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Abstract

Extending investigations of Métivier and Zumbrun in the hyperbolic case, we treat stability of viscous
shock and boundary layers for viscous perturbations of multidimensional hyperbolic systems with charac-
teristics of variable multiplicity, specifically the construction of symmetrizers in the low-frequency regime
where variable multiplicity plays a role. At the same time, we extend the boundary-layer theory to “re-
al” or partially parabolic viscosities, Neumann or mixed-type parabolic boundary conditions, and systems
with nonconservative form, in addition proving a more fundamental version of the Zumbrun–Serre–Rousset
theorem, valid for variable multiplicities, characterizing the limiting hyperbolic system and boundary con-
ditions as a nonsingular limit of a reduced viscous system. The new effects of viscosity are seen to be
surprisingly subtle; in particular, viscous coupling of crossing hyperbolic modes may induce a destabilizing
effect. We illustrate the theory with applications to magnetohydrodynamics.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This work is motivated by the stability analysis of boundary value problems and shock waves
for viscous perturbations of multidimensional systems of conservation laws. In this analysis,
three main steps are present. In the first step, one constructs simple waves w((ν · x − σ t)/ε),
or “profiles,” which are exact solutions of the viscous equation, with viscosity of order ε. This
amounts to solving an ordinary differential equation (the profile equation); the solutions de-
scribe the fast transition between the hyperbolic solution and the parabolic boundary conditions
(boundary layers) or between two smooth hyperbolic solutions (shock layers). Next, given a
profile, formal plane wave or spectral analysis yields necessary stability conditions in terms of
Evans functions. The second step is to compute explicitly this function on specific examples and
check the stability conditions. The third step is to prove the linear and nonlinear stability of solu-
tions, assuming that the suitable Evans–Lopatinski condition is satisfied, in particular for curved
fronts or boundaries and nonpiecewise constant hyperbolic solutions. This paper deals with the
third step, with specific applications to magneto-hydrodynamics. The first and second steps are
discussed for shock and boundary layers, respectively, in companion papers [9] and [8].

We concentrate on the construction of symmetrizers for the linearized equations, and more
specifically in the so-called low-frequency regime, as they are the key point in the proof of sta-
bility estimates which eventually yield short-time existence and nonlinear stability theorems;
see [14,15] for hyperbolic shocks and [5–7,20] for viscous perturbations. In these papers, it
is proved that strong stability estimates hold, under the natural uniform Lopatinski condition,
or Evans’ condition, provided that the equations satisfy a structural condition, called the block
structure condition (see [14,16] in the hyperbolic case and [20] for the viscous case). This con-
dition is in some sense necessary for the construction of Kreiss’ symmetrizers which are used
to prove the stability estimates. It is satisfied in the case of inviscid Euler’s equations of gas
dynamics [14], but does not hold in other interesting examples such as the equations of magneto-
hydrodynamics (MHD). So there is a real need for an extension of the analysis beyond the class
of systems satisfying the block structure condition. This is done in [21] for hyperbolic systems
and the main goal of this paper is to extend the analysis to viscous systems, in view of applica-
tions to MHD.

We carry out in passing several other useful generalizations of the basic boundary-layer analy-
sis of [19,20], extending the theory to “real” or partially parabolic viscosities, Neumann or
mixed-type parabolic boundary conditions, and systems with nonconservative form. In addition,
we prove a more fundamental version of the Zumbrun–Serre–Rousset theorem, valid for vari-
able multiplicities, characterizing the limiting hyperbolic system and boundary conditions as a
nonsingular limit of a reduced viscous system as frequency goes to zero. Extensions to the shock
case are given in [9].

Consider boundary value problems for hyperbolic systems

∂tu+
d∑
j=1

Aj∂ju (1.1)

on {xd � 0} with boundary conditions on {xd = 0} which is assumed to be noncharacteristic.
The plane wave analysis of such system leads to consider ordinary differential system in z� 0,
depending on Fourier–Laplace frequencies ζ = (τ, η, γ ), with γ > 0,
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∂z −H0(ζ ), H0(ζ ) := −A−1
d

(
(iτ + γ )+

d−1∑
j=1

iηjAj

)
. (1.2)

Viscous perturbations of (1.1) are systems of the form

∂tu+
d∑
j=1

Aj∂ju− ε
d∑

j,k=1

∂j (Bj,k∂ku) (1.3)

with natural structural conditions which are recalled below. The low-frequency plane wave analy-
sis of such systems lead to consider perturbations of (1.2):

∂z −H(ζ,ρ), H(ζ,ρ) :=H0(ζ )+ ρH1(ζ, ρ) (1.4)

depending smoothly on an additional parameter ρ � 0 (see Section 2 below or [19,20,26]).
In this paper, our main concern is the construction of symmetrizers Σ(ζ,ρ) for (1.4). The

precise conditions we impose on Σ are given in Section 3. In particular, we focus on smooth
symmetrizers, as they serve as symbols for pseudodifferential symmetrizers in the variable coef-
ficient analysis.

When ρ = 0, Σ0(ζ ) = Σ(ζ,0) is a symmetrizer for H0(ζ ). Such symmetrizers were con-
structed first for strictly hyperbolic systems (1.1) by Kreiss [12] (see also [1]). Strict hyperbolicity
is used at only one place: it implies that H0 can be put in a normal form, which is called block
structure in [14,16]. Therefore Kreiss’ construction of symmetrizers extends immediately to sys-
tems which satisfy this block structure condition. In [21], it is proved that this condition is
satisfied if and only if the symbol A(ξ) :=∑ ξjAj of (1.1) is smoothly diagonalizable for ξ �= 0,
recovering known examples such as Euler’s equation of gas dynamics or Maxwell’s equations.
The second important result in [21] it that the construction of symmetrizers is extended to a
class of symmetric systems which are not smoothly diagonalizable for all ξ �= 0: we demand that
the “bad” multiple modes are totally incoming or totally outgoing (see Definitions 4.1 and 4.3
below), and this applies to inviscid MHD.

In the small viscosity case, the construction of symmetrizers is performed in [20], with appli-
cation to the analysis of shocks in [4–7], assuming that the eigenvalues of A(ξ) have constant
multiplicity for ξ �= 0. As mentioned above, this assumption rules out the case of MHD.

The main objective of this paper is to start the analysis of (1.3) or (1.4) when the constant mul-
tiplicity assumption is relaxed and in particular to investigate the construction of symmetrizers.
It turns out that the influence of the viscosity is much more subtle than expected near multiple
modes. In some cases, it may induce destabilizing effects. Let us list several new phenomena
which can occur when there are multiple modes with nonconstant multiplicity.

• Smooth diagonalization of A0(ξ) implies a smooth block reduction for H0(ζ ). The per-
turbation ρH1 in general couples the different blocks associated to a multiple eigenvalues (and
this occurs for MHD). If the crossing eigenvalues do not have the same behavior with respect
to the boundary (typically if they are not all incoming nor all outgoing), the spectral negative
space E−(ζ, ρ) is not continuous (in general) at ρ = 0. This happens for slow shock waves in
MHD. This phenomena is excluded when the eigenvalues have constant multiplicities; see [22]
(in this case, since crossing eigenvalues are equal, they have the same behavior with respect to
the boundary). Recall from [21] that the continuity of E

− is a necessary condition for Kreiss’
construction of smooth symmetrizers, more precisely for the existence of what is called below,
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smooth K-families of symmetrizers. In any case, the discontinuity of E
− is a major difficulty in

the construction of symmetrizers.
• As a consequence of the previous phenomenon, the Evans function can be discontinuous

at ρ = 0. In the shock problem, the usual Evans function is in every case singular at ρ = 0
(see [28]), but the remark applies to the modified (or desingularized) Evans function introduced
in [6,7] (see below).

• Because of the lack of continuity of the Evans function, it may happen that the strong
Lopatinski stability condition for the hyperbolic problem (at ρ = 0) does not imply the strong
Evans stability condition for small ρ. This is in sharp contrast with the known results obtained
in the constant multiplicity case [6,7,20,24,26,28]. This is illustrated by an example in Section 7
and this can occur for MHD, for some ad hoc boundary condition. An interesting question is to
know whether this can happen or not for physical boundary conditions, in particular for slow
MHD shocks.

On the other hand, we prove in this paper the existence of smooth symmetrizers under a natural
generalized block structure condition for (1.4). We also provide a geometrical characterization
of this condition on the matrices A and B occurring in (1.3). Moreover, modes that are totally
incoming or totally outgoing do not cause trouble in the analysis of E

− nor of the Evans function.
They are easily handled in the case of symmetric systems as in [21]. For instance, an important
outcome of the present paper is the following result. We refer to the next sections for precise
definitions.

Theorem 1.1. Suppose that the full system (1.3) is symmetric. Suppose in addition that the eigen-
values of the hyperbolic system (1.1) are either semi-simple with constant multiplicity or totally
nonglancing in the sense of Definition 4.3. Then, there are K-families of symmetrizers for the
associated reduced system (1.4), for ρ � 0 sufficiently small.

As recalled in the next section, K-families of symmetrizers provide Kreiss symmetrizers for
boundary value problems which satisfy a uniform Lopatinski stability condition. One important
application and motivation is the following

Example 1.2. Fast Lax’ shocks for MHD satisfy the assumptions of Theorem 1.1.

But we also have the following

Counterexample 1.3. Slow Lax’ shocks for MHD do not satisfy the assumptions of Theo-
rem 1.1.

Remark 1.4. Fast shocks with small magnetic field are perturbations of acoustic shocks of gas
dynamics, whose stability has been studied by A. Majda [14]. Therefore, there are good reasons
to think that the uniform Evans–Lopatinski condition is satisfied for Fast Lax’ shocks for MHD,
at least for perfect gases state laws and small magnetic field.

Remark 1.5. When the assumptions of Theorem 1.1 are not satisfied, or more generally when the
generalized block structure fails, one could try to construct nonsmooth symmetrizers as in [21].
Counterexample 1.3 would be a good motivation for that. However, nonsmooth symmetrizer
would require much more sophisticated pseudodifferential tools to handle variable coefficients.
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Moreover, slow shocks are not so closely related to acoustic shocks, and it is not known whether
the uniform Lopatinski condition is likely to be satisfied or not.

When all the eigenvalues have constant multiplicity, Theorem 1.1 is proved in [20] (see
also [19]).1 The construction is based on a reduction of (1.4) to a suitable block diagonal form.
Blocks which correspond to totally nonglancing modes (incoming or outgoing) are treated using
the symmetry of the system as in [21]. For other blocks, we discuss in detail in Section 4 the gen-
eralized block structure condition which is needed for the construction of Kreiss symmetrizers.

The symmetrizers are used in [4–7,20] to prove maximal stability estimates for bound-
ary value problems. The Fourier multipliers Σ(p, ζ ) serve as symbols for pseudo-differential
symmetrizers. All the other steps in these papers, linearization, paralinearization, separation of
frequencies, the high- and medium-frequency analysis, the conversion of the plane wave or sym-
bolic calculus into an operator calculus via the use of a paradifferential calculus, are independent
of the constant multiplicity assumption which was assumed there as a sufficient condition for the
generalized block structure condition. Therefore, all these analyses are valid under the assump-
tions of Theorem 3.7.

As already mentioned, the main novelty of this paper with respect to previous works of the
authors is the consideration of systems with variable multiplicity. To lighten the presentation, we
will now we focus on boundary layers for noncharacteristic boundary value problems. The ex-
tension to classical, conservative Lax-type shocks requires only to incorporate the ideas already
explained in detail in (for instance) [6,7]. (The treatment of nonconservative and or undercom-
pressive shocks involves new issues, and is carried out in [9].) Similarly, we will concentrate
only on the symbolic analysis for constant–coefficient equations and the construction of smooth
Fourier–Laplace multipliers. The passage from these multipliers to linear and nonlinear stability
estimates for variable coefficients is already performed in previous works (see [6,7,20]) and can
be used as an independent black box.

2. Spectral stability

In this section, we recall the main steps of the spectral stability analysis of noncharacter-
istic boundary layers, refereeing to [2,3,6,7,19,20,26,27] for details and further references and
applications to the similar analysis of shock profiles. In particular, we give a new proof of the
Zumbrun–Serre lemma [24,28] which allows for variable multiplicities. Moreover, not only does
it provide a comparison between the Evans function of the viscous equation and the Lopatinski
determinant of the inviscid system, but it also shows the link between the equations themselves:
for low frequencies, the viscous boundary value problem decouples into two boundary value
problems, one of them being a nonsingular perturbation of the limiting hyperbolic boundary
value problem. We will also recall from [7] the main arguments for the high-frequency regime.

2.1. Structural assumptions

Consider a system of equations

1 The reduction to (1.4) is carried out for strictly parabolic viscosities in [19,20] and for partial viscosities in [7].
However, the form of H1 is the same in each case (a consequence of Kawashima’s genuine coupling condition, Assump-
tion (H4) below).
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Lε(u) :=A0(u)∂tu+
d∑
j=1

Aj(u)∂ju− ε
d∑

j,k=1

∂j
(
Bj,k(u)∂ku

)= 0. (2.1)

When ε = 0, L0 is first order and assumed to hyperbolic; ε plays the role of a nondimensional
viscosity and for ε > 0, the system is assumed to be parabolic or at least partially parabolic. Clas-
sical examples are the Navier–Stokes equations of gas dynamics, or the equations of magneto-
hydrodynamics (MHD).

The form of the equations is preserved under a change of unknowns u=Φ(ũ) or multiplica-
tion on the left by a constant invertible matrix. To cover the case of partial viscosity and motivated
by the examples of Navier–Stokes equations and MHD, we make the following assumption:

Assumption 2.1.

(H0) The matrices Aj and Bj,k are C∞ N × N real matrices of the variable u ∈ U∗ ⊂ R
N .

Moreover, for all u ∈ U∗, the matrix A0(u) is invertible.
(H1) Possibly after a change of variables u and multiplying the system on the left by an invertible

constant–coefficient matrix, there is N ′ ∈ {1, . . . ,N} and there are coordinates (u1, u2) ∈
RN−N ′ × RN

′
for the unknown and (f 1, f 2) ∈ RN−N ′ × RN

′
for the right-hand side such

that the following block structure condition is satisfied:

A0(u)=
(
A11

0 0

A21
0 A22

0

)
, Bjk(u)=

(
0 0

0 B22
jk

)
. (2.2)

We refer to [7] or [27] for further comments and explanations. From now on we work with
variables u= (u1, u2) ∈ U∗ such that (2.2) holds. We set

Aj =A−1
0 Aj , Bj,k =A−1

0 Bj,k, (2.3)

and systematically use the notation Mαβ for the sub-blocks of a matrix M corresponding to the
splitting u= (u1, u2). Note that

Bj,k(u) :=A0(u)
−1Bjk(u)=

(
0 0

0 B22
jk(u)

)
. (2.4)

The triangular form of the equations also reveals the importance of the (1,1) block which plays
a special role in the analysis:

L11(u, ∂)=
d∑
j=0

A11
j (u)∂j , or L11(u, ∂)= (A11

0 (u)
)−1
L11(u, ∂). (2.5)

In this spirit, the high-frequency principal part of the equation is

{
L11(u, ∂)u1,

2 22 2
(2.6)
∂tu − εB (u, ∂)u



316 O. Gues et al. / J. Differential Equations 244 (2008) 309–387
with B22(u, ξ) =∑d
j,k=1 ξj ξkB

2,2
j,k(u). We refer to Lemma 7.3 for a more detailed account of

this notion of principal part. The first natural hypothesis is that L11(u, ∂) is hyperbolic and
∂t −B22(u, ∂) is parabolic in the direction dt .

Assumption 2.2.

(H2) There is c > 0 such that for all u ∈ U∗ and ξ ∈ R
d , the eigenvalues of B22(u, ξ) satisfy

Reμ� c|ξ |2.
(H3) For all u ∈ U∗ and all ξ ∈ R

d \ {0}, A11(u, ξ)=∑d
j=1 ξjA

11
j (u) has only real eigenvalues.

For the applications we have in mind such as Navier–Stokes and MHD, the operator L11 is a
transport field and (H3) is trivially satisfied.

Next we assume that the inviscid equations are hyperbolic and that Kawashima’s genuine
coupling condition is satisfied for u, in some open subdomain U ⊂ U∗. Let

A(u, ξ)=
d∑
j=1

ξjAj (u) and B(u, ξ)=
d∑

j,k=1

ξj ξkBj,k(u). (2.7)

Assumption 2.3.

(H4) There is c > 0 such that for u ∈ U and ξ ∈ R
d , the eigenvalues of iA(u, ξ)+B(u, ξ) satisfy

Reμ� c |ξ |2
1 + |ξ |2 . (2.8)

Remark 2.4. (H4) implies hyperbolicity of the inviscid equation: for all u ∈ U and ξ ∈ R
d \ {0}

the eigenvalues of A(u, ξ) are real. The set U may be thought of as the “hyperbolic set” where
interior, inviscid solutions are be constructed, and the larger U∗ as the “hyperbolic–parabolic” set
where exterior, boundary layer solutions are to be constructed, matching U to boundary values
in a multi-scale expansion. In contrast with [7] and [27], we do not assume here that the eigen-
values of A have constant multiplicity. It is precisely the aim of this paper to substitute weaker
conditions, allowing us to treat the case of MHD.

Symmetric systems play an important role, and symmetry will be an important assumption in
some of our results. In particular, Assumption (H4) is satisfied when the following conditions are
satisfied (see [10,11]):

Definition 2.5. The system (2.1) is said to be symmetric dissipative if there exists a real ma-
trix S(u), which depends smoothly on u ∈ U , such that for all u ∈ U and all ξ ∈ R

d \ {0}, the
matrix S(u)A0(u) is symmetric definite positive, S(u)A(u, ξ) is symmetric and the symmetric
matrix ReS(u)B(u, ξ) is nonnegative with kernel of dimension N −N ′.

We consider a boundary value problem for (2.1) and the model case of a half space, which is
given by {x > 0}, in some coordinates (y1, . . . , yd−1, x) for the space variables. We assume that
the boundary is not characteristic both for the viscous and the inviscid equations. The principal
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term of the viscous equation is block diagonal as indicated in (2.6) The B22 block is nonchar-
acteristic by (H2). Restricting U∗ to a component where the profiles will take their values, the
condition for the A11 block reads.

Assumption 2.6. U∗ is connected and for all u ∈ U∗, detA11
d (u) �= 0.

For the inviscid equation, restricting U to the component where the hyperbolic solutions will
take their value, the condition reads

Assumption 2.7. U is connected and for all u ∈ U , det(Ad(u)) �= 0.

By Assumption (H3) and Remark 2.4, A11
d (u) and Ad(u) have only real eigenvalues, which

by Assumptions 2.7 and 2.6 never vanish. This leads to two important indices:

Notation 2.8. With assumptions as above, N+ denotes the number of positive eigenvalues
of Ad(u) for u ∈ U and N1+ the number of positive eigenvalues of A11

d (u) for u ∈ U∗. We also
set Nb =N ′ +N1+.

The block structure (2.6) suggests that Nb is the correct number of boundary conditions for
the well posedness of (2.1), for solutions with values in U∗. Indeed, the high-frequency decou-
pling (2.6) suggests N ′ boundary conditions for u2 and N1+ boundary conditions for u1. On
the other hand, N+ is the correct number of boundary conditions for the inviscid equation for
solutions with values in U . Thus we supplement (2.1) with boundary conditions

Υ
(
u, ε∂yu

2, ε∂xu
2)∣∣
x=0 = 0. (2.9)

Without pretending to maximal generality, we assume that they decouple into zero-order bound-
ary conditions for u1 and zero-order and first-order conditions for u2:

⎧⎪⎪⎨⎪⎪⎩
Υ1
(
u1)∣∣

x=0 = 0,

Υ2
(
u2)∣∣

x=0 = 0,

Υ3
(
u, ε∂yu

2, ε∂xu
2)∣∣
x=0 = 0,

(2.10)

with

Υ3
(
u, ∂yu

2, ∂xu
2)=Kd∂xu2 +

d−1∑
j=1

Kj(u)∂ju
2.

Assumption 2.9. Υ1, Υ2 and Υ3 are smooth functions of their arguments with values in R
N1+ ,

R
N ′−N ′′

and R
N ′′

, respectively, where N ′′ ∈ {0,1, . . . ,N ′}. Moreover, Kd has maximal rank N ′′
and for all u ∈ U∗ the Jacobian matrices Υ ′

1(u
1) and Υ ′

2(u
2) have maximal rankN1+ andN ′ −N ′′,

respectively.
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2.2. Profiles and inviscid boundary conditions

To match constant solutions u of the inviscid problem to solutions satisfying the boundary
conditions, one looks for exact solutions of (2.1), (2.9) of the form:

uε(t, y, x)=w
(
x

ε

)
, (2.11)

such that

lim
z→+∞w(z)= u. (2.12)

The equation for w reads{
Ad(w)∂zw− ∂z

(
Bd,d(w)∂zw

)= 0, z� 0,

Υ
(
w,0, ∂zw

2)∣∣
z=0 = 0.

(2.13)

Solutions are called layer profiles. This equation can be written as a first order system for U =
(w, ∂zw

2), which is nonsingular if and only if A11
d is invertible (this indicates the strong link

between Assumption 2.6 and the ansatz (2.11)):

∂zw
1 = −(A11

d

)−1
A12
d w

3,

∂zw
2 =w3,

∂z
(
Bd,dw

3)= (A22
d −A21

d

(
A11
d

)−1
A12
d

)
w3, (2.14)

and the matrices are evaluated at w = (w1,w2).
The natural limiting boundary conditions for the inviscid problem read

u|x=0 ∈ C, (2.15)

where C denotes the set of end points u such that there is a layer profile w ∈ C∞(R+;U∗) satis-
fying (2.12), (2.13). The properties of the set C as well as the stability analysis of (2.13) depend
on the spectral properties of the linearized equations from (2.13) near w(z). In particular we will
discuss the notion of transversality for the profile w (see [19,20]). However, to avoid repetitions
and prepare the multidimensional stability analysis, we enlarge the framework and consider the
multidimensional linearized equations from the full system (2.1) near solutions (2.11).

For further use, it is convenient to enlarge the class of functions w: consider a function
C∞(R+;U∗) which converges at an exponential rate to and end state u ∈ U : there is δ > 0
such that for all k ∈ N

eδz
∣∣∂kz (w(z)− u)∣∣ ∈ L∞(R+). (2.16)

We refer to such a function as a profile; it need not be a solution of (2.13), though it will be in
applications. Note that solutions of (2.13), (2.12) satisfy the exponential convergence above.

Consider the linearized equations from (2.1), (2.9) around uε =w(x/ε):
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L′
uε
u̇= ḟ , Υ ′(u̇, ε∂yu̇, ε∂xu̇)|x=0 = ġ. (2.17)

Here Υ ′ is the differential of Υ at (w(0),0, ∂zw(0)). L′
uε

is a differential operator with coeffi-
cients that are smooth functions of z := x/ε. Factoring out ε−1 it also appears as an operator in
ε∂t , ε∂y, ε∂x :

L′
uε

= 1

ε
L

(
x

ε
, ε∂t , ε∂y, ε∂x

)
. (2.18)

It has constant coefficients in (t, y), and following the usual theory of constant–coefficient evo-
lution equations, one performs a Laplace–Fourier transform in (t, y), with frequency variables
denoted by γ̃ + iτ̃ and η̃, respectively, yielding the systems

1

ε
L

(
x

ε
, ε(γ̃ + iτ̃ ), iεη̃, ε∂x

)
.

Next, we introduce explicitly the fast variable z = x/ε, rescale the frequency variables as ζ =
(τ, η, γ )= ε(τ̃ , η̃, γ̃ ), and multiply the equation by ε, revealing the equation

L(z, γ + iτ, iη, ∂z)u= f, Υ ′(u, iηu, ∂zu)|z=0 = g, (2.19)

L= −B(z)∂2
z +A(z, ζ )∂z +M(z, ζ ), (2.20)

with in particular, B(z) = Bd,d(w(z)) and A11(z, ζ ) = A11
d (w(z)). We do not give here the ex-

plicit form of A and M. Using (H2) and Assumption 2.2, the equation is written as a first order
system

∂zU = G(z, ζ )U + F, Γ (ζ )U |z=0 = g, (2.21)

where

U = t
(
u, ∂zu

2)= (u1, u2, ∂zu
2) ∈ C

N+N ′
, (2.22)

F = ((A11(z)
)−1
f 1,0,

(
B22(z)

)−1(−f 2 +A21(z)
(
A11(z)

)−1
f 1)). (2.23)

The analysis of this equation depends on the size of the frequencies ζ . When ζ is large, the
character of the equations is dominated by the high-frequency principal part (2.6), and we use a
slowly-varying-coefficients analysis (related to the “tracking lemmas” of [26,27]) based on the
relatively slow rate of change of coefficients compared to the size of the frequency; see [6,7] and
Section 7 below. For small or bounded frequencies ζ , we use the conjugation lemma of [20]. The
condition (2.16) implies that there is δ > 0 and an end state matrix G(u, ζ ), depending on the
endstate u of w, such that

∂kz
(
G(z, ζ )−G(u, ζ ))=O(e−δz). (2.24)
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Lemma 2.10. Given ζ ∈ R
d+1, there is a smooth invertible matrix Φ(z, ζ ) for z ∈ R+ and ζ in

a neighborhood of ζ , such that (2.19) is equivalent to

∂zŨ =G(u, ζ )Ũ + F̃ , Γ̃ (ζ )Ũ |z=0 = g, (2.25)

with U =Φ(z, ζ )Ũ , F =Φ(z, ζ )F̃ and Γ̃ (ζ )= Γ (ζ )Φ(0, ζ ). In addition,Φ andΦ−1 converge
the identity matrix at an exponential rate when z→ ∞.

Moreover, if the coefficients of the operator and w depend smoothly on extra parameters p
(such as the end state u), thenΦ can also be chosen to depend smoothly on p, on a neighborhood
of a given p.

Remark 2.11. The linearized profile equations from (2.13) around w, are exactly (2.19) at
the frequency ζ = 0. In particular, Lemma 2.10 implies that these equations are conjugated to
constant–coefficient equations, via the conjugation by Φ(·,0).

Next we investigate the spectral properties of the matrix G. Below, R
d+1+ denotes the open

half space {ζ = (τ, η, γ ): γ > 0} and R
d+1+ its closure {γ � 0}. We also introduce the matrices

P0(u) :=
(
B22)−1(

A22
d −A21

d

(
A11
d

)−1
A12
d

)
, (2.26)

H0(u, ζ ) := −(Ad(u))−1

(
(iτ + γ )A0(u)+

d−1∑
j=1

iηjAj (u)

)
. (2.27)

Lemma 2.12.

(i) For u ∈ U , P0(u) has no eigenvalue on the imaginary axis. We denote by N2− the number of
its eigenvalues in {Reμ< 0}.

(ii) For u ∈ U and ζ ∈ R
d+1+ \{0},G(u, ζ ) has no eigenvalue on the imaginary axis. The number

of its eigenvalues, counted with their multiplicity, in {Reμ < 0} is equal to N+ + N2− =
Nb :=N ′ +N1+.

(iii) For a given u ∈ U , there are smooth matrices V (u, ζ ) on a neighborhood of (u,0) such that

V −1GV =
(
H 0

0 P

)
(2.28)

with H(u, ζ ) of dimension N ×N , P(u, ζ ) of dimension N ′ ×N ′, and

(a) the eigenvalues of P satisfy |Reμ| � c for some c > 0,
(b) there holds

H(u, ζ )=H0(u, ζ )+O
(|ζ |2), (2.29)

(c) at ζ = 0, V has a triangular form

V (u,0)=
(

Id V

0 Id

)
. (2.30)
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Proof. (i) Take u ∈ U . If v2 ∈ kerP0(u), then t (−(A11
d )

−1A12
d v

2, v2) ∈ kerAd , implying that
0 is not an eigenvalue of P0. Similarly, if iξ is an eigenvalue of P then 0 is an eigenvalue
of iξAd + ξ2Bd , which is impossible by (H4) if ξ �= 0 is real.

(ii) Direct computations show that G(u, ζ )=Gd(u, ζ )−1M(u, ζ ) with

Gd(u, ζ )=
(−Ãd B̃d

J 0

)
, M =

(
M̃ 0N×N ′

0N ′×N IdN ′×N ′

)
with, in the splitting u= (u1, u2),

B̃d(u)=
(

0N−N ′×N ′

B22
d,d(u)

)
, J = (0N ′×N−N ′ IdN ′×N ′ ) ,

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Ã(u, ζ )=Ad(u)−

d−1∑
j=1

iηj
(
Bj,d(u)+Bd,j (u)

)
,

M̃(u, ζ )= (iτ + γ )A0(u)+
d−1∑
j=1

iηjAj (u)+
d−1∑
j,k=1

ηjηkBj,k(u).

In particular, iξ is an eigenvalue of G(u, ζ ) if and only if γ + iτ is an eigenvalue of iA(η, ξ)+
B(η, ξ), which, by (H4), implies either that γ < 0 if ξ is real and (η, ξ) �= 0 or that ζ = 0.

Thus G(u, ζ ) has no eigenvalues on the imaginary axis and the number Ñ of eigenvalues in
{Reμ < 0} is constant for u ∈ U and ζ ∈ R

d+1+ \ {0}. That this number is equal to Nb = N1+ +
N ′ is a consequence of the high-frequency analysis in Lemma 7.3 below (see also Lemma 1.7
in [27]).

(iii) Because M̃(u,0)= 0 and Ã(u,0)=Ad(u), there holds

G(u,0)=
⎛⎝ 0N×N

(−(A11
d )

−1A12
d

IdN ′×N ′

)
0N ′×N P0(u)

⎞⎠ . (2.31)

Since P0 is invertible, G can be smoothly conjugated to a block diagonal matrix as in (2.28),
with V satisfying (2.30) and H(u,0)= 0. More precisely, the matrix V is

V =
(−(A11

d )
−1A12

d P
−
0 1

P−1
0

)
. (2.32)

The expansion (2.29) can be easily obtained by standard perturbation expansions, and we refer
to Lemma 4.23 below for a more precise version.

For ζ small, the number of eigenvalues of P in {Reμ< 0} is equal to N2−, and for γ > 0, the
number of eigenvalues of H0(u, ζ ) in the negative half space is constant, by hyperbolicity, and
equal to N+. This implies that Ñ =N+ +N2−. �

Similarly, one considers the linearized equations from the inviscid hyperbolic problem
L0(u)= 0 around the constant solution u:
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L′
0,uu̇= ḟ . (2.33)

After performing a Laplace–Fourier transform, this equation reads

L0(u, γ + iτ, iη, ∂x)u= f (2.34)

or, with H0 defined at (2.27),

∂xu=H0(u, ζ )u+A−1
d (u)f. (2.35)

An important property for profiles is the notion of transversality (see [20] or [19] for the case
of total viscosity). It concerns the linearized equations from (2.11) around w. As mentioned in
Remark 2.11, they correspond exactly to the first order system (2.19) with ζ = 0. We abbreviate
the homogeneous problem as {

L(z,0, ∂z)ẇ = 0, z� 0,

Υ ′(ẇ,0, ∂zẇ2)∣∣
z=0 = 0.

(2.36)

A corollary of Lemmas 2.10 and 2.12 is that the solutions of the homogeneous equation
L(z,0, ∂z)ẇ = 0 form a space of dimension N +N ′, parametrized by (uH ,uP ) ∈ C

N × C
N ′

:

ẇ(z)=ΦH(z)uH +ΦP (z)ezP0(u)uP (2.37)

where the matrices ΦH(z) and ΦP (z) are smooth and bounded on R+ and ΦH(z) → Id as
z→ +∞. The solution is bounded if and only if uP belongs to the negative space E

−(P0(u))

of P0(u), that is the invariant space of P0(u) associated to the spectrum lying in {Reμ< 0}; thus
the space S of bounded solutions has dimension N + N2−. The space of solutions that tend to
zero at infinity, denoted by S0, has dimension N2−, corresponding to the conditions uH = 0 and
uP ∈ E

−(P0(u)).
The boundary conditions in (2.36) read

Γ HuH + Γ PuP := Γ (ẇ, ∂zẇ2)∣∣
z=0 = 0. (2.38)

Definition 2.13. The profile w is said to be transversal if

(i) there is no nontrivial solution ẇ ∈ S0 which satisfies the boundary conditions
Γ (ẇ, ∂zẇ

2)|z=0 = 0,
(ii) the mapping ẇ 	→ Γ (ẇ, ∂zẇ

2)|z=0 from S to C
Nb has rank Nb .

Equivalently, it means that kerΓ P ∩ E
−(P0(u)) = {0} and that the rank of the matrix

(Γ H ,Γ P ) from C
N × E

−(P0(u)) to C
Nb is Nb .

If the profile satisfies condition (i), there is a decomposition

C
Nb = FH ⊕ F0,P , F0,P := Γ PE

−(P0(u)
)

(2.39)

with dim FH =N+ and dim F0,P =N2−. Denote by πH and πP the projections associated to this
splitting.
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For ẇ ∈ S given by (2.37), one can eliminate uP from the boundary conditions (2.38) and
write them

Γ reduH = 0, uP =R0,P uH , (2.40)

with

Γ red := πHΓ H , R0,P := −(Γ P )−1πPΓ H (2.41)

and (Γ P )−1 is the inverse of the mapping Γ P from E
−(P0(u)) to F0,P .

With these notations, (ii) means that Γ red has rank N+. Its kernel kerΓ red is the space of u̇ ∈
R
d such that there is a solution of ẇ of (2.36) with end point u̇. It has dimension N −N+.

Remark 2.14. When w is a layer profile, solution of (2.13), the transversality condition implies
that near the end point u, the set C in (2.15) which describes the limiting hyperbolic conditions
is a smooth manifold of dimension N− = N −N+ and kerΓ red is the tangent space to C at u.
Therefore, the natural boundary condition for the linearized hyperbolic equation, and in particular
for (2.33), are

Γ redu= h. (2.42)

2.3. Evans functions and Lopatinski determinant

For a given ζ ∈ R
d+1+ \ {0}, we now investigate the well-posedness of Eq. (2.19) or equiva-

lently (2.21) or (2.25). Introduce the space E
−(ζ ) of initial conditions (u(0), ∂zu2(0)) (or equiv-

alently U(0)) such that the corresponding solution of L(z, ζ, ∂z)u= 0 (or ∂zU − G(z, ζ )U = 0)
is exponentially decaying at +∞. Lemmas 2.10 and 2.12 show that

E
−(ζ )=Φ(0, ζ )E−(G(u, ζ )) (2.43)

where we use the following notations:

Notation 2.15. Given a square matrix M , E
−(M) (respectively E

+(M)) denotes the invariant
space ofM associated to the spectrum ofM contained in {Reμ< 0} (respectively {Reμ> 0}).

In particular, by Lemma 2.12, E
−(ζ ) is a smooth vector bundle for ζ ∈ R

d+1+ \ {0} and
dim(E−(ζ ))=Nb.

The problems (2.19), (2.21) or (2.25) are well posed if and only if

E
−(ζ )∩ kerΓ (ζ )= {0} or E

−(G(u, ζ ))∩ ker Γ̃ (ζ )= {0}. (2.44)

Note that, because the rank of Γ is at most Nb and the dimension of E
− is Nb , this condition

implies and is equivalent to

C
N+N ′ = E

−(ζ )⊕ kerΓ (ζ ) or C
N+N ′ = E

−(G(u, ζ ))⊕ ker Γ̃ (ζ ). (2.45)
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The Evans function is defined as

D(ζ)= ∣∣detN+N ′
(
E

−(ζ ),kerΓ (ζ )
)∣∣ (2.46)

where, for subspaces E and F of C
n, detn(E,F) is equal to 0 if dim E + dim F �= n and is the

n× n determinant formed by orthonormal bases in E and F if dim E + dim F = n.

Remark 2.16. The definition of the determinant above depends on choices of bases. Note that
changing bases in E and F changes the determinant by a complex number of modulus one, thus
leaves |det(E,F)| invariant. But it also depends on the choice of a scalar product on C

n. Changing
the scalar products (or changing of bases in C

n) changes the function det(E,F) to a new function
d̃et(E,F) such that c|det(E,F)| � |d̃et(E,F)| � c−1|det(E,F)| where c > 0 is independent of
the spaces E and F. We will denote by

det ≈ d̃et or D ≈ D̃ (2.47)

this property. In particular, the definition of D is independent of the choice of orthonormal bases
in E

− and kerΓ and all the uniform stability conditions stated below are independent of the
choice of the scalar product.

Remark 2.17. If the coefficients of the operator and the profile depend smoothly on parameters p,
then the Evans function is also a smooth function of the parameters.

These notations being settled, the weak stability condition, which is a necessary condition for
well posedness in Sobolev spaces of (2.17), reads:

Definition 2.18. Given a profile w, the linearized equation (2.17) satisfies the weak spectral
stability condition if D(ζ) �= 0 for all ζ ∈ R

d+1+ \ {0}.

The next lemma is useful and elementary.

Lemma 2.19. Suppose that E ⊂ C
n and Γ : C

n 	→ C
m, with rankΓ = dim E = m. If

|det(E,kerΓ )| � c > 0, then there is C, which depends only on c and |Γ ∗(Γ Γ ∗)−1| such that

∀U ∈ E |U | � C|Γ U |.

Conversely, if this estimate is satisfied then |det(E,kerΓ )| � c where c > 0 depends only on C
and |Γ |.

Proof. Let π = Γ ∗(Γ Γ ∗)−1Γ denote the orthogonal projector on (kerΓ )⊥. Diagonalizing the
hermitian form (πe,πe), yields orthonormal bases {ej } and {fj } in E and (kerΓ )⊥, respectively,
such that πej = λjfj with 0 < λj � 1. Take any basis {gk} of kerΓ . Expressing the ej in the
base {fk, gl}, implies that |det(E,kerΓ )| =∏

λj . Since λj � 1 for all j , if this determinant is
larger than or equal to c > 0, then minλj � c and for all e ∈ E

c|e| � |πe| � ∣∣Γ ∗(Γ Γ ∗)−1∣∣|Γ e|.
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Conversely, if the estimate is satisfied, then |e| � C|Γ ||πe| since Γ e= Γ πe for all e ∈ E. There-
fore λjC|Γ | � 1 and the determinant is at least equal to (C|Γ |)−m. �

There are analogous definitions for the linearized hyperbolic problem (2.33) with boundary
conditions (2.42). For γ > 0, H0(u, ζ ) has no eigenvalues on the imaginary axis, as a conse-
quence of the hyperbolicity assumption (see Remark 2.4). The Lopatinski determinant is defined
for ζ ∈ R

d+1+ := {γ > 0} by

DLop(ζ )=
∣∣det

(
E

−(H0(u, ζ ),kerΓ red
))∣∣. (2.48)

By homogeneity of H0, this determinant is homogeneous of degree zero in ζ and one can restrict
attention to ζ ∈ Sd = {|ζ | = 1}.

Definition 2.20. The linearized equation (2.33), (2.42) satisfies the weak spectral stability condi-
tion if DLop(ζ ) �= 0 for all ζ ∈ R

d+1+ .

2.4. Uniform spectral stability and maximal estimates

The weak stability conditions and the reduction to constant coefficients of Lemma 2.10 guar-
antee the well posedness of (2.19) for fixed ζ ∈ R

d+1+ \ {0} and in particular estimates of the
form

‖u‖L2 + ∥∥∂zu2
∥∥
L2 + ∣∣u(0)∣∣+ ∣∣∂zu2(0)

∣∣� C(ζ )(‖f ‖L2 + |g|). (2.49)

The next step in the study of (2.17), is to perform an inverse Fourier–Laplace transform and thus
requires suitable estimates for the solutions of (2.19), with a precise description of the constants
in the estimate above.

By continuity in ζ , the weak stability condition implies that the estimate (2.49) is satisfied
with a uniform constant C when ζ remains in a compact subset of R

d+1+ \ {0}. Thus the true
question is to get a detailed behavior of the estimate when ζ → 0 and when |ζ | → ∞.

2.4.1. Low and medium frequencies
Consider first the low-frequency case. Following [20], the uniform stability condition reads:

Definition 2.21. Given a profile w, the uniform spectral stability condition for low frequencies is
satisfied when there are c > 0 and ρ0 > 0 such that D(ζ)� c for all ζ ∈ R

d+1+ with 0< |ζ | � ρ0.

By Assumption 2.9, the rank of Γ (ζ ) is always Nb , and the norms of Γ (ζ ) and (Γ Γ ∗)−1 are
uniformly bounded for ζ bounded. Thus, by Lemma 2.19, the low-frequency uniform stability
condition holds if and only if there are C and ρ0 > 0 such that

∀ζ ∈ R
d+1+ , 0< |ζ | � ρ0, ∀U ∈ E

−(ζ ) : |U | � C∣∣Γ (ζ )U ∣∣. (2.50)

Following [20], the expected maximal estimates for low and medium frequencies for the so-
lutions of (2.19) read

ϕ‖u‖L2(R+) +
∥∥∂zu2

∥∥
L2(R+) +

∣∣u(0)∣∣+ ∣∣∂zu2(0)
∣∣� C( 1 ‖f ‖L2(R+) + |g|

)
(2.51)
ϕ
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where ϕ = (γ + |ζ |2) 1
2 with C independent of ζ ∈ R

d+1+ \ {0}, |ζ | � ρ0. Note that for fixed
|ζ |> 0, this estimate implies (2.49).

The estimates (2.51) correspond to estimates for the solutions of the first order system (2.21):

ϕ
∥∥U1

∥∥
L2(R+) +

∥∥U2
∥∥
L2(R+) +

∣∣U(0)∣∣� C( 1

ϕ
‖F‖L2(R+) + |g|

)
(2.52)

where U = (U1,U2) ∈ C
N × C

N ′
. For the constant–coefficient system (2.25) the expected esti-

mates read:

ϕ
∥∥Ũ1

∥∥
L2(R+) +

∥∥Ũ2
∥∥
L2(R+) +

∣∣Ũ (0)∣∣� C( 1

ϕ
‖F̃‖L2(R+) + |g|

)
. (2.53)

Lemma 2.22. The estimates (2.52) imply (2.53) which imply (2.51).

Proof. (See [20].) Clearly, (2.51) is a particular case of (2.52) applied to source terms F of the
special form (2.23). Moreover, using the conjugation Lemma 2.10, there holds U =O(1)Ũ and
Ũ =O(1)U and similar estimates for F and F̃ . Moreover,

U1 =O(1)Ũ , U2 =O(e−θz)Ũ1 +O(1)Ũ2

with θ > 0. We use the inequality

∥∥e−θzŨ1
∥∥
L2 �

∣∣Ũ1(0)
∣∣+ ∥∥∂zŨ1

∥∥
L2 .

Moreover, the form of G(u, ζ ) at ζ = 0 shows that

∂zŨ
1 =O(|ζ |)Ũ1 +O(1)Ũ2 + F̃ 1.

Therefore,

∥∥U2
∥∥
L2 �

∥∥Ũ2
∥∥
L2 + ∣∣Ũ1(0)

∣∣+ |ζ |∥∥Ũ1
∥∥
L2 + ∥∥F̃ 1

∥∥
L2 .

Since |ζ | � ϕ, this shows that (2.53) implies (2.52). �
For ζ in a compact subset of R

d+1+ \ {0}, all these estimates are true under the weak stability
condition (see e.g. [20]). Note also (taking f = 0 in (2.51)) that the uniform stability condi-
tion (2.50) is necessary for the validity of the maximal estimate. The main subject of this paper is
to prove that the uniform stability condition implies the maximal estimate (2.51) for low frequen-
cies, under structural assumptions on the system weaker than in [6,7,20], allowing for instance
to consider MHD.
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2.4.2. High frequencies
For the high-frequency analysis, the maximal estimates that are proven in [7] concern homo-

geneous boundary conditions (g = 0) and read

(1 + γ )∥∥u1
∥∥
L2(R+) +Λ

∥∥u2
∥∥
L2(R+) +

∥∥∂zu2
∥∥
L2(R+)

+ (1 + γ ) 1
2
∣∣u1(0)

∣∣+Λ 1
2
∣∣u2(0)

∣∣+Λ− 1
2
∣∣∂zu2(0)

∣∣
� C

(∥∥f 1
∥∥
L2(R+) +Λ−1

∥∥f 2
∥∥
L2(R+)

)
, (2.54)

where Λ is the natural parabolic weight

Λ(ζ)= (1 + τ 2 + γ 2 + |η|4) 1
4 . (2.55)

The balance between the weights for u1 and for u2 is subtle: these components are decoupled
in the high-frequency principal system (2.6) and the weights depend on their actual coupling
through the nondiagonal terms and the boundary conditions. Here we see the importance of the
form (2.10) of the boundary conditions. Their linearized version, Υ ′(u, iηu2, ∂zu

2)= g reads

⎧⎪⎨⎪⎩
Γ1u

1(0) := Υ ′
1

(
w1(0)

) · u1(0)= g1,

Γ2u
2(0) := Υ ′

2

(
w2(0)

) · u2(0)= g2,

Γ3(ζ )
(
u2(0), ∂zu

2(0)
) :=Kd∂zu2(0)+Ktg(η)u

2(0)= g3,

(2.56)

with

Ktg =
d−1∑
j=1

iηjKj
(
w(0)

)
. (2.57)

The complete maximal estimate with nonvanishing boundary source terms g, reads

(1 + γ )∥∥u1
∥∥
L2(R+) +Λ

∥∥u2
∥∥
L2(R+) +

∥∥∂zu2
∥∥
L2(R+)

+ (1 + γ ) 1
2
∣∣u1(0)

∣∣+Λ 1
2
∣∣u2(0)

∣∣+Λ− 1
2
∣∣∂zu2(0)

∣∣
� C

(∥∥f 1
∥∥
L2(R+) +Λ−1

∥∥f 2
∥∥
L2(R+)

)+C((1 + γ ) 1
2
∣∣g1
∣∣+Λ 1

2
∣∣g2
∣∣+Λ− 1

2
∣∣g3
∣∣) (2.58)

with C independent of ζ ∈ R
d+1+ large. Taking f = 0, this implies the following necessary con-

dition: there are C and ρ1 > 0 such that

∀ζ ∈ R
d+1+ , |ζ | � ρ1, ∀U = (u1, u2, u3) ∈ E

−(ζ ):

(1 + γ ) 1
2
∣∣u1
∣∣+Λ 1

2
∣∣u2
∣∣+Λ− 1

2
∣∣u3
∣∣

� C
(
(1 + γ ) 1

2
∣∣Γ1u

1
∣∣+Λ 1

2
∣∣Γ2u

2
∣∣+Λ− 1

2
∣∣Γ3(ζ )

(
u2, u3)∣∣). (2.59)



328 O. Gues et al. / J. Differential Equations 244 (2008) 309–387
This can be reformulated in terms of a rescaled Evans function (see [20]): In C
N+N ′

and C
Nb

introduce the mappings

Jζ
(
u1, u2, u3) := ((1 + γ ) 1

2 u1,Λ
1
2 u2,Λ− 1

2 u3),
Jζ
(
g1, g2, g3) := ((1 + γ ) 1

2 g1,Λ
1
2 g2,Λ− 1

2 g3). (2.60)

Note that JζΓ (ζ )U = Γ sc(ζ )JζU with

Γ scU = (Γ1u
1,Γ2u

2,Kdu
3 +Λ−1Ktg(η)u

2). (2.61)

Thus (2.59) reads

∀U ∈ JζE−(ζ ): |U | � C∣∣JζΓ (ζ )J−1
ζ U

∣∣. (2.62)

Introducing the rescaled Evans function

Dsc(ζ )= ∣∣det
(
JζE

−(ζ ), Jζ kerΓ (ζ )
)∣∣, (2.63)

we see that this stability condition is equivalent to the following definition:

Definition 2.23. Given a profile w, the linearized equation (2.17) satisfies the uniform spectral
stability condition for high frequencies when there are c > 0 and ρ1 > 0 such thatDsc(ζ )� c for
all ζ ∈ R

d+1+ with |ζ | � ρ1.

Note that for ζ in bounded sets, Jζ and J−1
ζ are uniformly bounded and D(ζ)≈Dsc(ζ ), thus

the condition Dsc(ζ ) �= 0 is nothing but a reformulation of the weak stability condition.
By Lemma 2.19, the high-frequency uniform stability is equivalent to (2.59). In Section 7,

we will recall from [7] that the uniform spectral stability implies the high-frequency maximal
estimates (2.58), under structural assumptions on the system that are satisfied in many examples,
including Navier–Stokes and MHD.

Remark 2.24. The structural assumptions we refer to are connected with well-posedness of the
initial-value problem for the viscous equations. For shock waves, they by themselves guarantee
spectral stability and maximal estimates [7]. For boundary-value problems, they reduce spectral
stability to well-posedness of the frozen-coefficient boundary-value problem at the boundary;
see [8,20] for further discussion.

2.4.3. The inviscid case
There are analogous definitions for the linearized hyperbolic problem (2.33) with boundary

conditions (2.42). Recall that the Lopatinski determinant is defined at (2.48). Definition 2.20 of
weak stability is strengthened as follows.

Definition 2.25. The linearized equation (2.33), (2.42) satisfies the uniform spectral stability
condition when there are c > 0 such that DLop(ζ )� c for all ζ ∈ Sd+ := Sd ∩ {γ > 0}.
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This uniform stability condition is equivalent to a uniform estimate for all ζ ∈ Sd+:

∀u ∈ E
−(H0(u, ζ )

)
: |u| � C|Γ redu|. (2.64)

The expected maximal estimates for solutions of (2.33), (2.42) are

γ
1
2 ‖u‖L2 + ∣∣u(0)∣∣� C(γ− 1

2 ‖f ‖L2 + |h|) (2.65)

with C independent of ζ ∈ R
d+1+ .

2.5. The Zumbrun–Serre–Rousset theorem and the reduced low-frequency problem

In this section, we extend the previous results of [28] and [24] which link the low-frequency
uniform stability of the viscous regularizations and the uniform stability of the limiting inviscid
problem. First, we recall that the transversality of the profile is a necessary condition.

Proposition 2.26. Given a profile w, if the low-frequency uniform spectral stability condition is
satisfied, then w is transversal.

Proof. Lemma 2.12 implies that for ζ �= 0 small enough, Ũ is a solution of (2.25) if and only if
t (uH ,uP )= V −1(ζ )Ũ satisfies

∂zuH = H(u, ζ )uH + fH , (2.66)

∂zuP = P(u, ζ )uP + fP , (2.67)

ΓH (ζ )uH (0)+ ΓP (ζ )uP (0) := Γ̃ (ζ )Ũ (0)= g, (2.68)

where t (fH ,fP )= V −1(ζ )F̃ and ΓH (respectively ΓP ) denotes the restriction of Γ̃ V to C
N ×

{0} (respectively {0} × C
N ′

). In particular,

E
−(G(u, ζ ))= V (ζ )(E−(H(u, ζ ))⊕ E

−(P(u, ζ ))).
With (2.50), this shows that the low-frequency uniform stability condition holds if and only if
there are C and ρ0 > 0 such that for all ζ ∈ R

d+1+ with 0< |ζ | � ρ0

∀uH ∈ E
−(H(u, ζ )), ∀uP ∈ E

−(P(u, ζ )):
|uH | + |uP | � C∣∣ΓH (ζ )uH + ΓP (ζ )uP

∣∣. (2.69)

In particular,

∀uP ∈ E
−(P(u, ζ )): |uP | �C∣∣ΓP (ζ )uP ∣∣. (2.70)

By Lemma 2.12, E
−(P (u, ζ )) is a smooth bundle for ζ in a neighborhood of 0. Moreover, Γ̃ (ζ )

and ΓP (ζ ) are smooth around the origin. This implies that |uP | � C|ΓP (0)uP | on E
−(P (u,0)),

implying that condition (i) of Definition 2.13 is satisfied.
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Since dim(E−(G(ζ )))= rank Γ̃ (ζ )=Nb , (2.69) implies that for all h ∈ C
Nb and all ζ ∈ R

d+1+
with 0 < |ζ | � ρ0, there is Ũ (ζ ) = V (ζ )(uH (ζ ), uP (ζ )) in E

−(ζ ) ⊂ V (ζ )(CN ⊕ E
−(P (ζ )))

such that Γ̃ (ζ )Ũ(ζ ) = h and |Ũ (ζ )| � c|h|. By compactness and continuity, letting ζ tend to
zero, implies that there is Ũ = V (0)(uH ,uP ) in V (0)(CN ⊕ E

−(P (0))) such that Γ̃ (0)Ũ = h,
showing that condition (ii) of Definition 2.13 is also satisfied. �

Suppose that the profile w is transversal. Then, by (i) of Definition 2.13 and Remark 2.11,
ΓP (ζ ) is an isomorphism from E

−(P (u, ζ )) to its image F0,P when ζ = 0; by continuity this
extends to a neighborhood of the origin and the decomposition (2.39) valid at ζ = 0, extends
smoothly on a neighborhood of the origin:

C
Nb = FH ⊕ FP (ζ ), FP (ζ ) := ΓP (ζ )E−(P(u, ζ )). (2.71)

Denote by πH (ζ ) and πP (ζ ) the projections associated to this splitting and define the reduced
boundary operator as

Γred(ζ ) := πH (ζ )ΓH (ζ ), (2.72)

as well as the reduced boundary value problem

∂zuH −H(u, ζ )uH = fH , Γred(ζ )uH (0)= h. (2.73)

The reduced Evans function is

Dred(ζ )=
∣∣det

(
E

−(H(u, ζ )),kerΓred(ζ )
)∣∣. (2.74)

Definition 2.27. The reduced uniform stability condition is satisfied if Dred(ζ ) � c > 0 for all
ζ ∈ R

d+1 \ {0} with |ζ | small enough.

This is equivalent to the condition

∀u ∈ E
−(H(u, ζ )): |u| � C∣∣Γred(ζ )u

∣∣, (2.75)

for ζ ∈ R
d+1 \ {0} small.

Theorem 2.28. Given a profile w, the linearized equation (2.19) satisfies the low-frequency
uniform spectral stability condition if and only if

(i) w is transversal,
(ii) the reduced problem (2.73) satisfies the reduced uniform stability condition.

Proof. We have already shown that the low-frequency uniform stability requires that w is
transversal. Moreover, using the splitting (2.71), we see that the uniform stability condi-
tions (2.50) or (2.69) are equivalent to

|uH | + |uP | � C(|ΓreduH | + |ΓPuP + πPΓHuH |) (2.76)



O. Gues et al. / J. Differential Equations 244 (2008) 309–387 331
for all uH ∈ E
−(H) and uP ∈ E

−(P ) (to lighten notations we have omitted the ζ dependance).
Since ΓP is surjective from E

−(P ) onto FP , for all uH ∈ E
−(H) there is uP ∈ E

−(P ) such that
ΓPuP = −πPΓHuH and (2.76) implies (2.75).

Conversely, if the profile is transverse, the estimate (2.70) is valid at ζ = 0 and extend by
continuity to ζ in a neighborhood of 0. With (2.75), this clearly implies (2.76). �

It remains to link the reduced uniform stability condition to the uniform (Lopatinski) sta-
bility condition for the hyperbolic boundary value problem, that is for the problem (2.33) with
boundary conditions (2.42). Note that these boundary conditions are given by Γ red = Γred(0)
(see Remark 2.14).

Because H vanishes at ζ = 0, it is natural to use polar coordinates:

ζ = ρζ̌ , ρ = |ζ |, ζ̌ ∈ Sd. (2.77)

In these coordinates

H(u, ζ )= ρȞ (u, ζ̌ , ρ), Ȟ (u, ζ̌ , ρ)=H0(u, ζ̌ )+O(ρ). (2.78)

Changing z to ž= ρz, u(z) to ǔ(ž) and f (z) to ρf̌ (ž) the reduced problem (2.73) is equivalent
to

∂žǔH −H(u, ζ̌ , ρ)ǔH = f̌H , Γred(ζ )ǔH (0)= h, (2.79)

which, for ρ = 0, is exactly the inviscid problem (2.35) (2.42). We are thus led to a nonsingular
perturbation problem.

Clearly, for ζ ∈ Sd+ := Sd ∩ {γ̌ � 0}, there holds E
−(H(u, ζ )) = E

−(Ȟ (u, ζ̌ , ρ)) and
Dred(ζ )= Ď(ζ̌ , ρ) with

Ď(ζ̌ , ρ)= ∣∣det
(
E

−(Ȟ (u, ζ̌ , ρ),kerΓred(ρζ̌ )
))∣∣. (2.80)

Remark 2.29. For γ̌ > 0, H0(u, ζ̌ ) has no eigenvalues on the imaginary axis, as a consequence
of hyperbolicity (see Remark 2.4). By perturbation, this property holds true for Ȟ (u, ζ̌ , ρ) for ρ
small enough (depending on γ̌ > 0). This shows that the vector bundle E

−(Ȟ (u, ζ̌ , ρ)) which
was defined on Sd+ × ]0, ρ0] has a smooth extension to ∈ S+ × [0, ρ0], as well as Ď. Comparing
with the definition of the Lopatinski determinant (2.48), we see that

DLop(ζ̌ )= Ď(ζ̌ ,0), for γ̌ > 0. (2.81)

The next theorem, combined with Theorem 2.28, extends Rousset’s theorem [24] (see
also [28] for shocks).

Theorem 2.30. Given a transverse profilew, if the reduced uniform spectral stability condition is
satisfied, then the linearized hyperbolic problem (2.33), (2.42) satisfies reduced uniform stability
condition.
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Conversely, if the linearized hyperbolic problem is uniformly stable and the vector bundle
E

−(Ȟ (u, ζ̌ , ρ)) has a continuous extension to Sd+ × [0, ρ0], then the reduced uniform spec-
tral stability condition is satisfied and the linearized problem (2.17) satisfies the uniform low-
frequency stability condition.

Proof. The uniform estimate (2.75) implies that

|u| � C∣∣Γred(ζ )u
∣∣

for u ∈ E
−(Ȟ (u, ζ̌ , ρ)), ζ̌ ∈ Sd+ and ρ > 0 small. If γ̌ > 0, every term is continuous up to ρ = 0

and the estimate above implies (2.64), that is

|u| �C∣∣Γred(0)u
∣∣

for u ∈ E
−(H0(u, ζ̌ )), ζ̌ ∈ Sd+. This implies that the hyperbolic problem in uniformly stable.

If E
−(Ȟ (u, ζ̌ , ρ)) has a continuous extension to Sd+ × [0, ρ0], the reduced Evans function is

has a continuous extension to Sd+ × [0, ρ0]. The hyperbolic uniform stability and (2.81) imply
that

Ď(ζ̌ , ρ)� c > 0

for ζ̌ ∈ Sd+ and ρ = 0. By continuity, this extends first to ζ̌ ∈ Sd+ and next to ρ ∈ [0, ρ1] for some
ρ1 > 0. �
Remark 2.31. It is proved in [22] that when the eigenvalues of the hyperbolic symbol A(u, ξ)
have constant multiplicity, and more generally when there is a smooth K-family of symmetrizers
(see the definition below), then the vector bundle E

−(Ȟ (u, ζ̌ , ρ)) has a continuous extension
to ρ = 0. The main concern of this paper is to construct K-families for systems with variable
multiplicity. This is possible under suitable assumptions, and therefore the two theorems above
extend a result of F. Rousset [24]. However, we will also show that the bundle E does not always
admit a continuous extension, with the result that the hyperbolic problem can be uniformly stable
while the viscous problem is strongly unstable in the low-frequency regime. This seems to be a
new phenomenon.

Assuming transversality ofw, Theorem 2.28 implies that the uniform spectral stability for low
frequency is equivalent to the spectral stability for the reduced problem. There is an analogue for
maximal estimates. The maximal estimates for the reduced problem (2.79) read

(γ̌ + ρ) 1
2 ‖ǔH‖L2 + ∣∣ǔH (0)∣∣� C((γ̌ + ρ)− 1

2 ‖f̌H‖L2 + |h|) (2.82)

with C independent of ζ̌ ∈ Sd+ and ρ ∈ ]0, ρ0]. Note that for ρ = 0 and γ̌ > 0, this is the max-
imal estimate for the inviscid problem. Scaling back to the original variables, this estimate is
equivalent to

(
γ + |ζ |2) 1

2 ‖uH‖L2 + ∣∣uH (0)∣∣� C((γ + |ζ |2)− 1
2 ‖fH‖L2 + |h|) (2.83)

for the solutions of (2.73).
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Theorem 2.32. Suppose that the profile w is transversal. Then the maximal estimates (2.53) are
valid for low frequencies if and only if the maximal estimates (2.82) for the reduced problem
hold true.

Proof. By Lemma 2.12 P(u, ζ ) has no purely imaginary eigenvalues. Thus, using symmetrizers
(see e.g. [20] and Section 3 below), there holds∥∥u+

P

∥∥
L2 + ∣∣u+

P (0)
∣∣� ∥∥f+

P

∥∥
L2 , (2.84)∥∥u−

P

∥∥
L2 �

∥∥f−
P

∥∥
L2 + ∣∣u−

P (0)
∣∣, (2.85)

where ± denotes the smooth projections on the spaces E
±(P (u, ζ )).

The splitting (2.71) implies that the boundary condition (2.68) reads

πHg = ΓreduH (0)+ πHΓPu+
P (0),

πP g = ΓPu−
P (0)+ πPΓHuH (0)+ πHΓP u+

P (0).

Moreover ΓP is invertible on E−(P ), hence |ΓPu−
P (0)| ≈ |u−

P (0)| and∣∣ΓreduH (0)
∣∣� |πHg| +

∣∣u+
P (0)

∣∣,∣∣u−
P (0)

∣∣� |πP g| +
∣∣uH (0)∣∣+ ∣∣u+

P (0)
∣∣.

Suppose that the estimate (2.83) is satisfied. Then,

ϕ‖uH‖L2 + ∣∣uH (0)∣∣� ϕ−1‖fH‖L2 + |πHg| +
∣∣u+
P (0)

∣∣.
With (2.84), this implies that

ϕ‖uH‖L2 + ∥∥u−
P

∥∥
L2 + ∣∣uH (0)∣∣+ ∣∣u−

P (0)
∣∣� ϕ−1‖fH‖L2 + ∥∥f−

P

∥∥
L2 + |g| + ∣∣u+

P (0)
∣∣.

Thus, with (2.84), we obtain that

ϕ‖uH‖L2 + ‖uP ‖L2 + ∣∣uH (0)∣∣+ ∣∣uP (0)∣∣� ϕ−1‖fH‖L2 + ‖fP ‖L2 + |g|.

Because V (u,0) has the special form (2.30), Ũ = V (uH ,uP )= (Ũ1, Ũ2) satisfies

Ũ1 =O(1)uH +O(1)uP , Ũ2 =O(|ζ |)uH +O(1)uP .

Therefore, the solutions of (2.25) satisfy

ϕ
∥∥Ũ1

∥∥
L2 + ∥∥Ũ2

∥∥
L2 + ∣∣Ũ (0)∣∣� ϕ−1‖F̃‖L2 + |g|

that is the maximal estimate (2.53).
Conversely, assume that the maximal estimate (2.53) is satisfied. Suppose that uH is a solution

of (2.66). By transversality, ΓP is surjective from E
−(P, ζ ) to its image FP (ζ ) and there exists

there is uP (0) in E
−(P, ζ ) such that
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ΓPuP (0)= −πPΓHuH (0) ∈ FP (ζ ). (2.86)

Consider uP = ezP uP (0) which is well defined and rapidly decaying at infinity since uP (0) ∈
E

−(P, ζ ). It is a solution of (2.67) with fP = 0. Then Ũ = V (uH ,uP ) is a solution of (2.25)
with F̃ = V (fH ,0). Thus (uH ,uP )= V −1Ũ and there holds

‖uH‖L2 � ‖Ũ‖L2,
∣∣uH (0)∣∣� ∣∣Ũ(0)∣∣, ‖F̃‖L2 � ‖fH‖L2

and, by (2.86), Γ̃ Ũ (0)= ΓHuH (0)+ ΓPuP (0)= ΓreduH (0). Thus the estimate (2.53) immedi-
ately implies (2.83). �
3. Low frequency analysis: The main results

This section is mainly devoted to the study of the reduced equation (2.79), which is a non-
singular perturbation of the inviscid problem (2.33). Our goal is to perform an analysis without
assuming constant multiplicity of eigenvalues, thus allowing for examples such as MHD. The
inviscid case is considered in [21], and we want to extend the results to small viscous perturba-
tions.

3.1. Symmetrizers

Consider the constant–coefficient linear first order system (2.25). For clarity, we drop the
tildes and reserve the notation u,U, . . . for the unknowns and call p ∈ U the parameter called u
in this equation, which now reads

∂zU =G(p, ζ )U + F, Γ (p, ζ )U(0)= g. (3.1)

To prove energy estimates for the solutions of this equation, the main step is to construct sym-
metrizers. They are self adjoint matrices Σ(p, ζ ) such that

Re
(
Σ(p, ζ )G(p, ζ )

)
> 0. (3.2)

The symmetrizer is adapted to the boundary conditions and provides maximal estimates for the
traces when

Σ(p, ζ ) > 0 on kerΓ (p, ζ ). (3.3)

The construction of such symmetrizers is in two steps: first, one constructs a family of sym-
metrizers Σκ , which is independent of the boundary conditions; second one uses the uniform
Lopatinski or Evans condition, to prove that if κ is large enough then the symmetrizer is adapted
to the boundary condition.

More precisely, one considers a splitting

C
N+N ′ = E

−(p, ζ )⊕ E
+(p, ζ ) (3.4)
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where E
−(p, ζ ) is the negative invariant space ofG(p, ζ ) as above while E

+(p, ζ ) can be chosen
arbitrarily so that the splitting (3.4) holds. Denoting by Π±(p, ζ ) the projectors associate to this
splitting, the family of symmetrizers Σκ is searched so that

Σκ �m(κ)
(
Π+)∗Π+ − (Π−)∗Π− (3.5)

where m(κ)→ +∞ as κ→ +∞.
Since E

− = kerΠ+, the stability condition (2.44) which reads

kerΓ (p, ζ )∩ E
−(p, ζ )= {0} (3.6)

is also equivalent to an estimate

∣∣Π−u
∣∣2 � C

(|Γ u|2 + ∣∣Π+u
∣∣2). (3.7)

Therefore, if the family Σκ satisfies (3.5), then for κ large enough, there holds

Σκ � c Id −C′Γ ∗Γ, c > 0 (3.8)

and therefore Σκ is adapted to the boundary condition Γ .
If ReΣκG � δκ Id, then multiplying the equation by Σκ and integrating by parts yields the

estimate

δκ‖U‖2
L2 + c∣∣U(0)∣∣2 � 1

δκ
‖F‖2

L2 +C′|g|2. (3.9)

This is the sketch of the general argument. To obtain usable estimates, uniform versions
of (3.5), (3.7) are needed as well as more precise versions of (3.2) (see below). Note that in
this approach, the construction of symmetrizers is completely independent of the boundary con-
ditions, and in particular of the validity of the stability conditions. In this paper, we concentrate
on the construction of families of symmetrizers which satisfy (3.5). They are called K-families
in [21].

3.2. Main results

The construction of symmetrizers for middle frequencies, is performed in [20]. By Lem-
ma 2.12, the matrix G(p, ζ ) has no eigenvalues on the imaginary axis when ζ ∈ R

d+1 \ {0}.
Therefore,

Lemma 3.1. For all ζ ∈ R
d+1 \ {0}, there is a neighborhood of (p, ζ ) in U × R

d+1 such that for
(p, ζ ) in this neighborhood there is a smooth splitting

C
N ′ = E

−(p, ζ )⊕ E
+(p, ζ ), (3.10)

where E
±(p, ζ ) denote the invariant space of G(p, ζ ) associated to the spectrum in

{±Reμ > 0}. Denoting by Π±(p, ζ ) the smooth spectral projectors associate to this splitting,
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there is a smooth family Σκ(p, ζ ) of self adjoint matrices such that for all (p, ζ ) in the given
neighborhood and all κ � 1:

(i) ReΣκG> 0,

(ii) ReΣκ � κ
(
Π+)∗Π+ − (Π−)∗Π−. (3.11)

Corollary 3.2. If the weak spectral stability condition is satisfied, then for all ζ ∈ Rd+1 \ {0},
there are a constant C and a neighborhood of (p, ζ ) in U × R

d+1 such that for (p, ζ ) in this
neighborhood the solutions of (3.1) satisfy

‖U‖L2 + ∣∣U(0)∣∣� C(‖F‖L2 + |g|). (3.12)

We now concentrate on low frequencies. By Lemma 2.12, the matrix G(p, ζ ) is locally
smoothly conjugated to a block diagonal matrix (2.28) with diagonal blocks with H(p, ζ ) of
dimension N ×N and P(p, ζ ) of dimension N ′ ×N ′. The system (3.1) is therefore equivalent
to Eqs. (2.66), (2.67) coupled by the boundary conditions (2.68).

In the block diagonal reduction (2.28), we construct symmetrizers

Σκ =
(
ΣκH 0

0 ΣκP

)
(3.13)

such that the properties (3.2) and (3.5) are satisfied for each block independently.
The construction of symmetrizers for the elliptic block P is standard and identical to the

construction for middle frequencies, since P(p,0) has no eigenvalues on the imaginary axis.

Denote by E
±
P (p, ζ ) the subspaces of C

N ′
, invariant for P(p, ζ ), associated to the spectrum in

{±Reμ> 0}. Thus, for (p, ζ ) in a neighborhood of (p,0), there is a smooth splitting

C
N ′ = E

−
P ⊕ E

+
P . (3.14)

Denote by Π±
P (p, ζ ) the smooth spectral projectors associate to this splitting.

Proposition 3.3. There is a smooth family of self adjoint matrices ΣκP on a neighborhood
of (p,0) such that

(i) ReΣκPP > 0,

(ii) ReΣκP � κ
(
Π+
P

)∗
Π+
P − (Π−

P

)∗
Π−
P . (3.15)

This implies the estimates (2.84), (2.85) which where used in the previous section.
To analyze H , we use polar coordinates for ζ = ρζ̌ as in (2.77) so that

H(p, ζ )= ρȞ (p, ζ̌ , ρ), Ȟ (p, ζ̌ , ρ)=H0(p, ζ̌ )+O(ρ). (3.16)

By Lemma 2.12, for ζ ∈ R
d+1+ \ {0}, Ȟ has no eigenvalue on the imaginary axis, hence the

number N− of eigenvalues of Ȟ in {Reμ< 0} is constant.
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We fix a point ζ̌ ∈ Sd+, that is ζ̌ = (τ̌ , η̌, γ̌ ) in the unit sphere with γ̌ � 0. The goal is to con-

struct smooth symmetrizers for Ȟ , for (p, ζ̌ , ρ) close to (p, ζ̌ ,0). For convenience we introduce
the following terminology.

Definition 3.4. A smooth symmetrizer for Ȟ on a neighborhood ω of (p, ζ̌ ,0) is a smooth self

adjoint matrix Σ̌H (p, ζ̌ , ρ) such that

Re Σ̌H Ȟ =
∑
V ∗
k ΣkVk, (3.17)

where the Vk and Σk are smooth matrices on ω of appropriate dimension so that the products
make sense, satisfying

(i)
∑
V ∗
k Vk is definite positive,

(ii) either Σk is definite positive or Σk = γΣk,1 + ρΣk,2 with Σk,1 and Σk,2 definite positive.

Definition 3.5. A family of smooth symmetrizers Σκ on neighborhoods ωκ of (p, ζ̌ ,0) is called

a K-family of symmetrizers for Ȟ if there are a decomposition

C
N = E

−
H ⊕ E

+
H (3.18)

with dim E
− =N− and m(κ)→ +∞ as κ→ +∞ such that for all κ

Σκ(p, ζ̌ ,0)�m(κ)Π∗+Π+ −Π∗−Π−, (3.19)

where Π± are the projectors associated to the splitting (3.18).

Remark 3.6. Recall from [22] that if there is K-family of symmetrizers, then E− is the limit of
the negative spaces E

−(p, ζ̌ , ρ) as (p, ζ̌ , ρ) tends to (p, ζ̌ ,0) with ρ > 0. Thus E
− is uniquely

determined. On the other hand, E
+ is arbitrary, provided that the splitting (3.18) holds: if (3.19)

holds for some choice of E
+, then it also holds for another choice for a multiple ofΣκ with some

other function m(κ).

We can now state the main result of this paper, which extends [21].

Theorem 3.7. Suppose that the assumptions of Section 2.1 are satisfied. Assume further that one
of the following two condition is satisfied:

(i) all the real characteristic roots (p, τ, ξ) with |ξ | = 1 satisfy the condition (BS) of Defini-
tion 4.9.

(ii) the system is symmetric dissipative in the sense of Definition 2.5 and the real characteristic
roots (p, τ, ξ) with |ξ | = 1 are either totally nonglancing in the sense of Definition 4.3 or
satisfy the condition (BS) of Definition 4.9.

Then, for all ζ̌ ∈ Sd+, there exists K-families of smooth symmetrizers for Ȟ (p, ζ, ρ) near

(p, ζ̌ ,0).
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The condition (BS) ensures that a suitable generalized block structure condition is satisfied.
From a technical point of view, this condition makes the construction of symmetrizers given
in [20] work. For hyperbolic problems, the block structure condition was introduced by A. Ma-
jda and S. Osher [16] as the technical condition which allows to construct Kreiss symmetrizers
(see [12]). In [21], it is shown that the block structure condition is satisfied if and only if the sys-
tem is smoothly diagonalizable. In the viscous case, things are more subtle and the generalized
block structure condition is discussed in details in Section 3. We just point out here the following
example.

Theorem 3.8. If (p, τ̌ , ξ̌ ) is a semi-simple characteristic root of constant multiplicity, then the
condition (BS) of Definition 4.9 is satisfied at that point.

Together with Theorem 3.7, this implies Theorem 1.1. Finally, we quote that the existence of
K-families implies the validity of the maximal estimates when the boundary conditions satisfy
the uniform spectral stability conditions.

Theorem 3.9. Suppose that there exists a K-families of symmetrizers for Ȟ near (p, ζ̌ ,0) and
suppose that the boundary conditions are such that the uniform spectral stability condition is
satisfied for low frequencies. Then the uniform stability estimates (2.53) are satisfied.

Similarly, if the reduced boundary conditions satisfy the reduced uniform stability condition
then the uniform estimates (2.82) and (2.83) hold true.

3.3. Block reductions

The advantage of the notion of K-families is that it is independent of the boundary conditions.
Therefore, their construction depend only on an analysis of Ȟ . In particular, we can use spectral
block decompositions of Ȟ .

Fix ζ̌ ∈ Sd+. Consider the distinct eigenvalues μk ofH0(p, ζ̌ ). For (p, ζ̌ , ρ) in a neighborhood

of (p, ζ̌ ,0), there is a smooth block reduction

V −1ȞV = diag(Ȟk) (3.20)

where theHk have their spectrum in small discs centered at μk that are pairwise disjoints. Equiv-
alently, there is a smooth decomposition

C
N =

⊕
k

Ek(p, ζ̌ , ρ) (3.21)

in invariant spaces for Ȟ (p, ζ̌ , ρ) and Ȟk is the restriction of Ȟ to Ek . We denote by Nk the
dimension of Ek , that is the size of Ȟk .

The K-families of symmetrizers are constructed for each block Ȟk separately. If Σκk is a K-
family for Ȟk , it is clear that Σκ = V ∗ diag(Σκk )V has the form (3.17) and is a K-family for Ȟ .

When the mode is elliptic, that is when Reμk �= 0, the construction of symmetrizers is easy
(see e.g. [1,12,20]).
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Proposition 3.10. Suppose thatμk is an eigenvalue ofH0(p, ζ̌ ) with Reμk �= 0. Then is a smooth

family of self adjoint matrices Σκk on a neighborhood of (p, ζ̌ ,0) such that

(i) Re
(
Σκk Ȟk

)
> 0,

(ii) ReΣκk � κ Id if Reμk > 0,

ReΣκk � −Id if Reμk < 0. (3.22)

Therefore we now restrict our attention to a nonelliptic mode:

μk = iξ̌ d , ξ̌ d ∈ R. (3.23)

By definition of H0, this implies that −τ̌ + iγ̌ is an eigenvalue λ of A(p, ξ̌ ) with ξ̌ = (η̌, ξ̌ d ).
In particular, by hyperbolicity, this can only happen when γ̌ = 0. By Lemma 2.12, Ȟk has no
eigenvalues on the imaginary axis when ρ > 0, thus the number of eigenvalues in {Reμ< 0} is
constant. We call it N−

k . The next definition reformulates Definitions 3.4 and 3.5 for nonelliptic

blocks Ȟk .

Definition 3.11. A smooth symmetrizer for a nonelliptic block Ȟk on a neighborhood ω
of (p, ζ̌ ,0) is a smooth self adjoint matrix Σ(p, ζ̌ , ρ) such that for all (p, ζ̌ , ρ) ∈ ω:

ReΣȞk = γ̌ Σ1 + ρΣ2, (3.24)

with Σ1(p, ζ̌ ,0) and Σ2(p, ζ̌ ,0) definite positive.

A family of smooth symmetrizers Σκk on neighborhoods ωκ of (p, ζ̌ ,0) is called a K-family

of symmetrizers for Ȟk if there are a decomposition

Ek(p, ζ̌ ,0)= E
−
k ⊕ E

+
k (3.25)

with dim E
−
k equal to N−

k and m(κ)→ +∞ as κ→ +∞ such that for all κ

Σκk (p, ζ̌ ,0)�m(κ)
(
Π+
k

)∗
Π+
k − (Π−

k

)∗
Π−
k , (3.26)

where Π±
k are the projectors associated to the splitting (3.25).

Given ζ̌ = (τ̌ , η̌,0) ∈ Sd+ and a nonelliptic mode μk = iξ̌ d , −τ̌ , is an eigenvalue of A(p, ξ̌ )

with ξ̌ = (η̌, ξ̌ d ). Therefore, Theorem 3.7, is an immediate corollary of Proposition 3.10 and the
following two theorems.

Theorem 3.12. Suppose that the system is symmetric dissipative in the sense of Definition 2.5;
suppose in addition that (p, τ̌ , ξ̌ ) is a totally incoming or outgoing characteristic root in the

sense of Definition 4.3. Then there are K-families of symmetrizers for the associated block Ȟk ,
with E

−
k = {0} in the outgoing case and E

−
k = C

Nk in the incoming case.
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Theorem 3.13. If (p, τ̌ , ξ̌ ) is a characteristic root which satisfies the generalized block struc-
ture condition of Definition 4.22. Then there are K-families of symmetrizers for the associated
block Ȟk .

4. The generalized block structure condition

4.1. Hyperbolic multiple roots

We first recall from [21] several notations and definitions concerning the characteristic roots
of the hyperbolic part L. For simplicity, we suppose, as we may, that the coefficient of ∂t is
A0 = Id, so that, with notations (2.3), L= L. The characteristic determinant is denoted by

Δ(p, τ, ξ) := det
(
τ Id +A(p, ξ)). (4.1)

Definition 4.1. Consider a root (p, τ , ξ) of Δ(p, τ , ξ)= 0, of algebraic multiplicity m in τ .

(i) (p, τ , ξ) is algebraically regular, if on a neighborhood ω of (p, ξ) there are m smooth real
functions λj (p, ξ), analytic in ξ , such that λj (p, ξ)= −τ and for (p, ξ) ∈ ω:

Δ(p, τ, ξ)= e(p, τ, ξ)
m∏
j=1

(
τ + λj (p, ξ)

)
(4.2)

where e is a polynomial in τ with smooth coefficients such that e(p, τ , ξ) �= 0.
(ii) (p, τ , ξ) is geometrically regular if in addition there are m smooth functions ej (p, ξ) on ω

with values in C
N , analytic in ξ , such that

A(p, ξ)ej (p, ξ)= λj (p, ξ)ej (p, ξ), (4.3)

and the e1, . . . , em are linearly independent.
(iii) (p, τ , ξ) is semi-simple with constant multiplicity if all the λj ’s are equal.

Case (iii) occurs when λ(p, ξ) is a continuous semi-simple eigenvalue of A(p, ξ) with con-
stant multiplicity near (p, ξ), such τ +λ(p, ξ)= 0. This implies that λ is smooth and analytic in
ξ as well as the eigenspace ker(A− λ). In this case, one can choose for {ej } any smooth basis of
this eigenspace.

If all the roots at (p, ξ) are geometrically regular, then, locally near (p, ξ), A(p, ξ) is
smoothly diagonalizable, meaning that it has a smooth basis of eigenvectors.

Example 4.2. For the inviscid MHD, the multiple eigenvalues are algebraically regular, but some
are not geometrically regular (see [21] and Section 8 below).

The second notion which plays an important role in the analysis of hyperbolic boundary value
problems is the notion of glancing modes. Recall from [21] the following definition. If τ is a
root of multiplicity m of the polynomial Δ(p, ·, ξ), then by hyperbolicity, the Taylor expansion
of Δ at (p, τ , ξ) at the order m− 1 vanishes so that



O. Gues et al. / J. Differential Equations 244 (2008) 309–387 341
Δ(p, τ + τ, ξ + ξ)=Δm(τ, ξ)+O
(|τ, ξ |m+1) (4.4)

and Δm is homogeneous of degree m. Moreover, Δm is hyperbolic in the time direction. Indeed,
any direction of hyperbolicity for Δ(p, ·) is a direction of hyperbolicity for Δm. Denote by Γ +
the open convex cone of hyperbolic directions for Δm which contains dt .

Definition 4.3. The root (p, τ , ξ) ofΔ, of multiplicitym, is said nonglancing when the boundary
is noncharacteristic for Δm.

It is totally incoming (respectively outgoing) when the inward (respectively outward) conor-
mal to the boundary belongs to Γ +. It is totally nonglancing if is either totally incoming or totally
outgoing.

Example 4.4. This definition agrees with the usual one for simple roots, given by τ+λ(p, ξ)= 0.
In this case ∂t + ∇ξ λ · ∂x is the Hamiltonian transport field for the propagation of singularities or
oscillations and the glancing condition ∂ξd λ= 0 precisely means that the field is tangent to the
boundary. More generally, if the root (p, τ , ξ) of Δ is algebraically regular, then, with notations
as in (4.2)

Δm(τ, ξ)= e(p, τ , ξ)
m∏
j=1

(
τ + ξ · ∇ξ λj (p, ξ)

)
. (4.5)

The mode is nonglancing if none of the tangential speed ∂ξd λj (p, ξ) vanish. It is totally incoming
(respectively outgoing) if they all are positive (respectively negative). In particular, in the constant
multiplicity case, all the λj are equal and they are all glancing, incoming or outgoing at the same
time.

In the study of boundary value problems, the dichotomy incoming vs outgoing plays a crucial
role: for instance, for transport equations one boundary condition is needed in the first case
and none in the second. Using symmetrizers to prove energy estimates, they are constructed
in opposite ways. The general Kreiss construction also reflects this dichotomy. Introduce the
following definition:

Definition 4.5. Suppose that (p, τ , ξ) is an algebraically regular root of Δ. With nota-
tions as in (4.2), denote by νj the order of ξd is a root of order of the equation τ +
λj (p, ξ1, . . . , ξd−1, ·)= 0, that is the positive integer such that

∂aξd λj (p, ξ)= 0 for a < νj and βj := 1

νj !∂
νj
ξd
λj (p, ξ) �= 0. (4.6)

We say that λj is of type I when either νj is even or νj is odd and βj > 0. It is of type O
when νj is odd and βj < 0.

We denote by JO (respectively JI ) the set of indices j of the corresponding type.

Remark 4.6. When (p, τ̌ , ξ̌ ) is nonglancing, then the all the νj are equal to 1, and being of
type I (respectively type O) means to be incoming (respectively outgoing). They are all of the
same type exactly when the mode is totally nonglancing.
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Remark 4.7. The details of the construction of Kreiss’ symmetrizers depend strongly on being
of type I or O , see [1,12,19] and Section 5. There are no reason other than technical why even
roots are of type I rather than O .

4.2. The decoupling condition

The spectral properties of A(ξ) are modified by the perturbation B . In particular, since the
construction of symmetrizers depends deeply on the property of being incoming/outgoing, it is
very important that the perturbation respects the decoupling between the different type of modes.

Definition 4.8. Suppose that (p, τ , ξ) is a geometrically regular root of Δ of order m. Consider
a basis {ej } as in (4.3) and dual left eigenvectors �j such that

�j
(
τ Id +A(p, ξ))= 0, �j · ej ′(p, ξ)= δj,j ′ . (4.7)

Consider the and the m×m matrix with entries

B
�

j,j ′ = �jB(p, ξ)ej ′(p, ξ). (4.8)

(i) We say that the decoupling condition is satisfied if

B
�

j,j ′ = 0 when (j, j ′) ∈ (JO × JI )∪ (JI × JO) (4.9)

where JO and JI are introduced in Definition 4.5.
(ii) We say that the basis {ej } is adapted to B if

ReB� > 0. (4.10)

Definition 4.9. We say that the root (p, τ , ξ) of Δ satisfies the condition (BS) if it is geometri-
cally regular root, satisfies the decoupling condition (4.9) and there is an eigenbasis basis {ej }
adapted to B .

We give several examples and counterexamples. The next result rephrases Theorem 3.8.

Proposition 4.10 (Constant multiplicity). Suppose that (p, τ , ξ) is a semi-simple characteristic
root with constant multiplicity of Δ. Then the condition (BS) is satisfied.

Proof. For semi-simple characteristic root λ with constant multiplicity either JO or JI is empty
so that the decoupling condition (4.9) is trivially satisfied. The perturbation argument for the
spectrum of iA+ρB , used in [20] for fully parabolic viscosity, applies to the general case and the
Assumption (H4) for small frequencies implies that the spectrum of B� is located in {Re z > 0}.
Thus there is a basis {ej } in ker(A(p, ξ)+ τ Id) such that ReB� is definite positive. Next, since
any smooth basis {ej } in ker(A−λ) satisfies (4.3), one can choose it such that ej (p, ξ)= ej . �
Proposition 4.11 (Artificial viscosity). Suppose that (p, τ , ξ) is geometrically regular for iA+B
in the sense that there are m smooth functions λj (p, ξ, ρ) and m linearly independent smooth
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vectors ej (p, ξ, ρ) on a neighborhood of (p, ξ, ρ), analytic in ξ , such that λj (p, ξ,0)= −τ for
all j and (

iA(p, ξ)+ ρB(p, ξ))ej (p, ξ, ρ)= iλj (p, ξ, ρ)ej (p, ξ, ρ). (4.11)

Then, the decoupling condition is satisfied and the basis {ej |ρ=0} is adapted to B .

Proof. Alternately, differentiating (4.3) with respect to ρ and multiplying on the left by �j ′ ,

implies that B�
j ′,j = 0 when j �= j ′. Moreover, (H1) implies that B�j,j > 0. �

For example, if (p, τ , ξ) is geometrically regular for A in the sense of Definition 4.1 and if
B =Δx Id is an artificial viscosity, then (p, τ , ξ) is geometrically regular for iA+B . However,
this condition is too restrictive for applications, in particular when A and B do not commute.

Example 4.12. If the root is totally nonglancing, then the decoupling condition is trivially satis-
fied since either JI or JO is empty. This applies to fast shocks in MHD.

Counterexample 4.13. Slow shocks in MHD do not satisfy the decoupling condition, see Sec-
tion 8.

The decoupling condition is crucial in the construction of symmetrizers. The second condi-
tion (4.10) is more technical. One could expect that with the positivity Assumption (H1), one
could always find an adapted basis. This is not clear, except for multiplicity 2 or symmetric
systems.

Proposition 4.14. Suppose that (p, τ , ξ) is geometrically regular of multiplicity m. Assume that
eitherm= 2 or that the system is symmetric dissipative in the sense of Definition 2.5. Then, there
is a basis {ej } adapted to B .

If in addition all the eigenvalues λj are of the same type O or I , then the condition (BS) is
satisfied.

The proof is given Section 6.

4.3. The hyperbolic block structure condition

We turn back to the construction of symmetrizers for nonelliptic blocks Ȟk in the split-
ting (3.20). The construction of K-families is performed in [20] provided that Ȟk can be put
in a suitable normal form. This is the so-called block structure condition. We first review this
condition in the hyperbolic case, and next extend it to the hyperbolic–parabolic case.

Consider p and a frequency ζ̌ = (τ̌ , η̌,0) �= 0 and a purely imaginary eigenvalue (3.23)

μk = iξ̌ d of H0(p, ζ̌ ). Let ξ̌ = (η̌, ξ̌ d ). Then (p, τ̌ , ξ̌ ) is a root of Δ. We consider the block

Ȟk associated to μk and denote by Ek the corresponding invariant space of Ȟ . We use the nota-

tions Ȟk,0(p, ζ̌ )= Ȟk(p, ζ̌ ,0) and Ek,0(p, ζ̌ )= Ek(p, ζ̌ ,0).

Definition 4.15. Ȟk,0 has the block structure property near (p, ζ̌ ) if there exists a smooth invert-

ible matrix Vk,0 on a neighborhood of that point such that V −1Ȟk,0Vk,0 is block diagonal,
k,0
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V −1
k,0 Ȟk,0Vk,0 =

⎡⎢⎣
Q1 0

0
. . . 0

0 Qm′

⎤⎥⎦ , (4.12)

with diagonal blocks Qj of size νj × νj such that:
Qj(p, ζ̌ ) has purely imaginary coefficients when γ̌ = 0,

Qj(p, ζ̌ )= μk Id + i

⎡⎢⎢⎢⎢⎣
0 1 0

0 0
. . . 0

. . .
. . . 1

· · · 0

⎤⎥⎥⎥⎥⎦ , (4.13)

and the real part of the lower left-hand corner of ∂γ̌Qj (p, ζ ), denoted by q�j , does not vanish.

When νj = 1,Qj(p, ζ̌ ) is a scalar. In this case, (4.13) has to be understood asQj(p, ζ̌ )= μk ,
with no Jordan’s block. The lower left-hand corner of the matrix is Qj itself and the condition

reads q�j := ∂γ̌Qj (p, ζ̌ ) �= 0.

Proposition 4.16. (See [21].) If the root (p, τ̌ , ξ̌ ) is geometrically regular in the sense of Defini-

tion 4.1, the corresponding block Ȟk,0 satisfies the block structure condition.
Conversely, if Ȟk,0 satisfies the block structure condition with matrices V that are real ana-

lytic in ζ̌ , then the root (p, τ̌ , ξ̌ ) is geometrically regular.

Remark 4.17. There is a slight discrepancy here between the necessary and the sufficient con-
dition, due to analyticity conditions. Definition 4.1 requires analyticity in ξ̌ . This is used in the
proof of sufficiency. In addition, it implies that the block structure condition holds with matri-
ces V that are real analytic in ζ̌ . Thus, there is an “if and only if” theorem. However, for the
construction of symmetrizers, analyticity of Vk is not needed, this is why we do not insist on it
in the definition above. In addition, note that for fixed p, the existence of C∞ eigenvalues and
eigenvectors for A, implies that these eigenvalues are real analytic in ξ and that one can choose
analytic eigenvectors (see e.g. [17,25]). The question is to control the domain of analyticity as p
varies. In applications, for this problem, proving analyticity is not harder than proving the C∞
smoothness.

To prepare the hyperbolic–parabolic analysis, we have to review the proof of Proposition 4.16
(see [18,21]). In particular, we reformulate the conditions of Definition 4.15 in a more intrinsic
way. The choice of a smooth matrix Vk,0 is equivalent to the choice of a smooth basis of Ek,0,
denoted by {ϕj,a(p, ζ̌ )}1�j�m′,1�a�νj . The property (4.13) reads

(
H0(p, ζ̌ )−μk

)
ϕj,1(p, ζ̌ )= 0, (4.14)(

H0(p, ζ̌ )−μk
)
ϕj,a(p, ζ̌ )= iϕj,a−1(p, ζ̌ ), 2 � a � νj . (4.15)

With (3.21), there is a unique smooth dual basis ψj,a(p, ζ̌ ) such that
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ψj,a · E
′
k,0 = 0,

ψj,a · ϕj ′,a′ = δj,j ′δa,a′ . (4.16)

Here, E
′
k,0 denotes the invariant space of H0(p, ζ̌ ) such that C

N = Ek,0 ⊕ E
′
k,0. It is the sum of

invariant subspaces associated to eigenvalues μk′ �= μk .
In the basis ϕj,a , the entries of the matrix V −1

k,0 Ȟk,0Vk,0 are ψj,aH0ϕj ′,a′ . The diagonal block
structure means that

ψj,aH0ϕj ′,a′ = 0 when j �= j ′. (4.17)

The other conditions read:

Re(ψj,aH0ϕj,a′)= 0 when γ̌ = 0, (4.18)

Re ∂γ̌ (ψj,νj H0ϕj,1)(p, ζ̌ ) �= 0. (4.19)

We first show how to compute this quantity in terms of A only.

Lemma 4.18. Suppose that Ȟk,0 has a block diagonal decomposition (4.12) in a smooth basis
ϕj,a of Ek(p, ζ̌ ,0) which satisfies (4.14), (4.15). Let ψj,a denote a dual basis satisfying (4.16).
The lower left-hand corner entry of ∂γ̌Qj (p, ζ̌ ) is equal to the lower left-hand corner entry of

−i∂τ̌Qj (p, ζ̌ ) and equal to

qj = −ψj,νj (p, ζ̌ )A−1
d (p)ϕj,1(p, ζ̌ ). (4.20)

Proof. Let H 0 =H0(p, ζ̌ ). Then H 0 − μk is invertible on E
′
k,0(p, ζ̌ ). With (4.14), (4.15), this

implies that

range(H 0 −μk Id)= {ψ1,ν1(p, ζ̌ ), . . . ,ψm′,νm′ (p, ζ̌ )
}⊥
, (4.21)

ker(H 0 −μk Id)= {ϕ1,1(p, ζ̌ ), . . . , ϕm′,1(p, ζ̌ )
}
. (4.22)

In particular,

(H 0 −μk Id)ϕj,1 = 0 and ψj,νj (H 0 −μk Id)= 0. (4.23)

The entry in consideration is

qj (p, ζ̌ )=ψj,νj H0ϕj,1 =ψj,νj (H0 −μk Id)ϕj,1 +μkδνj ,1.

Therefore, differentiating in γ̌ and τ̌ and using (2.27), implies that

∂γ̌ qj (p, ζ̌ )= −i∂τ̌ qj (p, ζ̌ )= qj (4.24)

is given by (4.20). �
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We now discuss how much flexibility there is in the choice of the basis ϕj,a . Recall that we
are considering a purely imaginary eigenvalue μk = iξd ofH0(p, ζ̌ ), so that −τ̌ is an eigenvalue

λ of A(p, ξ̌ ) with ξ̌ = (η̌, ξ̌ d ).

Lemma 4.19. Suppose that Ȟk,0 has the block structure property near (p, ζ̌ ) in a smooth basis
ϕj,a and denote by ψj,a the dual basis (4.16). Then,

(i) λ is a semi-simple eigenvalue of A(p, ξ̌ ) with multiplicity m equal to the number m′
of blocks Qj ,

(ii) on a neighborhood of (p, ξ̌ ), there are m smooth eigenvalues λj (p, ξ̌ ) of A(p, ξ̌ ) and m

smooth linearly independent eigenvectors ej (p, ξ̌ ), such that

λj (p, ξ̌ )= λ, (4.25)

A(p, ξ̌ )ej (p, ξ̌ )= λj (p, ξ̌ )ej (p, ξ̌ ), (4.26)

ej (p, ξ̌ )= ϕj,1(p, ζ̌ ), (4.27)

(iii) the order of ξ̌ d as a root of τ̌ + λj (p, η̌, ·)= 0 is equal to νj ,
(iv) denoting by {�j } the left eigenvector dual basis of {ej } as in (4.7), there holds

�jAd(p)= βjψj,νj (p, ζ̌ ), (4.28)

with βj := 1
νj !∂

νj
ξd
λj (p, ξ̌ ) as in (4.6),

(v) the lower left-hand corner entry of ∂γ̌Qj (p, ζ̌ ) is

qj = −1/βj ∈ R. (4.29)

Proof. (a) Define ϕ̃j,νj = ϕj,νj and for a < νj

ϕ̃j,a(p, ζ )= −i(H0(p, ζ )−μk
)
ϕ̃j,a+1. (4.30)

By (4.15), there holds

ϕ̃j,a(p, ζ̌ )= ϕj,a(p, ζ̌ ). (4.31)

Moreover, in the new basis ϕ̃j,a , the matrix of Qj has the form

Qj = iξ̌ d Id + i

⎛⎜⎜⎜⎝
∗ 1 . . . 0
... 0

. . . 0

∗ 0 . . . 1

∗ 0 . . . 0

⎞⎟⎟⎟⎠ . (4.32)

Thanks to (4.31), the dual basis {ψ̃j,a} associated to {ϕ̃j,a} also satisfies ψ̃j,a(p, ζ̌ )=ψj,a(p, ζ̌ ).
This implies that the lower left-hand corner of ∂γ̌Qj (p, ζ̌ ) is unchanged in the new basis.
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(b) Consider the determinant

Δj(p, ζ̌ , ξ̌d )= det
(
ξd Id+iQj (p, ζ̌ )

)
.

It is independent of the basis {ψj,a} or {ψ̃j,a}. Thus, it is real when γ̌ = 0 and vanishes at
(p, ζ̌ , ξ̌ d ). Moreover, (4.13) implies that

∂τ̌Δj (p, ζ̌ , ξd)= −qj .

As a byproduct, using also (4.24) this shows that

qj ∈ R thus qj = Reqj = q�j �= 0. (4.33)

In particular, the implicit function theorem implies that there is a smooth function λj (p, ξ̌ ),
in a real neighborhood of (p, ξ̌ ), such that λj (p, ξ̌ )= −τ̌ and for ζ̌ = (τ̌ , η̌,0):

Δj(p, ζ̌ , ξ̌d )= αj (p, ζ̌ , ξ̌d )
(
τ̌ + λj (p, ξ̌ )

)
(4.34)

with αj (p, ζ̌ , ξ̌ d ) �= 0.
(c) Consider next the eigenvector equation

(
ξ̌d Id + iQj (p, ζ̌ )

)
ej = 0. (4.35)

By (4.32), in the basis {ψ̃j,a}, the νj − 1 first equation determine the last νj − 1 components
of ej

(ej )a = (ξ̌d − ξ̌ d )a−1(ej )1, a � 2. (4.36)

Substituting these values, the last equation is a scalar equation equivalent to Δj = 0. Introduce

ζj (p, η̌, ξ̌ )=
(−λj (p, ξ̌ ), η̌,0),

and

ej (p, ξ̌ )= ϕ̃j,1(p, ζ̌ )+
νj∑
a=2

(ξ̌d − ξ̌ d )j−1ϕ̃j,a(p, ζ̌ ). (4.37)

This vector is smooth and satisfies (4.35), thus

(
A(p, ξ̌ )− λj (p, ξ̌ ) Id

)
ej (p, ξ̌ )=Ad(p)

(
iH0(p, ζ̌j )+ ξ̌d Id

)
ej (p, ξ̌ )= 0.

Moreover, the ej (p, ξ̌ )= ϕj,1(p, ζ̌ ) are linearly independent.
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(d) By (4.34), for ζ̌ = (τ̌ , η̌,0), there holds

det
(
τ̌ Id +A(p, ξ̌ ))= det(Ad)det

(
iH0(p, ζ̌ )+ ξ̌d Id

)
= α(p, τ̌ , ξ̌ )

m′∏
j=1

(
τ̌ + λj (p, ξ̌ )

)
where α(p, τ̌ , ξ̌ ) �= 0 and m′ is the number of blocks Qj . This shows that −τ̌ is an eigenvalue

of algebraic order m′ of A(p, ξ̌ ). By step (c), the geometric multiplicity is at least m′, implying
that −τ̌ is semi-simple of order m′.

Moreover, by (4.14), there holds

Δj(p, ζ̌ , ξ̌d )= (ξ̌d − ξ̌ d )νj ,

showing that ξ̌ d is a root of multiplicity νj of Δj , thus of τ̌ + λj (p, η̌, ξ̌ )= 0.
(e) Let �j satisfy (4.7). Thus

Range
(
Ȟ0(p, ζ̌ )−μk Id

)=A−1
d (p)Range

(
τ̌ Id +A(p, ξ̌ ))

=A−1
d (p){�1, . . . , �m}⊥.

Comparing with (4.21), this implies that

span
{
ψj,νj (p, ζ̌ ), 1 � j �m

}= span{�j , 1 � j �m}. (4.38)

For a ∈ {1, . . . , νj }, introduce

ej,a = 1

(a − 1)!∂
a−1
ξd
ej (p, ξ̌ ). (4.39)

Because ξ̌ d is a root of order νj of τ̌ + λj (p, η̌, ξ̌ )= 0, the definition (4.37) implies that

ej,a = ϕ̃j,a(p, ζ̌ )= ϕj,a(p, ζ̌ ) for 1 � a � νj .

In particular, (4.16) implies that

ψj ′,νj ′ (p, ζ̌ ) · ej,νj =ψj ′,νj ′ (p, ζ̌ ) · ϕj,νj (p, ζ̌ )= δj,j ′ . (4.40)

Differentiating the equation(
A(p, ξ̌ )− λj (p, ξ̌ )

)
ej (p, ξ̌ )= 0 (4.41)

with respect to ξ̌d and at order νj yields

(
τ̌ Id +A(p, ξ̌ ))∂νjξ ej (p, ξ̌ )= −νjAd(p)∂νj−1

ξ ej (p, ξ̌ )+ ∂νjξ λj (p, ξ̌ )ej (p, ξ̌ ).
j d j
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Multiplying on the left by �j ′ annihilates the left-hand side, implying

�j ′Ad(p)ej,νj (p, ζ̌ )= βj�j ′ · ej (p, ξ̌ )= βj δj ′,j .

By (4.38), the �jAd and ψj,νj span the same space. Therefore, comparing with (4.40) implies

that �j ′Ad(p)= βjψj ′,νj ′ (p, ζ̌ ).
(f) By (4.20) and (4.28), we have

−βjqj = �jϕj,1(p, ζ̌ )= �j ej (p, ξ̌ )= 1.

The proof of the lemma is complete. �
Remark 4.20. This lemma is a variation on the necessary part in Proposition 4.16 (see [21]),
with useful additional remarks. It shows that the block structure condition is closely related to
a smooth diagonalization of A. Conversely, if one starts from a smooth basis ej and a root of
τ̌ + λj (p, ξ̌ ) with (4.6), one constructs a basis ϕj,a such that ϕj,a(p, ζ̌ ) is given by (4.39), using

an holomorphic extension of ej to complex values of ξ̌d (see [21]). Lemma 4.19 implies that the
change of bases which preserve the block structure form are linked to change of bases which
preserve the smooth diagonalization of A.

The construction of K-families of symmetrizers for the blocks Qj is performed in [12,14,
19]. The sign of βj and the parity of νj play an important role. Hyperbolicity implies that H0

and thus the Ȟk and Qj have no purely imaginary eigenvalues when γ̌ > 0. Denote by E
−
Qj

the
invariant space ofQj associated to the spectrum in {Reμ< 0} since the definition of the limiting
space E

−
Qj

. Recall that the limit space at (p, ζ̌ ) is

E
−
Qj

= C
ν′j × {0}νj−ν′j (4.42)

with

ν′
j =

⎧⎨⎩
νj /2 when νj is even,

(νj + 1)/2 when νj is odd and βj > 0,

(νj − 1)/2 when νj is odd and βj < 0.

(4.43)

Remark 4.21. As a corollary, we have the following characterization of the sets JO and JI :⎧⎨⎩ j ∈ JI if νj is even or νj is odd and q�j < 0,

j ∈ JO if νj is odd and q�j > 0.
(4.44)

4.4. The hyperbolic–parabolic case

We still consider a block Ȟk associated to a purely imaginary eigenvalue (3.23). In the next
section, we show that the following technical conditions are the natural one for the construction
of Kreiss symmetrizers.
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Definition 4.22. Ȟk has the generalized block structure property near (p, ζ̌ ,0) if there exists a
smooth invertible matrix Vk on a neighborhood of that point such that

V −1
k ȞkVk =

⎛⎜⎝
Q1 · · · 0
...

. . .
...

0 · · · Qm

⎞⎟⎠+ ρ
⎛⎜⎝
B̃1,1 · · · B̃1,m

...
. . .

...

B̃m,1 · · · B̃m,m

⎞⎟⎠ (4.45)

where the Qj(p, ζ̌ ) satisfy the properties of Definition 4.15. Moreover, the m × m matrix B�

with entries B�
j,j ′ equal to the lower left-hand corner of B̃j,j ′(p, ζ̌ ,0) satisfies

B
�

j,j ′ = 0 when (j, j ′) ∈ (JO × JI )∪ (JI × JO) (4.46)

where JO and JI are defined by (4.44) and there is a real diagonal matrix D�, with entries d�j
such that

d
�
j q
�
j > 0, ReD�B� > 0. (4.47)

We show that these conditions are related to the condition (BS) of Definition 4.9 formulated
on the original system. We need first a more detailed form of the block reduction H in (2.28).
Introduce the following notations:

B∗∗(p, ζ ) :=
d−1∑
j=1,k

ηj ηkBj,k(p), (4.48)

B∗d(p, ζ ) :=
d−1∑
j=1

ηj
(
Bj,d(p)+Bd,j (p)

)
. (4.49)

Lemma 4.23. One can choose the matrix V in (2.28) such that there holds

H(p, ζ )=H0(p, ζ )−H1(p, ζ )+O
(|ζ |3) (4.50)

where

H1 =A−1
d

(
B∗,∗ − iB∗,dH0 −Bd,dH 2

0

)
. (4.51)

Proof. Direct computations show that the kernel of G(p,0) is C
N × {0} and, using that Ad is

invertible, that kerG(p,0)∩ rangeG(p,0)= {0}. This shows that 0 is a semi-simple eigenvalue
of G(p,0).

If μ is a purely imaginary eigenvalue ofG(p,0), then 0 is an eigenvalue of iA(p, ξ)+B(p, ξ)
with ξ = (0,−iμ). By Assumption (H1) this requires that ξ = 0, thus μ= 0. This shows that the
nonvanishing eigenvalues of G(p,0) are not on the imaginary axis.

This implies that there is a smooth matrix V (p, ζ ) on a neighborhood of (p,0) such that
(2.28) holds with H(p,0)= 0 and P(p,0) invertible with no eigenvalue on the imaginary axis.
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The image of the first N columns of V is the invariant space of G, and H is the restriction
of G to that space. At ζ = 0 this space is kerG, and performing a smooth change of basis in C

N ,
we can always assume that the first N columns of V are of the form

VI (p, ζ )=
(

IdN×N
W(p, ζ )

)
(4.52)

with W of size N ′ ×N vanishing at ζ = 0. This implies (2.30).
By (2.28) GVI = VIH , henceMVI =GdVIH and

M = −AH +BdWH, W = JH.
Therefore,

M = −AH +BdJH 2 = −AH +Bd,dH 2. (4.53)

Taking the first order term at ζ = 0 shows that the first order term in H0 in H satisfies

(iτ + γ ) Id +
d−1∑
j=1

iηjAj = −Ad(p)H0

and hence is given by (2.27). The second order term H1 in H satisfies

B∗,∗ = −AdH1 + iB∗,dH0 +Bd,dJH 2
0

implying (4.50) and (4.51). �
Parallel to Lemma 4.18, we can now state:

Lemma 4.24. Suppose that the matrix of Ȟk is given by the right-hand side of (4.45) in a smooth
basis ϕj,a of Ek(p, ζ̌ , ρ) which satisfies (4.14) and (4.15) for ρ = 0. Let {�j } denote the dual
basis of {ej = ϕj,1} satisfying (4.7). The entries of B� are

B
�

j,j ′ = − 1

βj
�jB(p, ξ̌ )ϕj ′,1(p, ζ̌ ,0). (4.54)

Proof. In the block reduction (4.45), the lower left-hand corner entry of the (j, j ′)-block is

hj,j ′ =ψj,νj Ȟϕj ′,1 =ψj,νj (Ȟ −μk)ϕj ′,1 +μkδj,j ′ .

Differentiating in ρ and using the relations (4.23) yields

−B�
j,j ′ = ∂ρhj,j ′(p, ζ̌ ,0)= −ψj,νj B̃(p, ζ̌ )ϕj,1,

where ψj,νj and ϕj,1 stand for the evaluation at (p, ζ̌ ,0) of the corresponding function. Using

the explicit form of B̃ and the relations
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H 0ϕj,1 = iξ̌ dϕj,1, ψj,νj H 0 = iξ̌ dψj,νj

we obtain

ψj,νj B̃(p, ζ̌ )ϕj,1 =ψj,νj A−1
d

(
B∗,∗(p, η̌)+ ξ̌ dB∗;d(p, η̌)+ ξ̌2

dBd,d(p)
)
ϕj,1

=ψj,νj B(p, ξ̌ )ϕj,1.

With (4.28), this implies (4.54). �
Theorem 4.25. If (p, τ̌ , ξ̌ ) is a geometrically regular characteristic root of Δ which satisfies the

condition (BS) of Definition 4.9. Then the associated block Ȟk satisfies the generalized block
structure condition.

Proof. Since (p, τ̌ , ξ̌ ) is geometrically regular, the hyperbolic part Ȟk,0 satisfies the block
structure condition. Moreover, if ej is a basis analytic in ξ , there is a basis ϕj,a such that
ϕj,a(p, ζ̌ )= ej (p, ξ̌ ) (see Remark 4.20 or [21]). By Lemma 4.24, (4.9) is equivalent to (4.46).

If once can choose the base {ej } such that (4.10) holds, then choose d�j = −βj and by (4.29)

and (4.54) there holds d�j q
�
j = 1 so that DB� = B� satisfies (4.47). �

Remark 4.26. Conversely, if the generalized block structure condition holds with matrices
Vk which are real analytic in ζ̌ , then, by Proposition 4.16 (p, τ̌ , ξ̌ ) is geometrically regu-
lar. By (4.54), (4.46) is equivalent to the decoupling condition (4.9). Moreover, (4.47) im-
plies that there is a diagonal matrix with positive entries d�j = d�j /q�j such that ReD�B� > 0.

Consider the diagonal matrix C = (D�)−1/2 = diag(cj ) and the new basis ẽj = cj ej . The
new dual basis is �̃j = c−1

j cj and the new matrix B̃� is C−1B�C = CD�B�C and therefore

Re B̃� = CRe(D�B�)C is definite positive.

5. Symmetrizers

In this section, we prove Theorems 3.12 and 3.13. We are given a frequencies ζ̌ = (τ̌ , η̌,0)
and a purely imaginary eigenvalue μk = −iξ̌ d of H0(p, ζ̌ ), so that (p, τ̌ , ξ̌ ), with ξ̌ = (η̌, ξ̌ d ) is
a root of the characteristic determinant Δ, of multiplicity m. Our goal is to construct K-families
of symmetrizers for the block Ȟk(p, ζ̌ , ρ) associated to μk .

5.1. Proof of Theorem 3.13

We assume here that (p, τ̌ , ξ̌ ) is geometrically regular and satisfies the condition (BS).
We follow closely [20] (Lemma 4.11 and Appendix A therein. See also [19]) where the con-

stant multiplicity case is studied. In this case, all the blocks Qj are equal and thus have the
same dimensions ν, but more importantly, all the eigenvalues are of the same type O or I . So
we review the main steps of the construction and indicate where the proof of [19,20] has to be
modified.
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In the block reduction (4.45) of Ȟk , we choose the symmetrizers Σκk to be block diagonal:

Σκk =
⎛⎜⎝
Sκ1 · · · 0

...
. . .

...

0 · · · Sκm

⎞⎟⎠ ,
Sκj (p, ζ̌ , ρ)=Eκj + Ẽκj (p, ζ̌ )− iγ F κj − iρF̃ κj , (5.1)

where Eκj and Ẽκj are real symmetric matrices, and Fκj and F̃ κj are real and skew symmetric.

Moreover, Eκj , Fκj and F̃ κj are constant, Ẽκj depends only on (p, τ̌ , η̌) and the Eκj have the
special form

Eκj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 eκj,1

... . .. eκj,2

... . .. . ..

0 . .. . ..

eκj,1 eκj,2 eκj,νj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and Ẽκj (p, ζ̌ )= 0.
The block structure condition implies that

Ȟk = diag(Qj |γ=0)+ γ diag(∂γQj |γ=0)+ ρB̃|ρ=0O
(
γ 2 + ρ2). (5.2)

Σκk is a symmetrizer for Ȟk , on a neighborhood (depending on κ) of (p, ζ̌ ,0), if

Re
((
Eκj + Ẽκj

)
Qj |γ=0

)= 0, (5.3)

Re
(
Eκj ∂γQj (p, ζ̌ ,0)− iF κj Qj (p, ζ̌ )

)
> 0, (5.4)

Re
(
diag

(
Eκj
)
B̃(p, ζ̌ ,0)− i diag

(
F̃ κj Qj (p, ζ̌ )

))
> 0. (5.5)

Moreover, the condition (3.26) reads(
Eκj w,w

)
� C1

(
κ
∣∣Π+
j w

∣∣2 − ∣∣Π−
j w

∣∣2), (5.6)

where Π±
j is the projection onto E

±
j in the decomposition C

νj = E
−
j ⊕ E

+
j , where

E
−
j = C

ν′j × {0}νj−ν′j , E
+
j = {0}ν′j × C

νj−ν′j , (5.7)

with ν′
j given by (4.43).

Before starting the construction, we note that Ralston’s lemma [23] (see also [19,20]) implies
that one can perform an additional change of basis Id + ρṼ such that the matrices B̃j,j ′ in (4.45)
are of the form
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B̃j,j ′(p, ζ̌ )=
⎛⎜⎝ ∗ 0 . . . 0

... 0 . . . 0

B
�

j,j ′ 0 . . . 0

⎞⎟⎠ . (5.8)

This does not affect the previous choices, made at ρ = 0. Next, we introduce some notations.
A vector w ∈ C

Nk = ⊕
C
νj , is broken into m blocks wj ∈ C

νj , with components denoted
by wj,a . We now proceed to the construction of the symmetrizers.

(a) One first choose the Eκj such that (5.6) holds and

Re
(
Eκj ∂γQj (p, ζ̌ )wj ,wj

)
� 2|wj,1|2 −Cκ

∣∣w′
j

∣∣2, (5.9)

Re
(
diag

(
Eκj
)
B̃(p, ζ̌ ,0)wj ,wj

)
� 2|w∗,1|2 −C′

κ

∣∣w′∗
∣∣2, (5.10)

with wj,1 denoting the first component of wj ∈ C
νj and w′

j ∈ C
νj−1 denotes the other com-

ponents and w∗,1 ∈ C
m is the collection of the first components wj,1 while w′∗ denotes the

remaining components.
Note that

Re
(
Eκj ∂γQj (p, ζ̌ )w,w

)= eκj,1q�j |wj,1|2 +O(|wj |∣∣w′
j

∣∣),
Re
(
diag

(
Eκj
)
B̃(p, ζ̌ ,0)wj ,wj

)= Re
(
E�B�w∗,1,w∗,1

)+O(∣∣w′∗
∣∣|w|),

where E� is the m × m diagonal matrix with entries eκj,1. Moreover, the decoupling condition

(4.9) implies that B� has a block diagonal structure: ordering the base {ej } according to the
type I or O , with obvious notations there holds:

B� =
(
B
�
I 0

0 B
�
O

)
. (5.11)

Similarly we note E� = diag(E�I ,E
�
O) and (5.9) and (5.10) are satisfied if

eκj,1q
�
j � 3, ReE�IB

�
I � 3 Id, ReE�OB

�
O � 3 Id. (5.12)

On the other hand, to satisfy (5.6), one chooses the eκj,a inductively, starting from a = 1, but

this choice depends on the type of the eigenvalue. Remember also from (4.29) that βj = −1/q�j .
According to [1,12] or Lemma 8.4.2 in [19], the eκj,a are chosen as follows.

(1) If λj is of type I , then eκj,1 = ej,1 is taken O(1), independent of κ , and the eκj,a for a � 2
are chosen successively and depend on κ . In particular, when νj is even, eκj,2 � cκ . When νj is

odd and βj > 0, then q�j < 0 and ej,1 < 0; when νj � 3, then eκj,3 � cκ .

(2) If λj is of type O , that is νj odd and q�j > 0, one chooses eκj,1 � cκ and the other eκj,a are
chosen inductively.

By assumption, there is a diagonal real matrix D� = diag(D�I ,D
�
O) such that

d
�
q
�
> 0, ReD�B� > 0, ReD� B� > 0.
j j I I O O
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Therefore, there is a positive constant c such that if we choose eκj,1 = cd�j when λj is of type

I and eκj,1 = cκd�j when λj is of type I , the condition (5.12) is satisfied. Next, according to
[1,12,19], we can choose the eκj,a for a � 2 such that the inequality (5.6) is also satisfied.

Remark 5.1. The construction above shows that the conditions of Definition 4.22 are more or less
necessary for the construction of K-families of symmetrizers. First, the different magnitude in κ
of eκj,1 for different types forces the decoupling (5.11), that it condition (4.9). Second, a spectral

condition on B� is not sufficient in general to insure the existence of a diagonal matrix E� such
that (5.12) holds. This indicates that condition (4.47) is also necessary for the construction above.

(b) Once the matrices Ej are chosen, the construction goes on as in [19,20]. We omit the de-
tails. By (4.13), Re(EjQj (p, ζ̌ ))= 0. Next, using the implicit function theorem and the property

that 1
i
Qk is real when γ̌ = 0, the real symmetric matrix Ẽk(p, τ̌ , η̌) is chosen so that such that

Re(Ej + Ẽj )(Qj |γ=0)= 0.
Since Fj is real and skew symmetric, there holds Re−iFjQj (p, ζ̌ ) = ReFjJj where Jj is

the Jordan matrix in (4.13). One can choose Fj such that

Re(FjJjwj ,wj )� −|wj,1|2 + (C + 1)
∣∣w′
j

∣∣2,
where C is the constant in (5.9). Adding to (5.9) implies (5.4).

Similarly, Re−iF̃jQj (p, ζ̌ )= Re F̃j Jj and one can choose F̃j such that

Re(FjJjwj ,wj )� −|wj,1|2 + (C′ + 1)
∣∣w′
j

∣∣2,
where C′ is the constant in (5.10), implying (5.5).

5.2. Proof of Theorem 3.12

We now assume that the system is symmetric dissipative in the sense of Definition 2.5 and that
the root (p, τ̌ , ξ̌ ) is totally nonglancing. In [21], symmetrizers forȞk(p, ζ̌ ,0) are constructed. We

show that they also symmetrize Ȟk(p, ζ̌ , ρ) when ρ > 0.
In [21], it is proved that the nonglancing condition implies that the multiplicity of μk as an

eigenvalue of H0(p, ζ̌ ) = Ȟ (p, ζ̌ ,0) is equal to m. Denote by Vk the N ×m sub-matrix of V

which corresponds to the block Ȟk . Therefore, for (p, ζ̌ , ρ) close to (p, ζ ,0), the corresponding

invariant space of Ȟh is Ek(p, ζ̌ , ρ)= Vk(p, ζ̌ , ρ)Cm and

VkȞk = ȞVk. (5.13)

Recall that E
−
k (p, ζ̌ , ρ) is the negative space of Ȟk for ζ̌ ∈ Sd+, ρ � 0 with γ̌ > 0 + ρ > 0.

Lemma 5.2.

(ii) If (p, τ , ξ) is totally incoming, then, for (p, ζ ) in a neighborhood of (p, ζ ), E
−
k (p, ζ )= C

m.

(iii) If (p, τ , ξ) is totally outgoing, then, for (p, ζ ) in a neighborhood of (p, ζ ), E
−
k (p, ζ )= {0}.
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Proof. The dimension is constant for γ̌ +ρ > 0, and the result is proved in [21] when ρ = 0. �
By assumption, there is a definite positive matrix S(p) such that the SAj are symmetric.

Lemma 5.3. The symmetric matrix

Σk,0(p, ζ )= −V ∗
k (p, ζ,0)S(p)Ad(p)Vk(p, ζ,0) (5.14)

is a symmetrizer for Ȟk on a neighborhood of (p, ζ̌ ,0). More precisely, there holds

ReΣkȞk = γR1 + ρR2 (5.15)

with Σ1(p, ζ̌ ,0) and Σ2(p, ζ̌ ,0) definite positive.
In addition, Σk(p, ζ ,0) is definite positive (respectively negative) when the mode is totally

incoming (respectively outgoing).

Proof. According to (3.16), there holds

Ȟ (p, ζ̌ , ρ)=H0(p, ζ̌ )+ ρH ′(p, ζ̌ , ρ).

Using (5.13) and the definition (2.27) of H0, one obtains the identity (5.15) with

R1 = V ∗
k SVk, (5.16)

R2 = V ∗
k (ReSAdH

′)Vk. (5.17)

Because S is definite positive, R1 also has this property. Next, Lemma 4.23 implies that
H ′(p, ζ̌ ,0) = −H1(p, ζ̌ ) with H1 given by (4.51). Since H0(p, ζ̌ ) = μk Id = −iξk Id on

Ek(p, ζ̌ ,0), there holds

H ′(p, ζ̌ ,0)Vk(p, ζ̌ ,0)= −A−1
d (p)B(p, ξ̌ ).

Therefore, at the base point (p, cz,0), there holds

R2(p, cz,0)= V ∗
k (ReSB)Vk.

The symmetry assumption implies that SB is definite positive on the space Ek(p, ζ̌ ,0) =
ker(A(p, ξ̌ )+ τ̌ Id), implying that R2 is definite positive at (p, cz,0), hence on a neighborhood
of that point.

ThatΣk(p, ζ ,0) is definite positive (respectively negative) when the mode is totally incoming
(respectively outgoing) is proved in [21]. �

With Lemma 5.2, this implies that

Σκk =
{
Σk in the incoming case,

κΣk in the outgoing case,
(5.18)

are K-families of symmetrizers for Ȟk .
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6. Further remarks and examples

6.1. Adapted basis. Proof of Proposition 4.14

In this section, we always assume that Assumptions (H1), (H4) are satisfied. Consider a geo-
metrically regular root (p, τ̌ , ξ̌ ) of Δ. We show that there are eigenbasis {ej } satisfying (4.3)
which are adapted to B , in the sense of Definition 4.8, either when the multiplicity is 2 or when
the system is symmetric.

6.1.1. The case of multiplicity two
Projecting on the 2-dimensional invariant space of iA(p, ξ̌ ) + ρB(p, ξ̌ ) associated to the

eigenvalues close the iλ1 and iλ2, we are reduced to consider 2 × 2 matrices

iÃ(p, ξ̌ )+ ρB̃(p, ξ̌ , ρ) with Ã=
(
λ1 0

0 λ2

)
. (6.1)

Assumption (H4) implies that the spectrum iÃ+ ρB̃ is contained in Reλ� cρ, for (p, ξ̌ ) close
to (p, ξ̌ ) and ρ ∈ [0, ρ0], for some ρ0 > 0. Changing ξ̌ to −ξ̌ and using (H1) near −ξ̌ , we see

that the spectrum ±iÃ+ ρB̃ is contained in Reλ� cρ.
We show that, changing the base {e1, e2} if necessary, one always meet condition (4.10).

Lemma 6.1. With assumptions as above, there is a smooth change of bases preserving (6.1),
such that Re B̃(p, ξ̌ ) is definite positive.

Proof. The constant multiplicity case λ1 = λ2 being already treated, we assume that λ1 �= λ2 on
any neighborhood of (p, ξ̌ ). In this case we are limited to consider diagonal change of basis and
we prove that there exists a diagonal matrix D, such that

Re
(
DB̃(p, ξ̌ ,0)D−1)> 0. (6.2)

(a) Recall that there is c > 0 such that the spectrum ±iÃ+ ρB̃ is contained in Reλ� cρ. We
first show that for all t ∈ R the spectrum of(

0 0

0 it

)
+ B̃(p, ξ̌ ,0)− c

4
Id (6.3)

is contained in Reλ > 0. If not, there are t , ρ1 > 0 and a neighborhood ω of (p, ξ̌ ) such that

(
0 0

0 it

)
+ B̃(p, ξ̌ , ρ) (6.4)

has an eigenvalue in Reλ < c/2 when (p, ξ̌ ) ∈ ω and ρ ∈ [0, ρ1]. There is (p′, ξ̌ ′) ∈ ω such that
λ2(p

′, ξ̌ ′) − λ1(p
′, ξ̌ ′) = t1 �= 0. Choose ρ ∈ [0, ρ1[ such that ρ|t | � |t1|. By continuity, since

λ2 − λ1 vanishes at (p, ξ̌ ), there is (p, ξ̌ ) ∈ ω such that λ2(p, ξ̌ )− λ1(p, ξ̌ ) = ±tρ. Therefore

the matrix ±iÃ(p, ξ̌ )+ ρB̃(p, ξ̌ , ρ) has an eigenvalue in {Reλ� ρc/2}.



358 O. Gues et al. / J. Differential Equations 244 (2008) 309–387
(b) Consider a matrix (
a b

c d

)
.

Its spectrum is contained in {Reλ > 0}, if and only if

Re(a + d) > 0 and
∣∣Re(

√
f )
∣∣2 � Re(a + d)2

where f = (a − d)2 + 4bc. Since |Re(
√
f )|2 = 1

2 (|f | + Ref ), the second condition reads

|Imf |2 < 4(Rea + Red)2
(
(Rea + Red)2 − Ref

)
,

or

(
Re(a − d) Im(a − d)+ 2 Im(bc)

)2
< (Rea + Red)2

(
(Ima − Imd)2 + 4 ReaRed − 4 Re(bc)

)
or

ReaRed
(
(Ima − Imd)2 − (Rea − Red) Im(bc)(Ima − Imd)

+ (Rea + Red)2(ReaRed − Rebc)− ∣∣Im(bc)∣∣2)> 0. (6.5)

We apply this criterion to the matrices (6.4). In this case, when t varies in R the coefficient
Im(a− d) varies from −∞ to +∞ while the other coefficients are fixed. Therefore, if the corre-
sponding inequality (6.5) is satisfied for all t , then Rea + Reb > 0, ReaRed � 0 and

(Rea − Red)2
∣∣Im(bc)∣∣2

� 4 ReaRed
(
(Rea + Red)2(ReaRed − Rebc)− ∣∣Im(bc)∣∣2).

Thus

∣∣Im(bc)∣∣2 � 4 ReaRed(ReaRed − Rebc)

and

|bc| + Re(bc)� 2 ReaRed.

Denoting by bj,k the entries of B̃(p, ξ̌ ,0), we see that the spectral condition of step (a) implies
the following conditions:

Reb11 > 0, Reb22 > 0, |b12b21| + Re(b12b21) < 2 Reb11 Reb22. (6.6)
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(c) Similarly, we note that the condition Re B̃(p, ξ̌ ,0) > 0 is equivalent to

Reb11 > 0, Reb22 > 0,

|b12|2 + |b21|2 + 2 Re(b12b21) < 4 Reb11 Reb22. (6.7)

With D = ( 1 0
0 δ

)
, the conjugation DB̃D−1 changes B to B ′ with

b′11 = b11, b′22 = b22, b′21 = δb21, b′12 = 1

δ
b12.

For all ε > 0, one can choose δ such that∣∣b′12

∣∣2 + ∣∣b′21

∣∣2 � |b12b21| + ε

and therefore, (6.6) implies that there is δ such that (6.7) holds for the b′jk . �
6.1.2. Symmetric systems

Lemma 6.2. Suppose that (p, τ̌ , ξ̌ ) is geometrically regular and the system is symmetric dissi-
pative. Then one can choose the eigenbasis {ej } such that (4.9) holds.

Proof. Denote by S the symmetrizer. We show that one can choose the eigenbasis ej such that

t ej (p, ξ̌ )S(p)ej ′(p, ξ̌ )= δj,j ′ . (6.8)

In this case, �j = t ej (p, ξ̌ )S(p) and

B
�

j,j ′ = t ej (p, ξ̌ )S(p)B(p, ξ̌ )ej ′(p, ξ̌ ) (6.9)

showing that ReB� is the restriction of Re(S(p)B(p, ξ̌ )) to the space spanned by the ej (p, ξ̌ ),
and hence positive.

To prove (6.8), consider the partition of {1, . . . ,m} into subsets Ja such that j and j ′ belong
to the same class Ja if and only if λj = λ′

j on a neighborhood of (p, ξ̌ ). Denote by Fa(p, ξ̌ ) the

space spanned by the ej (p, ξ̌ ) for j ∈ Ja . Then, near (p, ξ̌ ), A(p, ξ̌ )= λ̃a Id on this space, where

λ̃a is the common value of the λj for j ∈ Ja . Thus, locally, one can find a smooth basis of Fa ,
analytic in ξ̌ and orthonormal for the scalar product S(p). Collecting these bases of Fa , (6.8)
holds when j and j ′ belong to the same class Ja .

When j and j ′ do not belong to the same class Ja , there is a sequence (pn, ξ̌ n) converging to
(p, ξ̌ ) such that λj (pn, ξ̌ n) �= λj ′(pn, ξ̌ n). The symmetry of S(pn)A(pn, ξ̌ n) implies that

t ej
(
pn, ξ̌ n

)
S
(
pn
)
ej ′
(
pn, ξ̌ n

)= 0.

Therefore, passing to the limit, we see that (6.8) is also satisfied when j and j ′ do not belong to
the same class Ja . �
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6.2. Discontinuity of the negative spaces E
−

We show that the decoupling condition (4.9) is necessary for the continuity of E
−(p, ζ̌ , ρ) at

ρ = 0. Before stating the result, we make the following remark.

Lemma 6.3. Suppose that (p, τ̌ , ξ̌ ) is geometrically regular and nonglancing. With notations as

in (4.2), (4.6), (4.8) let βj = ∂ξd λj (p, ξ̌ ) �= 0. Then, there is c > 0 such that for all ρ > 0 and

t ∈ R, the spectrum of it diag(βj )+ ρB� is contained in {Reμ� cρ}.

Proof. We fix p = p and forget it in the notations. For ξ close to ξ̌ , consider the invariant space
of iA(ξ)+ ρB(ξ) associated to eigenvalues close to −τ̌ . In the basis {ej }, its matrix is

i diag
(
λj (ξ)

)+ ρB̃(ξ, ρ), (6.10)

with B̃(ξ̌ ,0)= B�. Assumption (H4) implies that the spectrum of this matrix lies in {Reμ� cρ}.
Adding τ̌ Id, we can assume, without loss of generality, that λj (ξ̌ ) = 0. Taking t > 0, ξ =

ξ̌ ± (0, t) and ρ = tσ > 0 the matrix in (6.10) is

tM(t, σ )= t(±i diag(βj )+ σB� +O(t))
and the spectrum ofM(t,σ ) lies in {Reμ� cσ }. Letting t tend to zero, implies that the spectrum
ofM(0, σ ) is also contained in {Reμ� cσ } and the lemma follows by homogeneity. �
Corollary 6.4. If (p, τ̌ , ξ̌ ) is geometrically regular and nonglancing, then for all γ � 0 and

ρ � 0, with γ + ρ > 0, the matrix diag(β−1
j )(γ Id + ρB�) has no eigenvalues on the purely

imaginary axis.

Consider ζ̌ = (τ̌ , η̌,0) �= 0 and a purely imaginary eigenvalue μk = iξ̌ d of H0(p, ζ̌ ). Let

ξ̌ = (η̌, ξ̌ d ). Then (p, τ̌ , ξ̌ ) is a root of Δ. We denote by Ȟk the block associated to μk and, for

ρ > 0, we denote by E
−
k (p, ζ̌ , ρ) the negative invariant space of Ȟk .

Proposition 6.5. Suppose that (p, τ̌ , ξ̌ ) is geometrically regular and nonglancing and suppose
that there exist j ∈ JI and j ′ ∈ JO such that

B
�

j ′,j �= 0. (6.11)

Then the negative space E
−
k (p, ζ̌ , ρ) has no limit as (ζ̌ , ρ)→ (ζ̌ ,0).

In particular, there are no smooth K-families of symmetrizers for Ȟk near (p, ζ̌ ).

Proof. By Lemmas 4.18 and 4.24, the block decomposition (4.45) implies that in a suitable basis

Ȟk(p, τ̌ , η̌, γ, ρ)= −diag
(
β−1)(γ Id + ρB�)+O(γ 2 + ρ2). (6.12)
j
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Denote by E
−(γ,ρ) the negative space of Ȟk(p, τ̌ , η̌, γ, ρ). We show that

lim
γ→0

E
−(γ,0) �= lim

ρ→0
E

−(0, ρ), (6.13)

which implies that E
−(γ,ρ) has no limit as (γ,ρ)→ (0,0).

Consider first the case where ρ = 0. Then, (6.12) implies that the first limit in (6.13) is the
space EI spanned by the vectors ej of the basis such that βj > 0, that is such that j ∈ JI .

On the other hand, Corollary 6.4 implies that B� = −diag(β−1
j )B

� has no eigenvalue on the

imaginary axis. Therefore, the second limit in (6.13) is the negative space E
−
B�

of B�. If it were

equal to EI , this would mean that EI is invariant by B�, thus by B� = −diag(βj )B�, which
contradicts (6.11).

By [22], the existence of smooth K-families of symmetrizers implies that the limit of E
−
k at

(ζ̌ , ρ) exists, and is equal to the space E
−
k of Definition 3.11. Therefore, (6.13) implies that there

are no smooth K-families of symmetrizers. �
6.3. Viscous instabilities

Consider boundary conditions as in Assumption 2.9. When the negative space E
− is not con-

tinuous in (ζ̌ , ρ), then the Evans function is likely not continuous and one can expect that the
low-frequency uniform stability condition for the viscous problem is strictly stronger than the
similar condition for the inviscid problem. In particular, the inviscid problem can be strongly sta-
ble while the viscous one is strongly unstable. We illustrate here this phenomenon on an explicit
example.

6.3.1. An example
Consider the system

{
(∂t + ∂y)u1 + ∂xu2 = εμΔu1,

(∂t + ∂y)u2 + ∂xu1 = ενΔu2.
(6.14)

Taking linear combinations and changing ε, the system is equivalent to

(∂t + ∂y) Id +A∂x − εBΔ, A=
(

1 0

0 −1

)
, B =

(
1 a

a 1

)
, (6.15)

with a = |ν − μ|/(ν + μ) ∈ [0,1[. This system is symmetric and satisfy Assumptions (H1)
and (H2).

The hyperbolic part is diagonal: the eigenvalues are

λ1 = η+ ξ, λ2 = η− ξ. (6.16)

They cross on the line ξ = 0 and are trivially geometrically regular since the system is already
in diagonal form. One of the eigenvalue is incoming, one is outgoing. The decoupling condi-
tion (4.9) is satisfied if and only if a = 0. In the sequel, we assume that a > 0.
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6.3.2. Boundary conditions
Next, consider boundary conditions for (6.15):

u|x=0 + εΓ ∂xu|x=0 = 0. (6.17)

We first compute the limiting inviscid boundary conditions, using boundary layers. The bounded
solutions u=w(x/ε) of (6.15) are

w(z)= u+ ezB−1Ah, h ∈ E
−
B−1A

, u ∈ C
2, (6.18)

where E
−
B−1A

is the negative space of B−1A. Therefore, u is the endpoint of a profile which
satisfies the boundary condition (6.17), if and only if

u ∈ (Id + Γ B−1A
)
E

−
B−1A

. (6.19)

Note that given any complex number c, one can choose Γ such that this boundary condition
reads

u1 = cu2. (6.20)

6.3.3. Low frequency stability
The first order system (2.21) reads

∂zU −G(ζ)U, G(ζ )=
(

0 Id

σB−1 + η2 Id B−1A

)
, (6.21)

with ζ = (τ, η, γ ) and σ = γ + i(τ + η). Perform the small frequency reduction (2.28), using
the change of unknowns (

u

∂zu

)
= V (ζ )

(
uH

uP

)
.

Then, by Lemma 4.23, there holds

V −1GV =
(
H 0

0 P

)
with P(0)= B−1A and

H(ζ)= −σA+ (σ 2 − η2)AB +O(|ζ |3). (6.22)

Since V (0) has the triangular form (2.30), we see that the boundary condition reads

uH + Γ̃ (ζ )uP = 0, Γ̃ (0)= Γ +A−1B. (6.23)

The Evans condition is violated at ζ if there is uH ∈ E
−
H (ζ ) and uP ∈ E

−
P (ζ ) satisfying this

boundary condition. The negative space of P(ζ ), E
−(ζ ) is smooth in ζ and equal to E

−
−1
P B A
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when ζ = 0. Thus, the Evans condition is violated at ζ if and only if there is uH ∈ E
−
H (ζ ) such

that

E
−
H (ζ )∩ Γ̃ (ζ )E−

P (ζ ) �= {0}.

Since A−1B = (B−1A)−1, there holds

Γ̃ (0)E−
P (0)=

(
Id + Γ B−1A

)
E

−
B−1A

.

Comparing with (6.19) and (6.20), we see that for ζ small, the space Γ̃ (ζ )E−
P (ζ ) is generated by

t (c(ζ ),1) where c(ζ ) is a smooth function such that c(0)= c. Therefore, the Evans condition is
violated at ζ if and only if (

c(ζ )

1

)
∈ E

−
H (ζ ). (6.24)

Remark 6.6. Using the terminology of [21], the analysis above shows that the reduced boundary
condition for the hyperbolic part H(ζ) reads

u1 = c(ζ )u2. (6.25)

Taking ζ = 0 in this equation, we recover that (6.20) is the natural limiting boundary condition
for the hyperbolic operator H0.

Proposition 6.7. There are choices of a and Γ , such that

(i) the inviscid problem (6.15) for ε = 0 with the boundary condition (6.20) is maximal strictly
dissipative thus uniformly stable,

(ii) the viscous problem with boundary conditions (6.17) is strongly unstable for small frequen-
cies, in the sense that the Evans functions vanishes for arbitrarily small frequencies ζ with
γ > 0.

Proof. The matrix

S =
(

1 0

0 s

)
, s > 0 (6.26)

is a symmetrizer for the inviscid problem. If

|c|2 < s, (6.27)

the boundary condition is strictly dissipative for S. This implies that the uniform Lopatinski
condition is satisfied.

We consider frequencies ζ = ρζ̌ with ζ̌ close to (−1,1,0) where H0(ζ̌ ) = 0 has a double
eigenvalue. More precisely we consider frequencies

ζ = (−ρ + ρ2τ̂ , ρ, ρ2γ̂
)
. (6.28)
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In this case, we see thatG is a function of σ̂ = γ̂ + iτ̂ and ρ, holomorphic in σ̂ , as well as V , P ,
H and c. Moreover

H(ζ)= −ρ2(σ̂A+A−1B +O(ρ))= ρ2Ĥ (σ̂ , ρ). (6.29)

The model operator is

Ĥ (σ̂ ,0)= −σ̂A−A−1B =
(−σ̂ − 1 −a

a σ̂ + 1

)
.

Ĥ (1,0) has one eigenvalue with positive real part, with eigenvector t (b,1) with b = (2 +√
4 − a2)/a. (Note here the importance of the assumption a �= 0.) Therefore, for σ̂ close to 1

and ρ small, the negative space of Ĥ (σ̂ , ρ) is generated by t (b(σ̂ , ρ),1) where b is smooth and
holomorphic in σ̂ and b(1,0)= b. Moreover

∂σ̂ b(1,0)= 1

a

(
1 + 2√

4 − a2

)
�= 0. (6.30)

Comparing with (6.24), we see that the stability condition is violated at ζ given by (6.28), if and
only if

b(σ̂ , ρ)= c(ζ )= ĉ(σ̂ , ρ). (6.31)

Given a ∈ ]0,1[, we choose c = b and Γ such that the inviscid boundary condition
reads (6.20). Note that ĉ(σ̂ ,0)= c for all σ̂ . Thus Eq. (6.31) holds at σ̂ = 1 and ρ = 0. Moreover,
with (6.30), the implicit function theorem shows that for ρ > 0 small, there is σ̂ (ρ) close to 1
solution of (6.31), providing frequencies ζ(ρ)=O(ρ) with γ (ρ)∼ ρ2 > 0, where the stability
condition is violated. �
6.3.4. Smooth symmetrizers

We briefly discuss here the existence of smooth symmetrizers for the hyperbolic operator Ȟ
(3.16). In the present case, we deduce from (6.22) that in polar coordinates ζ = ρζ̌ , there holds

Ȟ (ζ̌ , ρ)= −σ̌A+ ρ(σ̌ 2 − η̌2)AB +O(ρ2), σ̌ = γ̌ + i(τ̌ + η̌). (6.32)

Fix ζ̌ = (1,−1,0), which corresponds to a multiple root of the hyperbolic part. Then σ̌ = 0, and

near (ζ̌ ,0)

Ȟ (ζ̌ , ρ)= −A(σ̌ Id + ρβ(ζ̌ )B)+O(ρ2) (6.33)

with β(ζ̌ )= 1. Dropping the ˇ , and changing ρb to ρ, the matrix Ȟ is a perturbation for (σ,ρ)
close to (0,0) of the following canonical example(

1 0
)
∂x + σ

(
1 0

)
+ ρ

(
1 a

)
, Reσ � 0, ρ � 0. (6.34)
0 −1 0 1 a 1
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Note that (6.29) derives from (6.33) choosing σ̌ = ρσ̂ .
Denote by E

− the negative space of Ȟ for Reσ + ρ > 0. On can check directly on this
example that the negative spaces have no limit as (σ,ρ)→ (0,0): the limits are different when
ρ = 0 and σ = 0, since the positive spaces of A and AB are different when a �= 0.

On the other hand, blowing up once more the local coordinates near ζ̌ , that is taking polar
coordinates (σ,ρ)= r(σ̂ , ρ̂), it is clear from (6.33) that E− is a smooth function of (σ̂ , ρ̂).

If Σ(ζ̌ , ρ) is a smooth symmetrizer for Ȟ , then (3.17) implies that Σ = Σ(ζ̌ ,0) must be
a symmetrizer for −(σA+ ρAB) for all σ and ρ, equivalently that S = ΣA is a symmetrizer
for (6.34), that is

S = S∗ � 0, SA=AS, Re(SB)� 0. (6.35)

The first two conditions are satisfied if and only if S is diagonal and positive. Multiplying it by a
positive factor, it must be of the form (6.26).

The third condition holds if and only if

s > a2(1 + s)2/4.

Denoting by smin(a) < 1< smax(a) <∞ the roots of the equation 4s = a2(1 + s2), the condition
reads

smin(a) < s < smax(a). (6.36)

This shows that the choice of symmetrizers is much more limited in the viscous case compared
to the inviscid one. In particular, when a is close to 1, (6.36) forces to choose s in a small interval
around 1.

The boundary condition (6.25) is strictly dissipative for Σ , then (6.20) is strictly dissipative
for Σ . This holds if and only if s > |c|2. Therefore:

There is a smooth symmetrizer Σ(ζ̌ , ρ) for Ȟ on a neighborhood of (ζ̌ ,0), adapted to the
boundary conditions (6.25) only if

|c|2 < smax(a). (6.37)

7. The high-frequency analysis

7.1. The main high-frequency estimate

This section is devoted to an analysis of uniform maximal estimates for high-frequencies. We
still assume that the assumptions of Section 2 are satisfied and we prove that the anticipated (2.58)
are satisfied when the uniform spectral stability conditions are satisfied, under the following
additional structural assumptions which strengthens (H3): it means first that the block L11 is
hyperbolic with constant multiplicity with respect to time, and second that it is totally incoming
our outgoing.
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Assumption 7.1.

(H5) For all u ∈ U∗ and ξ ∈ R
d \ {0}, the eigenvalues of A11(u, ξ) are real, semi-simple and

have constant multiplicities.
(H6) L11(u, ∂) is also hyperbolic with respect to the normal direction dxd .

For Navier–Stokes and MHD equations and in many examples L11 is a transport field

L11 = ∂t +
d∑
j=1

aj (u)∂j (7.1)

and the condition reduces to ad(u) �= 0 for u ∈ U∗, that is to Assumption 2.6, which means
inflow or outflow boundary conditions. The hyperbolicity condition (H6) in the normal direc-
tion is important as shown on an example below. On the other hand, the constant multiplicity
condition (H5) is more technical, and could be replaced by symmetry conditions: this is briefly
discussed in Remark 7.12.

We consider the linearized equation (2.21):

∂zu= G(z, ζ )u+ f, Γ (ζ )u(0)= g, (7.2)

with u= t (u1, u2, u3), f = t (f 1, f 2, f 3), Γ as in (2.56) and g = t (g1, g2, g3).

Theorem 7.2. With assumptions as indicated above, assume that the uniform spectral stability
condition is satisfied for high frequencies. Then there are ρ1 > 0 and C such that for all ζ ∈ R

d+1+
with |ζ | � ρ1, the solutions of (7.2) satisfy

(1 + γ )∥∥u1
∥∥
L2 +Λ∥∥u2

∥∥
L2 + ∥∥u3

∥∥
L2 + (1 + γ ) 1

2
∣∣u1(0)

∣∣+Λ 1
2
∣∣u2(0)

∣∣+Λ− 1
2
∣∣u3(0)

∣∣
�C

(∥∥f 1
∥∥
L2 + ∥∥f 2

∥∥
L2 +Λ−1

∥∥f 3
∥∥
L2

)+C((1 + γ ) 1
2
∣∣g1
∣∣+Λ 1

2
∣∣g2
∣∣+Λ− 1

2
∣∣g3
∣∣). (7.3)

High frequencies require a particular analysis for two reasons. First, the splitting hyperbolic vs
parabolic is quite different in this regime and second the conjugation operator Φ of Lemma 2.10
is not uniform for large ζ . The analysis is made in [20] for full viscosities and Dirichlet boundary
conditions. For partial viscosities and shocks, that is for transmission condition, the problem is
solved in [7]. The presentation below is more systematic and allows for more general boundary
conditions of the form (2.10).

We now explain the general strategy of the proof. We use the notations

‖u‖sc = (1 + γ )∥∥u1
∥∥
L2 +Λ∥∥u2

∥∥
L2 + ∥∥u3

∥∥
L2 ,

‖f ‖′
sc = ∥∥f 1

∥∥
L2 + ∥∥f 2

∥∥
L2 +Λ−1

∥∥f 3
∥∥
L2 ,∣∣u(0)∣∣sc = (1 + γ ) 1

2
∣∣u1(0)

∣∣+Λ 1
2
∣∣u2(0)

∣∣+Λ− 1
2
∣∣u3(0)

∣∣,
|g|sc = (1 + γ ) 1

2
∣∣g1
∣∣+Λ 1

2
∣∣g2
∣∣+Λ− 1

2
∣∣g3
∣∣. (7.4)
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(1) The main step in the proof of the theorem is to separate off the incoming and outgoing
components of u. This is done using a change of variables û = V−1(z, ζ )u which transforms
Eq. (7.2) to

∂zû= Ĝ(z, ζ )û+ f̂ , Γ̂ (ζ )û(0)= g. (7.5)

There are norms similar to (7.4) for û and f̂ as well; with little risk of confusion, we use here the
same notations. An important property is that:

‖u‖sc �C‖û‖sc, ‖f̂ ‖′
sc � C‖f ‖′

sc,∣∣u(0)∣∣sc �C
∣∣û(0)∣∣sc,

∣∣û(0)∣∣sc � C
∣∣u(0)∣∣sc, (7.6)

with C independent of ζ . Moreover, Γ̂ (ζ )= Γ (ζ )V(0, ζ ) satisfies∣∣Γ̂ (ζ )û(0)∣∣sc � C
∣∣û(0)∣∣sc. (7.7)

The new matrix Ĝ has the important property that

Ĝ =
( Ĝ+ 0

0 Ĝ−

)
+ Ĝ′ (7.8)

with ∥∥Ĝ′û
∥∥′

sc � ε(ζ )‖û‖sc (7.9)

where ε(ζ ) tends to 0 as |ζ | tends to infinity. The block structure corresponds to a splitting û=
(û+, û−) with û− ∈ C

Nb and û+ ∈ C
N+N ′−Nb denoting the incoming and outgoing components,

respectively.
(2) One proves separate estimates for the incoming and outgoing components:∥∥û+∥∥

sc + ∣∣û+(0)
∣∣� C∥∥(∂z − Ĝ+)û+∥∥

sc, (7.10)∥∥û−∥∥
sc � C

∥∥(∂z − Ĝ−)û−∥∥
sc +C∣∣û−(0)

∣∣, (7.11)

with C independent of ζ . (The norms are defined, identifying û− ∈ C
Nb to (0, û−) ∈ C

N etc.)
As a result, with (7.9), this implies that if û is a solution of (7.5), then∥∥û+∥∥

sc + ∣∣û+(0)
∣∣� C‖f̂ ‖sc + ε(ζ )‖û‖sc, (7.12)∥∥û−∥∥

sc �C‖f̂ ‖sc + ε(ζ )‖û‖sc +C∣∣û−(0)
∣∣. (7.13)

(3) We show that the estimates above imply that if the uniform spectral stability condition is
satisfied, then the solutions of (7.5) satisfy for |ζ | large enough

‖û‖sc + ∣∣û(0)∣∣sc � C
(‖f̂ ‖sc + |g|sc

)
(7.14)

implying that the solutions of (7.2) satisfy
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‖u‖sc + ∣∣u(0)∣∣sc � C
(‖f ‖sc + |g|sc

)
(7.15)

that is (7.3).
• Indeed, by definition, h ∈ E

−(ζ ) if and only if there is u solution of ∂zu= Guwith u(0)= h.
The corresponding û= V−1u satisfies by (7.13)∥∥û−∥∥

sc � C
∣∣u−(0)

∣∣+ ε(ζ )∥∥û+∥∥
sc

if ζ is large enough. Therefore, (7.12) implies that for ζ large and all h ∈ E
−(ζ ), ĥ =

V−1(0, ζ )h= (ĥ+, ĥ−) satisfies ∣∣ĥ+∣∣
sc � ε(ζ )

∣∣ĥ−∣∣
sc. (7.16)

• In addition Ê
−(ζ ) := V−1(0, ζ )E−(ζ ) has dimension equal to Nb, as the space of the ĥ−.

Therefore, (7.16) shows that for ζ large, the projection h 	→ h− is bijective from Ê
−(ζ ) to C

Nb ,
with inverse uniformly bounded in the norm | · |sc.

The uniform spectral stability condition reads

∀h ∈ E
−(ζ ), |h|sc � C

∣∣Γ (ζ )h∣∣sc (7.17)

(see (2.59)). Using (7.6), this implies

∀ĥ ∈ Ê
−(ζ ), |ĥ|sc � C

∣∣Γ̂ (ζ )ĥ∣∣sc. (7.18)

Using the isomorphism between Ê
−(ζ ) and C

Nb , we see that for ζ large enough and ĥ− ∈ C
Nb ,

there is ĥ+ such that (ĥ+, ĥ−) ∈ Ê
−(ζ ). Together with (7.16) and (7.7), there holds∣∣ĥ−∣∣

sc � |ĥ|sc � C
∣∣Γ̂ (ζ )ĥ∣∣sc � C

∣∣Γ̂ (ζ )(0, ĥ−)∣∣
sc + ε(ζ )∣∣ĥ−∣∣

sc.

For ζ large, the last term can be dropped, increasing C. Finally, we conclude that for all ĥ ∈ C
N

|ĥ|sc � C
∣∣Γ̂ (ζ )ĥ∣∣sc +C∣∣ĥ+∣∣

sc. (7.19)

Applying this estimate to û(0), combining with (7.10) and (7.11) and absorbing the error term
Ĝ′û for ζ large, we immediately obtain (7.14).

The third part of the proof will not be repeated. We will focus on the reduction (7.5) and on
the proof of the estimates for û±.

7.2. Spectral analysis of the symbol

Consider the linearized operator (2.20)

−B∂2
z +A∂z +M.

The coefficients satisfy



O. Gues et al. / J. Differential Equations 244 (2008) 309–387 369
B(z)= Bdd
(
w(z)

)
,

A(z, ζ )=Ad
(
w(z)

)−
d−1∑
j=1

iηj (Bjd +Bd,j )
(
w(z)

)+Ed(z),
M(z, ζ )= (iτ + γ )A0

(
w(z)

)+
d−1∑
j=1

iηj
(
Aj
(
w(z)

)+Ej(z)
)

+
d−1∑
j,k=1

ηjηkBj,k
(
w(z)

)+E0(z), (7.20)

where the Ek are functions, independent of ζ , which involve derivatives of w and thus converge
to 0 at an exponential rate when z tends to infinity. Moreover, we note that

E11
k = 0, E12

k = 0 for k > 0. (7.21)

With (2.2), we also remark that M12 does not depend on τ and γ .
We start with a spectral analysis of the matrix G in (2.21). It is convenient to use here the

notations u= (u1, u2, u3) ∈ C
N−N ′ × C

N ′ × C
N ′

. In the corresponding block decomposition of
matrices and using the notations above, there holds

G =
⎛⎝G11 G12 G13

0 0 Id

G31 G32 G33

⎞⎠ , (7.22)

where

G11 = −(A11)−1M11, G31 = (B22)−1(A21G11 +M21),
G12 = −(A11)−1M12, G32 = (B22)−1(A21G12 +M22),
G13 = −(A11)−1A12, G33 = (B22)−1(A21G13 +A22).

Note that G11, G12, G31 and G33 are first order (linear or affine in ζ ), that G32 is second order (at
most quadratic in ζ ) and that G13 is of order zero (independent of ζ ). We denote by Gabp their
principal part (leading order part as polynomials). We note that

Gabp (z, ζ )=Gabp

(
w(z), ζ

)
when (a, b) �= (3,1), (7.23)

with

G11
p (u, ζ )= −(A11

d (u)
)−1

(
(γ + iτ )A11

0 (u)+
d−1∑
j=1

iηjA
11
j (u)

)
,

G12
p (u, ζ )= −(A12

d (u)
)−1

d−1∑
iηjA

12
j (u),
j=1
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G13
p (u)= −(A11

d (u)
)−1
A12
d (u),

G32
p (u, ζ )=

(
B22(u)

)−1
d−1∑
j,k=1

ηjηkB
22
j,k(u),

G33
p (u, ζ )= −(B22(u)

)−1
d−1∑
j=1

iηj
(
B22
j,d (u)+B22

d,j (u)
)
.

The principal term of G3,1 involves derivatives of the profile w. Denoting by

p = lim
z→+∞w(z)=w(∞)

the end state of the profile w, we note that the end state of G31
p is

G31
p (∞, ζ )=

(
B22(p)

)−1

(
(γ + iτ )A21

0 (p)+
d−1∑
j=1

iηjA
21
j (p)+A21

d (p)G
11
p (p, ζ )

)
.

There are similar formulas using the matrices Aj and Bj,k of (2.3).
The spectral analysis is easier when all the terms are reduced to first order. If u= (u1, u2, u3)

is replaced by ũ= h|ζ |u := (u1, u2, |ζ |−1u3), G is replaced by

G̃ = h|ζ |Gh−1
|ζ | =

⎛⎝ G11 G12 |ζ |G13

0 0 |ζ | Id

|ζ |−1G31 |ζ |−1G32 G33

⎞⎠ :=
( G11 P12

P21 P22

)
(7.24)

with obvious definitions of Pab . Note that G̃ is or order one, while P21 is of order zero. Thus

G̃(z, ζ )= G̃p(z, ζ )+O(1), G̃p =
( G̃11

p P12
p

0 P22
p

)
=O(|ζ |). (7.25)

Moreover, since the coefficients in G converge exponentially at infinity, the remainder in (7.25)
is uniform in z ∈ R+ and |ζ | � 1. Moreover, the principal part of P̃22 is if the form P̃22

p (z, ζ )=
P 22

p (w(z), ζ ).

Lemma 7.3.

(i) For all ζ ∈ R
d+1+ with γ > 0 and η �= 0 and for all and z � 0, G̃p(z, ζ ) has no eigenvalues

on the imaginary axis; moreover, the number of eigenvalues in {Reμ< 0} is Nb =N1+ +N ′.
(ii) For all compact subset of U∗, there are c > 0 and δ > 0 such that for all u in the given

compact and all ζ ∈ R
d+1+ such that either γ � δ|ζ | or |η| � δ|ζ |, the distance between the

spectrum of G11
p (u, ζ ) and the spectrum of P 22

p (u, ζ ) is larger than c|ζ |.

Proof. The spectrum of G̃p is the union of the spectra of G11
p and P 22

p . By homogeneity, it

suffices to consider ζ ∈ Sd+.
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(a) G11
p is related to L11 since A11

d (iξ + G11
p (u, ζ )) = L11(u, γ + iτ, iη, iξ). By Assump-

tion (H3), L11 is hyperbolic in the time direction, henceG11
p has no eigenvalues on the imaginary

axis when γ > 0; moreover, the boundary is noncharacteristic for L11 by Assumption 2.6, im-
plying that the number of eigenvalues of G11

p in {Reμ < 0} is equal to the number of positive

eigenvalues of A11
d , that is N1+.

Next, note that

P 22
p =

(
0 |ζ | Id

|ζ |−1G32
p G33

p

)
.

Thus, iξ is an eigenvalue of P 22
p if and only if 0 is an eigenvalue ofB22(η, ξ), which is impossible

by (H2) if η �= 0. Thus, the eigenvalues of P 22
p are not purely imaginary when η �= 0. Moreover,

the number of eigenvalues in {Reμ< 0} is N ′ (see [20]). This finishes the proof of (i).
(b) If η = 0, G32

p and G33
p vanish, hence the spectrum of P 22

p is {0}. On the other hand,

0 is not an eigenvalue of G11
p = −(γ + iτ )(A11

d )
−1A11

0 since A11
d and A11

0 are invertible and
|γ + iτ | = |ζ | = 1.

If γ = 0 and η �= 0, the eigenvalues of P 22
p are not in iR. On the other hand, by Assump-

tion (H6) the eigenvalues of G11
p are purely imaginary, thus P 22

p and G11
p have no common

eigenvalue. This finishes the proof of (ii). �
The analysis in a purely “elliptic” zone {γ � δ|ζ | and |η| � δ|ζ |} with δ > 0, is easy, see

below. The most difficult and important part is to understand the “hyperbolic–parabolic” decou-
pling in an arbitrarily small cone

Cδ = {0 � γ � δ|ζ |}∪ {|η| � δ|ζ |} (7.26)

with δ such that property (ii) of Lemma 7.3 holds for u in a simply connected neighborhood U∗
0 of

a compact set which contains the curve {w(z), z ∈ [0,+∞[}. There, the usual homogeneity and
the parabolic homogeneity are in competition, leading to different classes of symbols. We use the
following terminology: let ζ = (τ, γ, η) and for a multi-index α = (ατ ,αη,αγ ) ∈ N×N

d−1 ×N,
set

|α| = ατ + |αη| and 〈α〉 = 2(ατ + αγ )+ |αη|.

Recall that the parabolic weight is Λ= (1 + τ 2 + γ 2 + |η|4) 1
4 .

Definition 7.4.

(i) Γ m(Ω) denotes the space of homogeneous symbols of orderm, that is of functions h(z, ζ ) ∈
C∞(R+ ×Ω) such that there is θ > 0 such that for all α ∈ N

d+1 and all k ∈ N, there are
constants Cα,k such that for |ζ | � 1:∣∣∂αζ h∣∣� Cα,0|ζ |m−|α|, if k = 0, (7.27)∣∣∂kz ∂αζ h∣∣�Cα,ke−θz|ζ |m−|α|, if k > 0, (7.28)
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(ii) PΓ m(Ω) denotes the space of parabolic symbols of order m, that is of functions h(z, ζ ) ∈
C∞(R+ ×Ω) satisfying similar estimates with |ζ |m−|α| replaced by Λm−〈α〉.

We use the same notation for spaces of homogeneous or parabolic matrix symbols of any fixed
dimension.

Lemma 7.5. For all ζ̂ ∈ Sd ∩ Cδ , there is a conical neighborhoodΩ of ζ̂ and there are matrices
W12

p ∈ Γ 0(Ω) and W21
p , homogeneous of degree 0 in ζ for u ∈ U∗

0 such that

W21
p G11

p −P22
p W21

p = |ζ |P21
p , (7.29)

G11
p W12

p −W12
p P22

p = −P12
p . (7.30)

Proof. By homogeneity, it is sufficient to construct W21
p for |ζ | = 1. By Lemma 7.3, for ζ ∈

Sd+1 ∩ Cδ and u ∈ U∗
0 , the spectra of G11

p (u, ζ ) and P 22
p (u, ζ ) do not intersect, so that the linear

system of equation

XG11
p (u, ζ )− P 22

p (u, ζ )X = Y

has a unique solution X = X (u, ζ )Y . Therefore W21
p (z, ζ ) = |ζ |X (w(z), ζ )P21

p (z, ζ ) satis-

fies (7.29). (Note that P21 is of degree 0.)
The construction of W12

p is similar, noticing that P12
p is of degree 1. �

In the block structure of G, there holds

W21
p =

(V21
p

V31
p

)
, W12

p = (V12
p V13

p

)
(7.31)

and (7.29) reads

V21
p G11

p − |ζ |V31
p = 0, (7.32)

V31
p G11

p − |ζ |−1G32
p V21

p − G33
p V31

p = G31
p . (7.33)

Similarly,

G11
p V12

p − |ζ |−1V13
p G32

p = −G12
p , (7.34)

G11
p V13

p − |ζ |V12
p − V13

p G33
p = |ζ |G13

p . (7.35)

For further use, we make the following remark: by (7.23), we see that G12
p and G32

p vanish when

η= 0. Therefore, (7.34) implies that V12 also vanishes when η= 0 and hence

V12(z, ζ )=O(|η|/|ζ |). (7.36)
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With these notations, let

VI (z, ζ )=
⎛⎜⎝ Id 0 0

|ζ |−1V21
p Id 0

V31
p 0 Id

⎞⎟⎠ , VII(z, ζ )=
⎛⎝ Id V12

p |ζ |−1V13
p

0 Id 0

0 0 Id

⎞⎠
and V = VIVII . Using the conjugation u = Vû, f = V f̂ , for ζ in the cone Cδ , Eq. (7.2) is
transformed to

∂zû= Ĝû+ f̂ , Γ̂ û(0)= g, (7.37)

with Ĝ = V−1GV − V−1∂zV and Γ̂ (ζ )= Γ (ζ )V(0, ζ ).

Lemma 7.6. The entries of Ĝ satisfy:

Ĝ 11 − (G11 + |ζ |−1G12V21
p + G13V31

p

) ∈ Γ −1,

Ĝ 12 ∈ Γ 0, Ĝ 13 ∈ Γ −1, Ĝ 21 ∈ Γ −1, Ĝ 31 ∈ Γ 0,

Ĝ 22 ∈ Γ 0, Ĝ 23 − Id ∈ Γ −1,

Ĝ 32 − (G32 − V 31G12) ∈ Γ 0, Ĝ 33 − G33 ∈ Γ 0.

Proof. We first compute the entries of GI = V−1
I GVI . Direct computations show that

G11
I = G11 + |ζ |−1G12V21

p + G13V31
p , G12

I = G12, G13
I = G13,

G32
I = G32 − V 31G12, G33

I = G33 − V 31G13.

Moreover,

G21
I = −|ζ |−1V21

p G11 + V31 − |ζ |−1V21(|ζ |−1G12V21
p + G13V31

p

)
.

The first two terms are of degree zero, and by (7.32), the sum of their principal terms vanishes;
the third term is of degree −1 thus G21

I ∈ Γ −1. Similarly, G31
I is of degree 1 and its principal part

vanishes by (7.33). Thus,

G21
I ∈ Γ −1, G31

I ∈ Γ 0.

Next

G22
I = −|ζ |−1V21

p G12 ∈ Γ 0, G22
I − Id = −|ζ |−1V21G13 ∈ Γ −1.

The computations for GII = V−1
II GIVII are quite similar. This new conjugation annihilates the

principal parts of G12
I and G13

I and contributes to remainder terms in the other entries.
Finally, direct computations show that V−1∂zV only contributes to remainder. �



374 O. Gues et al. / J. Differential Equations 244 (2008) 309–387
The main idea is to consider (7.37) as a perturbation of the decoupled system

∂zû
1 = Ĝ 11û1 + f̂1, (7.38)

∂z

(
û2

û3

)
=
(

0 Id

G32 G33

)(
û2

û3

)
+
(
f̂ 2

f̂ 3

)
. (7.39)

Introduce then

G′ = Ĝ −
⎛⎝ Ĝ 11 0 0

0 0 Id

0 G32 G33

⎞⎠ . (7.40)

The next lemma how the estimates are transported by the change of variables u = Vû. We use
the notations (7.4) for the scaled norms.

Lemma 7.7. There are constant C and ρ1 such that for all ζ in the cone Cδ with |ζ | � ρ1, there
holds ∥∥V−1û

∥∥
sc � C‖û‖sc, ‖Vf ‖′

sc � C‖f ‖′
sc,∣∣V−1û(0)

∣∣
sc � C

∣∣û(0)∣∣sc,
∣∣Vu(0)∣∣sc � C

∣∣u(0)∣∣sc, (7.41)

and ∣∣Γ̂ (ζ )û(0)∣∣sc � C
∣∣û(0)∣∣sc. (7.42)

Moreover,

‖G′û‖sc � CΛ−1‖û‖sc. (7.43)

Proof. Direct computations, using (7.36), show that u= Vû satisfies

u1 =O(1)û1 +O(|η||ζ |−1)û2 +O(|ζ |−1)û3,

u2 =O(|ζ |−1)û1 +O(1)û2 +O(|ζ |−1)û3,

u3 =O(1)û1 +O(1)û2 +O(1)û3.

This implies the first estimate in (7.41), using the inequalities

(1 + γ )|η|/|ζ | �Λ, (1 + γ )/|ζ | � 1, Λ/|ζ | � 1.

The proof of the other estimates of (7.41) is similar, using in particular for the traces the inequal-

ity (1 + γ ) 1
2 |η|/|ζ | �Λ 1

2 .
The inequality (7.42) follows from the second line of (7.41) and the estimate |Γ u(0)|sc �

|u(0)|sc which is a direct consequence of the form (2.56) of the boundary conditions.
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Finally, Lemma 7.6 implies that f̂ = G′û satisfies

f̂ 1 =O(1)û2 +O(|ζ |−1)û3,

f̂ 2 =O(|ζ |−1)û1 +O(1)û2 +O(|ζ |−1)û3,

f 3 =O(1)û1 +O(1)û2 +O(1)û3

and (7.43) follows. �
The parabolic bloc (7.39) is studied in [20]. We now focus on the hyperbolic block (7.38),

recalling and extending the analysis of [7].

7.3. Analysis of the hyperbolic block

7.3.1. The genuine coupling condition
For u ∈ U∗, denote by λj (u, ξ) the distinct eigenvalues of A11(u, ξ), which are real and have

constant multiplicity νj by Assumption (H5). Assumption (H6) implies the following:

Lemma 7.8. For all u ∈ U∗, all ξ ∈ R
d and all j , there holds ∂ξd λj (u, ξ) �= 0, and all these

derivatives have the same sign.

Proof. If ∂ξd λj (u, η, ξd)= 0, then the equation τ + λ(η, ξd)= 0 would have complex roots in
ξd for some τ close to τ = −λj (u, η, ξd) (recall that λj is real analytic). Thus hyperbolicity
in the normal direction prevents glancing. Moreover, by continuity the sign of ∂ξd λj (u, η, ξd)
is constant for all ξd ∈ R when η �= 0. Thus the functions ξd 	→ λj (u, η, ξd) are monotone and
tend to infinity as ξd tends to ±∞. Since λj �= λk when j �= k, they must be all increasing or all
decreasing. This remains true for η= 0 by continuity. �

According to the terminology of Section 4, we will say that the hyperbolic block L11 is incom-
ing (respectively outgoing) when the derivatives ∂ξd λj (u, ξ) are positive (respectively negative).

Corollary 7.9.

(i) The matrix G11
p (u, ζ ) has no purely imaginary eigenvalues when γ > 0. They are all lying

in {Reμ> 0} if the 11-block is outgoing and in {Reμ< 0} if it is incoming.
(ii) Near points ζ with γ = 0, G11

p (u, ζ ) has semi-simple eigenvalues μj (u, ζ ) of constant mul-
tiplicity νj , which are purely imaginary when γ = 0. Moreover, ∂γ Reμj > 0 when the
11-block is outgoing and ∂γ Reμj < 0 when the 11-block is incoming.

Proof. Note that μ is an eigenvalue of G11
p (u, ζ ) if and only if −τ + iγ is an eigenvalue

of A11(u, η, ξ) with ξ = −iμ.
Consider the equations in ξd : τ + λj (u, η, ξd) = 0. Since λj is strictly monotone and tends

to infinity at both infinity, it always have a unique solution, ψj(u,η, τ ) and ∂τψj has the same
sign as −∂ξd λj . This solution extends analytically for Im τ small. This yields distinct eigenvalues
μj (u, ζ )= iψj (u, η, τ − iγ ) of G11

p for ζ close to the real domain. In particular ∂γ μj = ∂τψj
and the eigenvalues all lie in {Reμ > 0} if the 11-block is outgoing and in {Reμ > 0} if it is
incoming.
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The kernel of G11
p − μj is the kernel of A11 − λj , thus has dimension equal to the multi-

plicity of λj . Since these dimensions add up to N1, this shows that G11
p has only semi-simple

eigenvalues of constant multiplicity, which all lie in a given half space when γ > 0.
Hyperbolicity of L11 implies thatG11

p (u, ζ ) has no purely imaginary eigenvalues when γ �= 0
and by continuity they all lie in the same half space. �

Next we need more information on the zero-th order correction of Ĝ11. From (7.20), (7.21)
and (7.22) we see that

Ĝ 11(z, ζ )− (V−1∂zV
)11 =G11

p

(
w(z), ζ

)+ E(z, ζ ), (7.44)

where E ∈ Γ 0. Denote its principal part by Ep. Its limit at z= ∞ is

Ep(p, ζ )= |ζ |−1G12
p (p, ζ )V

21
p (p, ζ )G

13
p (p, ζ )V

31
p (p, ζ ) (7.45)

where p = limz→+∞w(z) and V 21
p (p, ζ ), V

31
p (p, ζ ) denote the end points of V21

p and V31
p , that is

the solutions of the intertwining relations (7.32) and (7.33) with matrices Gabp replaced bay their

endpoint values Gabp (p, ζ ). The next result is crucial and follows from the genuine coupling
condition (H4).

Proposition 7.10. Fix ζ with |ζ | = 1 and γ = 0. For ζ in a neighborhood of ζ , consider a

basis where G11(u, ζ ) has the block diagonal form diag(μj Idνj ). Denote by Ej,k(u, ζ ) the cor-
responding blocks of E is this basis. Then, for u ∈ U the eingenvalues of the diagonal blocks
ReEj,j have a positive (respectively negative) real part if the 11-block is outgoing (respectively
incoming).

Proof. It is sufficient to prove the positivity at ζ . Suppose that γ = 0, denote by ϕj,p with p ∈
{1, . . . , νj } a basis of eigenvectors of G11(u, ζ ). Fix j and set ξd = −iμj (u, ζ ) ∈ R, ξ = (η, ξd).
Then the ϕj,p are right eigenvectors of A11(u, ξ) associated to the eigenvalue −τ = λj (u, ξ).

Consider left eigenvectors �j,p of A11(u, ξ), dual to the ϕj,p . Then, the left eigenvectors
of G11

p (u, ζ ) associated to μj are 1
βj
�jA

11
d with βj = ∂ξd λj (u, η, ξ), see Lemma 4.19. The en-

tries of the block Ej,j are

1

βj
�j,pA

11
d Ep(u, ζ )ϕj,p′ . (7.46)

Computing the eigenvalues of order ε of B(u, ξ)+ iεA(u, ξ), leads to consider the matrix

iA11 + εA12(B22)−1
A21. (7.47)

The genuine coupling condition (H4) implies that for u ∈ U , its spectrum lies in Reμ> cε for ε
small, and this implies that the matrix Fj,j with entries

�j,pA
12(B22)−1

A21ϕj,p′ (7.48)

has its eigenvalues in the right half plane {Reμ> 0}.



O. Gues et al. / J. Differential Equations 244 (2008) 309–387 377
Because G11
p ϕj,p′ = iξdϕj,p′ , the relation (7.32) implies

V 31
p ϕj,p′ = |ζ |−1V 21

p G
11
p ϕj,p′ = iξd |ζ |−1V 21

p ϕj,p′ ,

and, using the expressions of the matrices Ga,b yields(|ζ |−1G12
p V

21
p +G13

p V
31
p

)
ϕj,p′ = −i|ζ |−1(A11

d

)−1
A12(η, ξ)V 21

p ϕj,p′

and (|ζ |−1G32
p V

21
p +G33

p V
31
p − V 31

p G
11
p

)
ϕj,p′ = |ζ |−1(B22

dd

)−1
B22(η, ξ)V

21
p ϕj,p′ .

By (7.33) this is equal to

−G31
p ϕj,p′ = −i(B22

dd

)−1
A21(η, ξ)ϕj,p′ .

Thus

|ζ |−1V 21
p ϕj,p′ = −i(B22(η, ξ)

)−1
A21(η, ξ)ϕj,p′

and

Epϕj,p′ = −(A11
d

)−1
A12(η, ξ)

(
B22(η, ξ)

)−1
A21(η, ξ)ϕj,p′ .

Multiplying on the left by �jA11
d , this shows that the coefficients in (7.46) and (7.48) only differ

by the factor −1/βj , and the proposition follows. �
7.3.2. Estimates

We are now in position to prove maximal estimates for the solutions of Eq. (7.38).

Proposition 7.11. There are constants C and ρ1 � 1 such that for all ζ in the cone Cδ with
|ζ | � ρ1 and all û1 and f̂ 1 in L2(R+) satisfying (7.38), there holds

(1 + γ )∥∥û1
∥∥
L2 + (1 + γ ) 1

2
∣∣û1+(0)

∣∣
� C

(∥∥f̂ 1
∥∥
L2 + (1 + γ ) 1

2
∣∣û1−(0)

∣∣) (7.49)

where û1+ = û1 and û1− = 0 if the 11-block is outgoing and û1+ = 0 and û1− = û1 if it is
incoming.

Proof. (a) Fix ζ ∈ Sd+1+ . We prove the estimate for ζ in a conical neighborhood of ζ . Suppose

first that γ = 0 (the most difficult case). By Corollary 7.9 there is a matrix V11(z, ζ ) homo-

geneous of degree 0 such that (V11)−1G11
p V11 = diag(μj (w(z), ζ )) Idνj . Setting û1 = V11u1

transforms the equation to

∂zu
1 = (diag

(
μj
(
w(z), ζ

))
Idνj + Ẽ,

)
u1 + f 1 (7.50)
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with Ẽ = E − (V11)−1∂zV11 ∈ Γ 0, whose principal part Ẽp has the same end point Ep(p, ζ )

as Ep.
As usual, since the μj are pairwise distinct, there is a new change u1 = (Id + V−1)ũ

1 with
V11−1 ∈ Γ −1, such that the resulting system has the same form with the additional property that
the zero-th order part is also block diagonal, so that Ẽp = diag(Ej,j ) and the end points of the
blocks Ej,j are Ej,j introduced in Proposition 7.10.

The term (Ẽ − Ẽp)u is O(|ζ |−1|u|), is incorporated to f 1 and finally absorbed from the right
to the left of the inequality by choosing |ζ | large enough. This reduces the proof to the case
where the equation reads

∂zû
1 = μj

(
w(z), ζ

)
û1 +Ej,j (ζ )û1 + Fj,j (z, ζ )û1 + f̂ 1 (7.51)

with |Fj,j | �C0e
−θz.

Consider the outgoing case. Then, Corollary 7.9 implies that there is a constant c > 0 such
that Reμj (u, ζ ) � cγ . Moreover, Proposition 7.10 implies that the eigenvalues of Ej,j have a
positive real part. Thus, there is a positive definite (constant) matrix S(ζ )� Id such that ReSEj,j
is definite positive, say ReSEj,j � Id. Introduce a = C0|S|

∫ z
0 e

−θsds such that ∂za � |SFj,j |
and a is bounded in L∞ uniformly with respect to ζ . Therefore, multiplying the equation by
e2a(z)S and taking the L2 scalar product with û1 implies that

(1 + cγ )∥∥eaû1
∥∥2
L2 + ∣∣û1(0)

∣∣2 �C
∥∥eaû1

∥∥
L2

∥∥eaf̂ 1
∥∥
L2

which implies (7.49). The proof in the incoming case is similar.
(b) Suppose next that γ = 0. Consider again the outgoing case. Then, the eigenvalues of G11

p
satisfy Reμ� c|ζ | in a conical neighborhood of ζ . This is the classical “elliptic” case. There is

a symmetric definite positive matrix S(u, ζ ) ∈ Γ 0 such that ReSG11 � c|ζ | Id and usual integra-
tions by parts imply that

c|ζ |∥∥û1
∥∥2
L2 + ∣∣û1(0)

∣∣2 � C
∥∥û1

∥∥
L2

∥∥f̂ 1
∥∥
L2 +C1

∥∥û1
∥∥2
L2

where C1 involve estimates of the zero-th order terms, which include ∂zS(w(z), ζ ). This term is
eliminated choosing |ζ | large enough. The proof in the incoming case is similar. �
Remark 7.12. The proof above contains two ingredients. First, the 11-block is totally incoming
or totally outgoing, in analogy with the terminology of Section 4. Thus the decoupling incom-
ing/outgoing is trivial. More generally, this could be replaced by a decoupling condition in the
spirit of Section 4. For instance, for shocks, such a decoupling is immediate in [7] corresponding
to equations on each side of the front. Next, we construct symmetrizers for the incoming and
outgoing components. There we use the genuine coupling condition. If the eigenvalues are not
of constant multiplicity one can introduce adapted bases or use symmetry also in the spirit of
Section 4.

7.3.3. About Assumption (H6)
We show on an example that hyperbolicity in the normal direction is crucial in the proof of

estimates of the form (7.49). Suppose that the L11- block reads
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{
∂tu− ∂yu+ ∂xv,
∂tv + ∂yv+ ∂xu. (7.52)

Then, on the Fourier side, the 11 equation will be of the form{(
i(τ − η)+ γ )u+ ∂zv+ a(z)u= f,(
i(τ + η)+ γ )v + ∂xu+ a(z)v = g, (7.53)

and the only information we have from the genuine coupling condition is that a is positive at
z= +∞. Suppose that a(z0) < 0 for some z0 > 0. Then glancing waves for (7.52) will propagate
parallel to the boundary and thus may remain in a region where a is negative and thus may never
be damped. This is illustrated by choosing τ = η, large, γ = −a(z0) > and

uτ (z)= χ
(
τ

1
3 (z− z0)

)
, vτ (z)= −∂zuτ

2iτ + γ + a
with χ ∈ C∞

0 (R). Then (7.53) is satisfied with f = (a(z)−a(z0))uτ +∂zvτ and g = 0. Moreover,

‖f ‖L2 = O(τ− 1
3 )‖u‖L2 and u(0) = v(0) = 0, showing that no estimate of the form (7.49) can

be valid.

7.4. Proof of Theorem 7.2

7.4.1. In the cone Cδ
We consider now Eq. (7.39) and briefly recall the results from [20]. It is natural to rescale

the problem using the parabolic weights: with v2 = û2 and v3 =Λ−1û3 and g2 = f̂ 2 and g3 =
Λ−1f̂ 3the system reads

∂z

(
v2

v3

)
= GP

(
v2

v3

)
+
(
g2

g3

)
(7.54)

with

GP =
(

0 Λ Id

Λ−1G32 G31

)
∈ PΓ 1

of quasi-homogeneous degree one and principal part GP (w(z), ζ ) with

GP (u, ζ )=
(

0 Λ Id

Λ−1((iτ + γ )(B22)−1 +G32
p (u, η)) G31

p (u, η)

)
. (7.55)

Lemma 7.13. (See [20].) There is c > 0 such that the spectrum ofGP lies in {|Reμ| � cΛ}, with
N ′ eigenvalues, counted with their multiplicity, of positive real part. There is a smooth change of
variables W ∈ PΓ 0 such that

W−1GPW =
(P+ 0

0 P−

)
with P± ∈ PΓ 1 having their eigenvalues satisfying ±Reμ� cΛ.
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Introduce

(
v+

v−

)
= W−1

(
v2

v3

)
.

Corollary 7.14. (See [20].) There are C and ρ1 such that for all ζ ∈ Cδ with |ζ | � ρ1, there
holds

Λ
∥∥v+∥∥

L2 +Λ 1
2
∣∣v+(0)

∣∣� C∥∥(∂z −P+)v+∥∥
L2,

Λ
∥∥v−∥∥

L2 � C
∥∥(∂z −P−)v−∥∥

L2 +CΛ 1
2
∣∣v−(0)

∣∣.
Scaling back, introduce

(
û2,+

û3,+

)
=
(

Id 0

0 Λ

)
W
(
v+

0

)
,

(
û2,−

û3,−

)
=
(

Id 0

0 Λ

)
W
(

0

v−

)
. (7.56)

Because, W−1∂zW is uniformly bounded, the corollary implies the following estimate:

Proposition 7.15. There are C and ρ1 such that for all ζ ∈ Cδ with |ζ | � ρ1, there holds

Λ
∥∥u2,+∥∥

L2 + ∥∥u3,+∥∥
L2 +Λ 1

2
∣∣u2,+(0)

∣∣+Λ− 1
2
∣∣u3,+(0)

∣∣
� C

∥∥f̂ 2
∥∥
L2 +CΛ−1

∥∥f̂ 3
∥∥
L2 + ∥∥û2

∥∥
L2 +CΛ−1

∥∥û3
∥∥
L2 ,

Λ
∥∥u2,−∥∥

L2 + ∥∥u3,−∥∥
L2 �CΛ 1

2
∣∣u2,−(0)

∣∣+CΛ− 1
2
∣∣u3,−(0)

∣∣
+C∥∥f̂ 2

∥∥
L2 +CΛ−1

∥∥f̂ 3
∥∥
L2 + ∥∥û2

∥∥
L2 +CΛ−1

∥∥û3
∥∥
L2 .

Finally, with û1,± as in Proposition 7.11, introduce

û± = t
(
û1,±, û2,±, û2,±). (7.57)

Adding up the various estimates and using (7.43), one obtains the following estimates.

Proposition 7.16. There are C and ρ1 such that for all ζ ∈ Cδ with |ζ | � ρ1 and all û ∈H 1(R+):

∥∥û+∥∥
sc + ∣∣û+(0)

∣∣� C∥∥(∂z − G)û
∥∥

sc +Λ−1‖û‖sc, (7.58)∥∥û−∥∥
sc � C

∥∥(∂z − G)û
∥∥

sc +Λ−1‖û‖sc +C∣∣û−(0)
∣∣. (7.59)

As indicated at the end of Section 7.1, these estimates imply the maximal estimates of Theo-
rem 7.2 provided that the boundary conditions are uniformly spectral stable.



O. Gues et al. / J. Differential Equations 244 (2008) 309–387 381
7.4.2. Analysis in the central zone
We now consider the remaining cone where

ζ ∈ R
d+1, γ � δ|ζ | and |η| � δ|ζ |. (7.60)

We consider the rescaled G̃ matrix (7.25), for the rescaled unknowns ũ = h|ζ |u := (u1, u2,

|ζ |−1u3), f̃ = h|ζ |f := (f 1, f 2, |ζ |−1f 3). We note that in the region under consideration we
now have (1 + γ )≈Λ≈ |ζ |, so that the rescaled norms (7.4) are equivalent to

‖u‖sc ≈ |ζ |‖ũ‖L2,∣∣u(0)∣∣sc ≈ |ζ | 1
2
∣∣ũ(0)∣∣,

‖f ‖′
sc ≈ ‖f̃ ‖L2 . (7.61)

By Lemma 7.3, there is a smooth matrix V ∈ Γ 0 such that

V−1(zζ )Gp(z, ζ )V(z, ζ )=
(G+

p 0

0 G−
p

)
:= Gdiag

p

where the spectrum of G±
p ∈ Γ 1 is contained in {±Reμ� c|ζ |}. We use the notations

û := Vũ=
(
û+

û−

)
. (7.62)

ũ+ has dimension N +N ′ −Nb and u− has dimension Nb. The equation for û reads

∂zû= Ĝû+ f̂ , (7.63)

with Ĝ = Gdiag +O(1). The ellipticity of Gdiag immediately implies the following estimates.

Proposition 7.17. There are constants C and ρ1 such that for all ζ satisfying (7.60) and |ζ | � ρ1
and all ũ ∈H 1(R+) satisfying (7.63), there holds

|ζ |∥∥û+∥∥
L2 + |ζ | 1

2
∣∣u+(0)

∣∣�C‖f̂ ‖L2 +C‖û‖L2, (7.64)

|ζ |∥∥û−∥∥
L2 � C‖f̂ ‖L2 +C‖û‖L2 +C|ζ | 1

2
∣∣û−(0)

∣∣2. (7.65)

Thanks to (7.61), this is the exact analogue of Proposition 7.16 and these estimates imply the
maximal estimates of Theorem 7.2 provided that the boundary conditions are uniformly spectral
stable, as explained in Section 7.1.

8. Application to magnetohydrodynamics

We now apply our results to the equations of isentropic magnetohydrodynamics (MHD), for
which the inviscid case was treated in [21]. The full (nonisentropic) inviscid equations have
been treated in [13], and have essentially the same symbolic structure as the isentropic inviscid
equations.
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8.1. The equations

The equations of isentropic magnetohydrodynamics (MHD) appear in basic form as

⎧⎨⎩
∂tρ + div(ρu)= 0,

∂t (ρu)+ div
(
ρutu

)+ ∇p+H × curlH = ενΔu,
∂tH + curl(H × u)= εμΔH,

(8.1)

divH = 0, (8.2)

where ρ ∈ R represents density, u ∈ R
3 fluid velocity, p = p(ρ) ∈ R pressure, and H ∈ R

3

magnetic field. When H ≡ 0, (8.1) reduces to the equations of isentropic fluid dynamics. We
assume that ν and μ are positive.

Equations (8.1) may be put in conservative form using identity

H × curlH = (1/2)div
(|H |2I − 2HtH

)tr +H divH (8.3)

together with constraint (8.2) to express the second equation as

∂t (ρu)+ div
(
ρutu

)+ ∇p+ (1/2)div
(|H |2I − 2HtH

)tr = ενΔu. (8.4)

They may be put in symmetrizable (but no longer conservative) form by a further change, using
identity

curl(H × u)= (divu)H + (u · ∇)H − (divH)u− (H · ∇)u (8.5)

together with constraint (8.2) to express the third equation as

∂tH + (divu)H + (u · ∇)H − (H · ∇)u= μεΔH. (8.6)

Forgetting the constraint equation, we get a 7 × 7 symmetric system.
Neglecting zero-th order terms, the linearized equations of (8.1) about (ρ,u,H) are

⎧⎨⎩
Dt ρ̇ + ρ div u̇,

ρDt u̇+ c2∇ρ̇ +H × curl Ḣ − ενΔu̇,
Dt Ḣ + (div u̇)H −H · ∇u̇− εμΔḢ

(8.7)

with Dt = ∂t +u · ∇ and c2 = dp/dρ which we assume to be positive. This system is hyperbolic
symmetric, with symmetrizer S = block-diag(c2, ρ Id, Id). It enters the general framework of
linearized equations studied in this paper, with parameters (ρ,u,H).
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8.2. Eigenvalues and eigenvectors

Eigenvalues and eigenvectors of the symbol solve⎧⎨⎩
τ̃ σ̇ + ρ(ξ · u̇)= 0,

τ̃ u̇+ c2σ̇ ξ + v× (ξ × v̇)= iν|ξ2|u̇/ρ,
τ̃ v̇+ (ξ · u̇)v − (v · ξ)u̇= iμ|ξ |2v̇,

(8.8)

with

τ̃ = τ + u · ξ, v =H√
ρ, σ̇ = ρ̇/ρ, v̇ = Ḣ /√ρ. (8.9)

The structure condition (2.2) is satisfied with N ′ = 6. The kernel of B(ξ) is generated by
tr(1,0, . . . ,0) which is never an eigenvector of A(ξ) when ξ �= 0. Thus Assumptions (H1′), (H1)
and (H2) are satisfied.

Consider next the inviscid problem. The seven eigenvalues ofA(ρ,u,H, ξ) are (see e.g. [21]):⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ0 = u · ξ,
λ±s = λ0 ± cs |ξ |,
λ±2 = λ0 ± v · ξ,
λ±f = λ0 ± cf |ξ |,

(8.10)

with

c2
f := 1

2

(
c2 + |v|2 +

√(
c2 − |v|2)2 + 4b2c2

)
,

c2
s := 1

2

(
c2 + |v|2 −

√(
c2 − |v|2)2 + 4b2c2

)
,

c2 = p′(ρ) > 0, v =H/√ρ, b= |ξ̂ × v|, ξ̂ = ξ/|ξ |.
The first eigenvalue corresponds to the transport of the constraint. It can be decoupled from

the system: there is a smooth one-dimensional subspace, E0 such that A(ξ) = λ0 on this space
and E

⊥
0 is stable for A(ξ). The other eigenvalues are in general simple.

Lemma 8.1. (See [21].) Assume that 0< |v|2 �= c2. Consider ξ ∈ R
3 \ {0}.

(i) When ξ · v �= 0 and ξ ×H �= 0, the eigenvalues are simple.
(ii) On the manifold ξ × v = 0, λ0 is simple. When |v|2 < c2 (respectively |v|2 > c2), λ±f

(respectively λ±s ) are simple, the other eigenvalues λ±2 = λ±s (respectively λ±2 = λ±f )
are double, algebraically regular but not geometrically regular. Moreover,

λ±2 − λ±s =O(|ξ × v|2) (
respectively λ±2 − λ±f =O(|ξ × v|2)). (8.11)

(iii) On the manifold ξ · v = 0 the eigenvalues λ±f are simple and the multiple eigenvalue
λ0 = λ±s = λ±2 is geometrically regular. More precisely, there are smooth λ±1 such that
{λs, λ−s} = {λ1, λ−1}. Moreover,
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λ±1 = u · ξ ± δv · ξ +O((v · ξ)2), δ = c√
c2 + h2

. (8.12)

One can choose smooth eigenvectors e0, e±1, e±2 such that, on the manifold ξ · v = 0,

e0 =
⎛⎝ 0

0

ξ̂

⎞⎠ , e±1 = δ√
2|v|

⎛⎝−|v|2/c2

∓v/δ
v

⎞⎠ , e±2 = 1√
2|v|

⎛⎝ 0

∓w
w

⎞⎠ , (8.13)

with w = ξ̂ × v.

8.3. Glancing and viscous coupling

The boundary {x3 = 0} is noncharacteristic for the hyperbolic part if and only if

u3 /∈
{
0,±v3,±cs(n),±cf (n)

}
(8.14)

where cs(n) and cf (s) are the slow and fast speed computed in the normal direction n= (0,0,1).

Lemma 8.2. Assume that 0< |v| �= c.
(i) On the manifold ξ×v = 0, the multiple eigenvalues are nonglancing if and only if u3 �= ±v3.

In this case, they are totally nonglancing.
(ii) On the manifold ξ · v = 0, the multiple eigenvalues are nonglancing if and only if u3 �= 0,

u3 �= ±v3 and u3 �= ±δv3. They are totally nonglancing when |u3|> |v3|.

Proof. By (8.11), on ξ × v = 0, with j = s when |v|< c and j = f when |v|> c, there holds

∂ξ3λ±j = ∂ξ3λ±2 = u3 ± v3.

This implies (i).
In addition, ∂ξ3λ0 = u3, ∂ξ3λ±2 = u3 ± v3, and by (8.12) ∂ξ3λ±1 = u3 ± δv3 on the manifold

ξ v̇ = 0. This implies (ii). �
Next we study the viscous coupling of vectors ej at geometrically regular modes. In the

variables (ρ̇/ρ, u̇, v̇), the system (8.7) is symmetric, with symmetrizer S = diag(c2, Id, Id), and
the viscosity matrix is B(ξ) = |ξ |2 diag(0, ν Id/ρ,μ Id). The basis (8.13) is orthonormal for S.
Therefore, according to the general rule (6.9), the matrix B� is symmetric with nondiagonal
entries

B
�
0,±1 = B�0,±2 = B�±1,±2 = 0,

B
�
1,−1 = δ

2μ

2
− ν

2ρ
, B

�
2,−2 = μ

2
− ν

2ρ
. (8.15)

When |u3| < |v3|, then one of the eigenvalue λ±2 is incoming and the other one outgoing (de-
pending on the sign of v3). Therefore, if μ− ν/ρ �= 0, the coupling coefficient B�2,−2 does not
vanish. Summing up, we have proved:
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Lemma 8.3. If |u3| < |v3|, and ν �= ρμ, then the decoupling condition (4.9) is not satisfied at
modes where ξ · v = 0.

Remark 8.4. The decoupling of the mode λ0 from the other ones reflects that the constraint (8.2)
is propagated by the viscous equation as well. The other partial decoupling observed above de-
pend on the particular choice of the viscosity matrices and disappear for general B .

8.4. Shocks

Consider an inviscid planar shock. We suppose that the front is x3 = σ t and denote by
(ρ−, u−,H−) and (ρ+, u+,H+) the states on the left and on the right, respectively. All the
analysis of the preceding section is valid, if we change u3 to u3 − σ .

The jump conditions are deduced from the conservative form of the equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
ρ(u3 − σ)]= 0,[
ρu(u3 − σ)]+ r3[p+ 1

2
|H |2

]
− [H3H ] = 0,[

(u3 − σ)H ]− [H3u] = 0,

[H3] = 0,

(8.16)

where r3 = t (0,0,1). The last jump condition comes from the constraint equation (8.2). Appar-
ently this system of 8 scalar equations is too large. However, projecting the third equation in the
normal direction yields σ [H3] = 0 which is implied by the last equation. This shows that (8.16)
is made of 7 independent equations, as expected. Denoting by utg andHtg the tangential part of u
and H , that is their orthogonal projection on r⊥3 , (8.16) is equivalent to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
ρ(u3 − σ)]= 0,[
ρu(u3 − σ)]+ r3[p+ 1

2
|H |2

]
− [H3H ] = 0,[

(u3 − σ)Htg
]− [H3utg] = 0, [H3] = 0.

(8.17)

8.4.1. Fast Lax’ shocks
Consider an extreme shock. Changing x to −x if necessary, the Lax condition read:

u−
3 + ∣∣v−

3

∣∣< σ < u−
3 + c−f ,

u+
3 + c+f < σ. (8.18)

In particular, this implies that the front is not characteristic on both side, and that the nonglanc-
ing conditions in Lemma 8.2 are also satisfied on both side and the multiple modes are totally
nonglancing. Therefore:

Proposition 8.5. For extreme Lax shocks, the assumptions of Theorem 1.1 are satisfied.
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8.4.2. Slow Lax’ shocks
Consider a shock associated to one of the middle eigenvalue λ±s . Changing x to −x if neces-

sary, the Lax condition read:

u−
3 − c−s < σ < u−

3 + c−s ,
u+

3 + c+s < σ < u+
3 + ∣∣v+

3

∣∣. (8.19)

On both side we have |u3 − σ |< |v3|, therefore

Proposition 8.6. For slow Lax shocks, the decoupling condition is never satisfied.

8.5. The H → 0 limit

When H = 0, the system (8.1) reduces to isentropic Euler’s equations and (8.17) to the corre-
sponding Rankine Hugoniot condition.

When H = 0, the eigenvalues are

λ0 = λ±1 = λ±2 = u · ξ, λ±3 = λ0 ± c|ξ |. (8.20)

In particular ∂ξ3λ0 = u3. Moreover, at U = (ρ,u,0), the tangent characteristic polynomial Δ
in (4.4) is (τ + u · ξ)5. Therefore, if u3 �= 0, the eigenvalue λ0 is totally nonglancing.

Lemma 8.7. Consider a state U = (ρ,u,0). Suppose that

u3 /∈ {−c,0,+c}. (8.21)

Then, for U in a neighborhood of U , the boundary x3 = 0 is noncharacteristic for the hyperbolic
linearized equation and the eigenvalues λ±3 are simple. Moreover, for all ξ �= 0, the multiple
eigenvalue λ0 is totally nonglancing at U .
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