ 44C2K 1

ε4

(3h)2

22K
logβ

2+ exp

(D2k

h

) 1
γ


≤

1
n

C ′

ε4

K∑
k=1

k8h

(
D2k

h

) α
γ

+
C ′

ε4

K∑
k=1

k8

2k h2
(

D2k

h

) β
γ

≤ D
α
γ

1
n

C ′

ε4 h

(
2K

h

) α
γ K∑

k=1

k8
+ D

β
γ

C ′

ε4 h2− β
γ

∞∑
k=1

k82k( β
γ
−1)

≤
h

n

C ′′

ε4

(√
n

ε

) α
γ

K 9
+

C ′′

ε4 h2− β
γ

where C ′ and C ′′ are some constants. In addition, we have used convergence of the series∑
∞

k=1 k82k( β
γ
−1).

Finally, using mh = 1,

P

(
sup

0≤t≤1

∣∣∣Un(t)−U (m)
n (t)

∣∣∣ ≥ ε) ≤ m∑
j=1

P

(
sup

t j−1≤t≤t j

∣∣∣Un(t)−U (m)
n (t)

∣∣∣ ≥ ε)

≤ mhn
α

2γ −1 C ′′

ε
4+ α

γ

K 9
+ m

C ′′

ε4 h2− β
γ

≤ n
α

2γ −1 C ′′

ε
4+ α

γ

(
4+ log

√
nh

ε

)9

+
C ′′

ε4 h1− β
γ .
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Now, the first of the two final summands converges to zero as n→∞. The second can be made
arbitrarily small by choosing a partition that is fine enough (i.e. h small). �

We used a technique different from the usual finite dimensional convergence plus tightness. Of
course, since the weak convergence implies the finite dimensional convergence and the tightness,
these two properties are satisfied. Nevertheless, we can also deduce a tightness criterion implying
that, almost surely, the limit process has continuous sample paths (see [2, Theorem 15.5]).

Proposition 2.3. For all ε, η > 0, there exist δ > 0 and N ≥ 0 such that for all n ≥ N,

P

(
sup
|t−s|<δ

|Un(t)−Un(s)| ≥ ε

)
≤ η.

In particular, P(W ∈ C(R)) = 1.

Proof. Let ε > 0 and η > 0. Let m be an integer such that

C

ε4

D
β
γ

m1+ β
γ

<
η

4
(9)

and consider the regular partition of [0, 1] with mesh 1
m .

By Proposition 2.2, there exists N ≥ 0 such that for all n ≥ N ,

P

(
sup

0≤t≤1

∣∣∣Un(t)−U (m)
n (t)

∣∣∣ ≥ ε

3

)
≤
η

4
.

Let us have δ > 0 such that δ < 1
m . Then, for all n ≥ N ,

P

(
sup
|t−s|<δ

|Un(t)−Un(s)| ≥ ε

)
≤ 2P

(
sup

0≤t≤1
|Un(t)−U m

n (t)| ≥
ε

3

)

+ P

(
sup
|t−s|<δ

|U m
n (t)−U m

n (s)| ≥
ε

3

)

≤
η

2
+ P

(
sup
|t−s|<δ

|U m
n (t)−U m

n (s)| ≥
ε

3

)
.

We recall, as t j = F−1(t ′j ) = F−1(
j

m ), that

‖ϕ j (X0)− ϕ j+1(X0)‖1 ≤ P
(
t j−2 ≤ X0 ≤ t j

)
≤

2
m
,

‖ϕ j‖ ≤ 1+ exp

((
D

m

) 1
γ

)
.

Thus, by the fourth-moment bound (2),

P

(
sup
|t−s|<δ

|U m
n (t)−U m

n (s)| ≥
ε

3

)
≤

C

nε4

(
D

m

) α
γ

+
C

ε4

D
β
γ

m1+ β
γ

.
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Now there exists N ′ ≥ N such that

C

nε4

(
D

m

) α
γ

≤
η

4
.

Finally, by (9),

P

(
sup
|t−s|<δ

|Un(t)−Un(s)| ≥ ε

)
≤ η. �

2.2. The unbounded case

Let (X i )i≥0 be an R-valued stationary ergodic random process such that (1)–(3) hold. We will
show that it can be reduced to the case of bounded variables.

For all x < y ∈ R, we say that the closed interval [x, y] is a ‘bad’ interval (for F) if

F(y)− F(x) ≥ y − x .

We say that [x, y] is a maximal ‘bad’ interval (for F) if for all ‘bad’ intervals [a, b], we have
[a, b] ⊂ [x, y] or [a, b] ∩ [x, y] = ∅.

We denote by I max the set of all maximal ‘bad’ intervals.

Lemma 2.4. (i) The Lebesgue measure of

I :=
⋃

[x,y]∈I max

[x, y]

is smaller than 1.
(ii) For all [x, y] ∈ I max, we have

F(y)− F(x) = y − x .

Proof. Because F is non-decreasing and takes values in [0, 1], the first assertion is clear.
If for x < y, F(y)− F(x) > y − x , then there exists ε > 0 such that

F(y)− F(x) > y − x + ε.

Thus, for all z > y such that z − y ≤ ε, by monotonicity of F , we have

F(z)− F(x) ≥ F(y)− F(x)

> y − x + ε

≥ z − x

and then [x, y] is not maximal. �

We define the function g from R to ]0, 1[ by

for all [x, y] ∈ I max, for all t ∈ [x, y], g(t) := F(x)+ t − x

and

for all t 6∈ I, g(t) := F(t).

Then g is a 1-Lipschitz function.
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We define the [0, 1]-valued stationary ergodic random process (Yi )i≥0 by

Yi = g(X i ), i ≥ 0.

Since g is Lipschitz, (Yi )i≥0 satisfies (1) and (2).
We also have

G(t) := P(Y0 ≤ t) = F ◦ g−1(t)

where

g−1(t) = sup{s ∈ R : g(s) ≤ t}.

Clearly, G is the identity on g(R\ I ). Further, for all [x, y] ∈ I max, the graph of G on g([x, y]) is
the graph of F on [x, y] and the Lebesgue measure of g([x, y]) is equal to the Lebesgue measure
of [x, y]. Then

ωG(δ) ≤ max{ωF (δ), δ}

and (3) holds.
We define the associated distribution functions and empirical processes

Fn(t) :=
1
n

n∑
i=1

1(−∞,t](X i ), t ∈ R,

Un(t) :=
√

n(Fn(t)− F(t)), t ∈ R,

Gn(t) :=
1
n

n∑
i=1

1[0,t](Yi ), 0 ≤ t ≤ 1,

Vn(t) :=
√

n(Gn(t)− G(t)), 0 ≤ t ≤ 1.

We have

Un(t) = Vn(g(t)), t ∈ R.

By the theorem for bounded variables (Section 2.1),

(Vn(t))0≤t≤1
D
−→ (V (t))0≤t≤1,

where V (t) is a mean-zero Gaussian process such that P(V ∈ C[0, 1]) = 1.
Applying Theorem 5.1 of Billingsley [2] with

h : D[0, 1] −→ D(R)
x 7→ x ◦ g,

we get the weak convergence of (Un(t))t∈R to a Gaussian process

(W (t))t∈R = (V ◦ g(t))t∈R

such that P(W ∈ C(R)) = 1.

3. Proof of Theorem 2

Lemma 3.1. Let (X, d) be a complete metric space and let xn, x (m)n , x (m) ∈ X, n ≥ 1,m ≥ 1,
be given with the properties

lim
n→∞

d(x (m)n , x (m)) = 0 ∀m (10)
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lim
m→∞

lim sup
n→∞

d(xn, x (m)n ) = 0. (11)

Then x := limm→∞ x (m) exists and

lim
n→∞

d(xn, x) = 0.

The proof is left to the reader.

Proof of Theorem 2. Let µn, µ
(m)
n and µ(m) denote the distributions of the random variables

Xn, X (m)n and X (m) respectively. These are elements of M1(S), the space of probability measures
on S. We consider the Prohorov metric d on M1(S), defined by

d(µ, υ) = inf
{
ε > 0 : µ(A) ≤ υ(Aε)+ ε∀A ⊂ S measurable

}
.

Note that (M1(S), d) is a complete metric space. If Y, Z are two S-valued random variables with
distributions PY , PZ , satisfying

P(ρ(Y, Z) ≥ ε) ≤ ε,

then d(PY , PZ ) ≤ ε.Moreover d metrizes the topology of weak convergence, i.e. µn → µ if and
only if d(µn, µ)→ 0.We now apply Lemma 3.1 to µn, µ

(m)
n , µ(m). Note that condition (10) is a

direct consequence of (4) and that (11) can be deduced from (5). We get a probability distribution

µ on S such that if X is an S-valued random variable with distribution µ then X (m)
D
→ X as

m →∞ and Xn
D
→ X as n→∞. �

4. Examples

According to Durieu [14] the fourth-moment bound (2) holds for Markov chains and
dynamical systems under some assumptions on the Markov transition operator or the Perron–
Frobenius operator.

Let (E, d) be a separable metric space and (Xk)k≥0 be an E-valued Markov chain with
transition operator Q and invariant measure ν. Denote by L the space of all bounded Lipschitz
continuous functions from E to R equipped with the norm defined in (2). We say that the Markov
chain (Xk)k≥0 is L-geometrically ergodic if there exist C > 0 and 0 < θ < 1 such that for all
f ∈ L,

‖Qk f −Π f ‖ ≤ Cθk
‖ f ‖, (12)

where Π f = Eν f (X0). This condition corresponds to the fact that the Markov operator is quasi-
compact on the space L with 1 as the only eigenvalue of modulus 1 and simple (see [18]). Since
L ↪→ L∞, the following result is a special case of Corollary 1 of [14].

Proposition 4.1. If (Xn)n≥0 is an L-geometrically ergodic Markov chain then (2) holds for all
f ∈ L such that E f (X0) = 0, with α = 3 and β = 2.

The same is true for dynamical systems whose Perron–Frobenius operators satisfy (12).
This gives a large class of examples where our result applies.
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4.1. Linear processes

Let (A, ‖.‖A) be a separable Banach space and A its Borel sigma algebra. Denote by C some
positive constant which may vary from line to line. Let (ai )i≥0 be a sequence of linear forms on
A such that there exists 0 < θ < 1 such that

|ai | ≤ Cθ i , (13)

where |ai | = sup‖x‖A≤1 |ai (x)|. Let (ei )i∈Z be an i.i.d. bounded random sequence with values in
a compact subset B ⊂ A and marginal distribution µ. We define the real-valued linear process
(Xk)k≥0 by

Xk =
∑
i≥0

ai (ek−i ), k ≥ 0.

Several results have already been established for empirical processes of linear processes (see
[12,22,7]). Here, the assumption on the (ai )i≥0 is stronger than in the aforementioned papers, but
there will be no assumption on the distribution of the ei ’s and the assumption on the distribution
function of X0 will be weaker. Note that (Xk)k≥0 can be viewed as a functional of a Markov
chain.

Let Yk = (ek, ek−1, . . .); then (Yk)k≥0 is a stationary Markov chain on BN (with stationary
measure µ⊗N) and Xk = Φ(Yk) where

Φ : BN −→ R, Φ(x0, x1, . . .) =
∑
i≥0

ai (xi ).

Let Q be the Markov transition operator of the chain. On BN, we define a metric d by

d(x, y) =
∑
i≥0

θ i
‖xi − yi‖A

where x = (xi )i≥0 and y = (yi )i≥0. As B is compact, then (BN, d) is also compact. Let us
denote by L the space of all Lipschitz functions from BN to R provided with the norm ‖.‖
defined by

‖ f ‖ = sup
x∈BN
| f (x)| + sup

x 6=y

| f (x)− f (y)|

d(x, y)
.

For all f ∈ L and for all x = (xi )i≥0 and y = (yi )i≥0 ∈ BN, we have

|Qk f (x)− Qk f (y)| = |E( f (Yk)|Y0 = x)− E( f (Yk)|Y0 = y)|

= |E( f (ek, . . . , e1, x0, . . .))− E( f (ek, . . . , e1, y0, . . .))|

≤ ‖ f ‖E{d((ek, . . . , e1, x0, . . .), (ek, . . . , e1, y0, . . .))}

= Cθk
‖ f ‖d(x, y),

and

|Qk f (x)− E f (Y0)| = |E( f (Yk)|Y0 = x)− E f (Yk)|

≤ E | f (ek, ek−1, . . . , e1, x0, . . .)− f (ek, ek−1, . . .)|

≤ Cθk
‖ f ‖E{d(x, Y0)}.
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Then, we have for all f ∈ L,

‖Qk f − E( f (Y0))‖ ≤ Cθk
‖ f ‖.

Since (L, ‖.‖) ⊂ (L∞(µ⊗N), ‖.‖∞), by Proposition 4.1, (Yk)k≥0 satisfies the fourth-moment
bound (2) with α = 3 and β = 2 for all bounded Lipschitz functions such that E f (Y0) = 0. And
then the sequence

∑n
i=0 Qi f (Y0) converges in L2(µ⊗N) for all f ∈ L such that E f (Y0) = 0.

By Gordin’s theorem (see [16]), the CLT (1) is satisfied. Clearly, the function Φ is a Lipschitz
continuous function on BN, and for all Lipschitz functions g : R −→ R, g ◦Φ is also a Lipschitz
continuous function on BN. Thus conditions (1) and (2) hold for the process (Xk)k≥0, for all
Lipschitz functions on R. Then Theorem 1 applies and we have:

Corollary 4.2. Let (Xk)k≥0 be a real linear process defined by a sequence of linear forms (ai )i≥0
and a sequence of i.i.d. bounded random variables (ei )i∈Z, both on a measurable Banach space
A. Assume (ai ) satisfies (13) and the distribution function F of X0 satisfies

ωF (δ) ≤ D| log(δ)|−γ for some D > 0 and γ > 2.

Then (Un(t))t∈R converges in distribution to a mean-zero Gaussian process.

In the paper by Dedecker and Prieur [7], Corollary 1, X0 has a bounded density. Here, the
existence of a density is not needed. Our result is comparable to a result of Wu and Shao [23].

For a concrete example, consider A = {0, 1}, ai =
2
3i , i ≥ 0, and ek = 0 or 1 with probability

1
2 , k ∈ Z. Then

Xk = 2
∑
i≥0

ek−i

3i , k ≥ 0

is a stationary process with values in [0, 1] and the common distribution function of all the Xk is
the Cantor function, which is not absolutely continuous but log 2

log 3 -Hölder continuous (see [13]).

4.2. Expanding maps

In the setting of expanding maps of the interval, empirical process invariance principles
have been established in [5,7] for classes of Lasota–Yorke transformations. For these maps, the
transfer operator has a spectral gap on the space BV of bounded variation functions. According
to Gouëzel [17], there exist some uniformly expanding maps of the interval for which the transfer
operator does not act continuously on the space BV, but admits a spectral gap on the space of
Lipschitz functions. The example given by Gouëzel is a transformation of the interval [0, 1).
Let (an)n≥1 be a sequence of positive numbers with

∑
an <

1
4 and let N > 0 be an integer.

Denote by In the subintervals [4
∑n−1

i=1 ai , 4
∑n

i=1 ai ). We decompose In into two subintervals

of length 2an denoted by I (1)n and I (2)n . We can find a map vn (resp. wn) on [0, 1) with image
I (1)n (resp. I (2)n ) such that the derivative at a point x is equal to an(1 + 2 cos2(2πn4x)) (resp.
an(1+2 sin2(2πn4x))). The map T is defined on In in such a way that vn and wn are two inverse
branches of it. There remains the interval [4

∑
∞

i=1 ai , 1) that we subdivide into N subintervals of
equal length. T is defined as an affine transformation on each of these subintervals onto [0, 1).

Theorem 3 (Gouëzel [17]). If an =
1

100n3 and N = 4, then T is a Lebesgue measure preserving
transformation and its associated transfer operator has a spectral gap on the space of Lipschitz
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functions with a simple eigenvalue at 1 and no other eigenvalue of modulus 1. Further, the
transfer operator does not act continuously on BV.

Here, we cannot directly apply the above mentioned results which require the spectral property
of the transfer operator on BV. But using its spectral property on L, we can deduce the following
result.

Corollary 4.3. The empirical process associated with Gouëzel’s example satisfies the invariance
principle of Theorem 1.

Proof. The CLT (1) is given by the spectral gap of the transfer operator on L. We obtain the
fourth-moment bound (2) as a consequence of Theorem 2 of Durieu [14]. Indeed, Gouëzel’s
theorem entails that the required assumptions for this theorem (conditions (i) and (ii), page
1093 of [14]) hold for the space L. Finally, the Lebesgue measure clearly satisfies (3). Hence,
Theorem 1 applies. �

4.3. Further applications

Durieu [14] has also given fourth-moment bounds for subshifts of finite type, using the
Ruelle–Perron–Frobenius theorem, as in [19]. Our result thus also applies here.

Another application concerns random iterative Lipschitz models, as considered in [14]. Let
g : E × R −→ E be a measurable function where E ⊂ R is some compact interval and let
(Yn)n≥1 be an R-valued i.i.d. process. Let X0 be an E-valued random variable independent of
(Yn)n≥1. Define the Markov chain (Xn)n∈N by

Xn = g(Xn−1, Yn), n ≥ 1.

Such models are studied, e.g., in nonlinear time series analysis.
Assume that for all y ∈ R, g(., y) is Lipschitz. Define the Lipschitz constant

K (y) := sup
x,x ′∈E,x 6=x ′

|g(x, y)− g(x ′, y)|

|x − x ′|

and suppose that E K (Y1) < 1. Let us have x, x ′ ∈ E and let (Xn)n∈N and (X ′n)n∈N be
defined by X0 = x , X ′0 = x ′, Xn = g(Xn−1, Yn) and X ′n = g(X ′n−1, Yn). Then, by induction,
|Xn − X ′n| ≤ |x − x ′|

∏n
i=1 K (Yi ) and thus

E
|Xn − X ′n|

|x − x ′|
< (E K (Y1))

n .

Hence the random map g(., Y1) is contracting in the sense of Definition X.1 of [18]. By Theorem
X.3 of [18], there exists a unique invariant probability measureµ and moreover the Markov chain
(Xn)n∈N is L-geometrically ergodic as defined in (12). By Proposition 4.1, if X0 is µ-distributed,
the fourth-moment bound (2) holds. The CLT (1) also follows from the result of [18]. Ifµ satisfies
(3), the empirical process invariance principle holds.

This example has been investigated before by Dedecker and Prieur [7], with different
techniques and under different conditions.

Remark 4.4. Condition (3) can be derived from suitable uniform conditions on the modulus of
continuity of g(x, Y ), x ∈ E . Define

F x (u) := P(g(x, Y ) ≤ u)
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and assume that

ω(δ) := sup
x∈E

sup
u,v∈E,|u−v|≤δ

|F x (v)− F x (u)| = O(| log δ|−η).

If µ denotes the invariant measure, we have for u, v ∈ E

µ((u, v]) =
∫

P(u < g(x, Y ) ≤ v)dµ(x) =
∫
(F x (v)− F x (u))dµ(x).

Let X0 be distributed according to µ, and denote by F(u) := P(X0 ≤ u) the distribution
function. Then we get for u, v ∈ E , |v − u| ≤ δ,

|F(v)− F(u)| ≤
∫
|F x (v)− F x (u)|dµ(x) = O(| log δ|−η).
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