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Abstract

We characterize unital positive projections onto spin factors in a concrete representation
and show that these projections are atomic positive maps. © 2002 Elsevier Science Inc. All
rights reserved.
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1. Introduction

Suppose that A is a unital C∗-algebra and that Ah is the real vector space of
hermitian elements of A. A linear map P : A → A is a unital positive projection if
P 2 = P, P (I) = I, and P(a∗a) is positive in A for every a ∈ A. Any positive linear
map that can be expressed as a sum of 2-positive and 2-copositive maps is called
a decomposable map. Positive linear maps that are not decomposable are called
atomic.

If the real vector space P(Ah) is norm-closed and is closed under the Jordan prod-
uct ◦ defined by a ◦ b = 1

2 (ab + ba), for a, b ∈ P(Ah), then P(Ah) is a JC-algebra.
The results of [8,9] show that when P(Ah) is a JC-algebra, P is decomposable if
and only if P(Ah) is reversible, meaning that a1a2 · · · an + an · · · a2a1 ∈ P(Ah) for
all a1, a2, . . . , an ∈ P(Ah) [9]. A spin factor is a JC-algebra Vn having the form
RI ⊕Nn, where Nn is a real n-dimensional Hilbert space and where the Jordan
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product ◦ satisfies s ◦ t = 〈s, t〉I whenever s, t ∈ Nn. Størmer characterizes the un-
ital positive projections onto reversible spin factors in [9]. It is known that if n � 6,
then Vn is non-reversible [4,8]; a direct proof of this fact is given here in Section 3.
On the other hand, there always exist unital positive projections onto spin factors (see
[1, Lemma 2.3]). Thus, unital positive projections onto spin factors Vn with n � 6
are necessarily atomic maps.

In [3], most of the Choi maps are shown to be atomic by using the result of Eom
and Kye [2] (used again here in Section 3). In this note, we obtain more examples
of atomic maps by presenting a concrete representation for positive projections on-
to spin factors. These projections will be shown to be uniquely determined by the
dimension of the spin factors.

2. Contractive projections onto spin factors

Now, consider a concrete representation of Vn which is found in [4]. We fix any
positive integer k and denote Im to be identity matrix in M2m(C). Put σ1, σ2, σ3 to
be the following matrices in M2(C),

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 i
−i 0

)
.

For each i = 1, 2, . . . , 2k, define si ∈ (M2k (C))h = (M2(C))h ⊗ · · · ⊗ (M2(C))h
by

s1 = σ1 ⊗ Ik−1, s2 = σ2 ⊗ Ik−1,

s2k−1 = σ
(k−1)
3 ⊗ σ1, s2k = σ

(k−1)
3 ⊗ σ2,

s2i−1 = σ3
(i−1) ⊗ σ1 ⊗ Ik−i , s2i = σ3

(i−1) ⊗ σ2 ⊗ Ik−i (2 � i � k − 1),

where σ3
(m) means m-fold tensor product. Then {s1, s2, . . . , s2k} is a spin system

in JC-algebra (M2k (C))h since si ◦ sj = δijIk . So for each n = 2k − 1 or 2k, Vn =
Nn + RIk is a spin factor of real dimension n + 1 in M2k (C), where Nn is the real
linear span of {s1, s2, . . . , sn}. Note that Nn is a real Hilbert space with the following
inner product 〈· , ·〉

〈s, t〉Ik = s ◦ t = tr(st)Ik, s, t ∈ Nn,

where tr is the normalized trace for matrix algebra.
To characterize unital positive projections onto spin factors, we need some

lemmas. The following lemma was observed by Broise and proved by Størmer
[9].

Lemma 2.1. Let A,B be C∗-algebras and φ : B → A be a positive linear map
with ‖φ‖ � 1. Suppose a ∈ Bh such that φ(a2) = φ(a)2. Then for all b ∈ B we
have φ(a ◦ b) = φ(a) ◦ φ(b).



K.-C. Ha / Linear Algebra and its Applications 348 (2002) 105–113 107

By defining x1, x2, x3, x4 in (M2(C))h by

x1 =
(

1 0
0 0

)
, x2 =

(
0 0
0 1

)
, x3 =

(
0 1
1 0

)
, x4 =

(
0 i
i 0

)
,

(M2k (C))h is the real linear span of elements of the form xi1 ⊗ xi2 ⊗ · · · ⊗ xik , where
xi� ∈ {x1, x2, x3, x4} for � = 1, 2, . . . , k.

Lemma 2.2. Let P : M2k (C) → M2k (C) be a unital positive projection with
P((M2k (C))h) = Vn for n = 2k − 1 or 2k. For any fixed m = 0, 1, . . . , k − 1 and
x = Im ⊗ xim+1 ⊗ · · · ⊗ xik with each xi� ∈ {x1, x2, x3, x4}, we get the following:
(i) s2m+2 ◦ (s2m+2 ◦ P(x)) = 1

2P
(
Im+1 ⊗ xim+2 ⊗ · · · ⊗ xik

)
, im+1 = 1, 2,

(ii) s2m+1 ◦ P(x) = 0, im+1 = 3, 4.

Proof. Since P is a unital projection onto Vn, we see that P(s2
i ) = P(Ik) = Ik =

s2
i = P(si)

2. By Lemma 2.1, we have si ◦ (si ◦ P(x)) = P(si ◦ (si ◦ x)) for each
i = 1, 2, . . . , 2k. If im+1 = 1, 2, then

P(s2m+2 ◦ (s2m+2 ◦ x))
= P

(
s2m+2 ◦ (

σ3
(m) ⊗ (xim+1 ◦ σ2)⊗ xim+2 ⊗ · · · ⊗ xik

))
= 1

2P
(
s2m+2 ◦ (

σ3
(m) ⊗ x3 ⊗ xim+2 ⊗ · · · ⊗ xik

))
= 1

2P
(
Im+1 ⊗ xim+2 ⊗ · · · ⊗ xik

)
.

So, we get the first identity. Since σ1 ◦ xi = 0 for i = 3, 4, the last identity is easily
checked. �

Proposition 2.3. Let P : M2k (C) → M2k (C) be a unital positive projection with
P((M2k (C))h) = Vn for n = 2k − 1 or 2k. Then we have the following:

(i) tr(P (x)) = tr(x) for each x ∈ M2k (C).
(ii) tr(s ◦ P(x)) = tr(sx) for each x ∈ M2k (C), s ∈ Nn.

Proof. By the linearity of P, it suffices to consider x = xi1 ⊗ xi2 ⊗ · · · ⊗ xik with
each xi� ∈ {x1, x2, x3, x4}, and so we only consider such x’s. Note that

tr(xi1 ⊗ xi2 ⊗ · · · ⊗ xik ) = tr(xi1)tr(xi2) · · · tr(xik ).

Since P(x) lies in Vn, we can write P(x) as

P(x) = a0Ik +
n∑
i=1

aisi (2.1)

for some real numbers ai . We show assertion (i) first. If xi1 = x3 or x4, then s1 ◦
P(x)=0 by Lemma 2.2. On the other hand, s1 ◦ P(x) = a0s1 + a1Ik in (2.1). There-
fore, we have a0 = a1 = 0, and this implies that tr(P (x)) = 0 = tr(x). If xi1 = x1
or x2, then we have
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a0s1 + a1Ik = s1 ◦ P(x)
= P(s1 ◦ x)
=

{
P(x) if xi1 = x1,

−P(x) if xi1 = x2

=
{
a0Ik + ∑n

i=1 aisi if xi1 = x1,

−a0Ik − ∑n
i=1 aisi if xi1 = x2.

This implies that

P(x) =
{
a0Ik + a0s1 if x = x1 ⊗ xi2 ⊗ · · · ⊗ xik ,

a0Ik − a0s1 if x = x2 ⊗ xi2 ⊗ · · · ⊗ xik .
(2.2)

By using (2.2) and Lemma 2.2, we obtain that

a0Ik = s2 ◦ (s2 ◦ P(x))
= P(s2 ◦ (s2 ◦ x))
= 1

2P
(
I1 ⊗ xi2 ⊗ · · · ⊗ xik

)
. (2.3)

Now, applying repeatedly the above calculation to (2.3), we get

a0Ik = P
(
xi1 ⊗ xi2 ⊗ · · · ⊗ xik

) =
{(

1
2

)k
P (Ik) if all xi� = x1 or x2,

0 if some xi� = x3 or x4.

Since P is unital, a0 should be 1/2k .
Consequently, we conclude that for any x = xi1 ⊗ xi2 ⊗ · · · ⊗ xik ,

tr(P (x)) =
{

1
2k

= tr(x) if all xi� = x1 or x2,

0 = tr(x) if some xi� = x3 or x4.

This completes the proof of (i).
To prove equality (ii), it suffices to check it for spin system {si}. Since si ◦ P(x) =

P(si ◦ x) for all i = 1, 2, . . . , n, statement (i) shows that

tr(si ◦ P(x)) = tr(P (si ◦ x)) = tr(si ◦ x) = tr(six). �

Proposition 2.3 completely determines the positive projection P of (M2k (C))h on-
to Vn for n = 2k − 1 and n = 2k. By identity (2.1) and Proposition 2.3, it is obvious
that

P(xi1 ⊗ · · · ⊗ xik )= tr(xi1 ⊗ · · · ⊗ xik ) · Ik
+

n∑
i=1

tr(si(xi1 ⊗ · · · ⊗ xik )) · si, (2.4)
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where each xi� ∈ {x1, x2, x3, x4}. Since M2k (C) is the complex linear span of such
x’s and P is linear, P is completely determined. Since the existence of such a projec-
tion is well known in [1], we have the following theorem.

Theorem 2.4. Fix any positive integer k and let Vn be the real n+ 1-dimensional
spin factor in M2k (C) for each n = 2k − 1 or 2k. Then there exists a unique un-
ital positive projection Pn : M2k (C) → M2k (C) with the property Pn((M2k (C))h)

= Vn.

We now describe Pn recursively. Let {eij} be the usual matrix units in M2(C). For
y = ei1j1 ⊗ · · · ⊗ eikjk ∈ M2k (C), define the nonnegative integer m = m(x) by the
cardinal number of the set {(i�, j�): (i�, j�) = (1, 2)}.

Since e12 = 1
2 (x3 − ix4) and e21 = 1

2 (x3 + ix4), it is easily deduced from (2.4)
that for any y = ei1j1 ⊗ · · · ⊗ eikjk ∈ M2k (C) and k = 1, 2, . . .

(i) P2k+2(y ⊗ e11)

=
{

1
2P2k(y)⊗ I1 if some {i�, j�} /= {1, 2},
1
2P2k(y)⊗ I1 + ik(−1)m

2k+1 s2k+1 if all {i�, j�} = {1, 2},
(ii) P2k+2(y ⊗ e22)

=
{

1
2P2k(y)⊗ I1 if some {i�, j�} /= {1, 2},
1
2P2k(y)⊗ I1 + ik(−1)m+1

2k+1 s2k+1 if all {i�, j�} = {1, 2},
(iii) P2k+2(y ⊗ e12) = P2k+2(y ⊗ e21)

=
{

0 if some {i�, j�} /= {1, 2},
ik(−1)m

2k+1 s2k+2 if all {i�, j�} = {1, 2},

(iv) P2k+1(y ⊗ eij) =
{
P2k+2(y ⊗ eij) if i = j,

0 if i /= j,

(v) P2(e11) = e11, P2(e12) = P2(e21) = 1
2σ2, P2(e22) = e22.

(2.5)

3. Atomic property of the projections onto spin factors

The purpose of this section is to show that the projection Pn in Theorem 2.4 is an
atomic map for all n � 6, using the result of Eom and Kye [2]. For the
convenience of readers, we briefly explain the results in [2]. Generalizing the Wor-
onowicz’s argument [10], they considered the duality between the space Mn(C)⊗
Mm(C) (= Mnm(C)) of all nm × nm matrices over the complex field and the space
L(Mm(C),Mn(C)) of all linear maps from Mm(C) into Mn(C), which is
given by
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〈A, φ〉 = Tr


 m∑
i,j=1

(
φ(eij)⊗ eij

)
At


 =

m∑
i,j=1

〈φ(eij), aij〉 (3.1)

forA = ∑m
i,j=1 aij ⊗ eij ∈ Mn(C)⊗ Mm(C) and a linear map φ : Mm(C)→Mn(C),

where {eij} is the matrix units of Mm(C) and the bilinear form on the right-hand side
is given by 〈X, Y 〉 = Tr(YXt) for X, Y ∈ Mn(C) with the usual trace Tr, that is,
Tr(Ik) = 2ktr(Ik).

For a matrix A = ∑m
i,j=1 xij ⊗ eij ∈ Mn(C)⊗Mm(C), we denote by AT the

block-transpose
∑m

i,j=1 xji ⊗ eij of A. We say that a vector z = ∑m
i=1 zi ⊗ ei ∈ Cn ⊗

Cm is an s-simple if the linear span of {z1, . . . , zm} has the dimension � s, where
{e1, . . . , em} is the usual orthonormal basis of Cm.

Let Ps[Mn(C)] (respectively, Ps[Mn(C)]) be the convex cone of all s-positive
(respectively, s-copositive) linear maps between Mn(C), and Vs[Mn(C)] (respec-
tively, Vs[Mn(C)]) denote the convex cone in Mn(C)⊗ Mn(C) generated by zz∗ ∈
Mn(C)⊗ Mn(C) (respectively, (zz∗)T ∈ Mn(C)⊗Mn(C)) with all s-simple vectors
z ∈ Cn ⊗ Cn. It turns out that Vs[Mn(C)] (respectively, Vs[Mn(C)]) is the dual cone
of Ps[Mn(C)] (respectively, Ps[Mn(C)]) with respect to the pairing (3.1). With this
machinery, the maximal faces of Ps[Mn(C)] and Ps[Mn(C)] are characterized in
terms of s-simple vectors (see also [5–7]). Another consequence is a characterization
of the cone Ps[Mn(C)] + Pt[Mn(C)]: For a linear map φ : Mn(C) → Mn(C), the
map φ is the sum of an s-positive linear map and a t-copositive linear map if and only
if 〈A, φ〉 � 0 for each A ∈ Vs[Mn(C)] ∩ Vt[Mn(C)]. From the result, we show the
atomic property of a positive linear map depends on a tedious matrix manipulation
(see [2,3]).

Throughout this section, every vector in the space Cn will be considered as an
n× 1 matrix. The usual orthonormal basis of Cn and matrix units of Mn(C) will be
denoted by {ei : i = 1, . . . , n} and {eij: i, j = 1, . . . , n}, respectively, regardless of
the dimension n.

From relations (2.5), we calculate (P4(eij)) ∈ M4(M4(C)) as follows:

(P4(eij))=




( 1
2

)2
(I2 + s1)

( 1
2

)2
(s2 − is3) 0 −( 1

2

)2is4( 1
2

)2
(s2 + is3)

( 1
2

)2
(I2 − s1)

( 1
2

)2is4 0

0 −( 1
2

)2is4
( 1

2

)2
(I2 + s1)

( 1
2

)2
(s2 + is3)( 1

2

)2is4 0
( 1

2

)2
(s2 − is3)

( 1
2

)2
(I2 − s1)


.

Now, we fix an integer k � 3, and apply relations (2.5) to the above calculation
to get

P2k−1(e22) = P2k(e22)

= P2k−1(e44)

= P2k(e44)

= ( 1
2

)k−1
e22 ⊗ Ik−1,
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P2k−1(e23) = P2k(e23)

= (P2k−1(e32))
t

= (P2k(e32))
t

= ( 1
2

)k
(σ3 ⊗ σ3 ⊗ σ1 + iσ3 ⊗ σ2 ⊗ I1)⊗ Ik−3,

P2k−1(e34) = P2k(e34)

= (P2k−1(e43))
t

= (P2k(e43))
t

= ( 1
2

)k
(σ2 ⊗ I1 ⊗ I1 + iσ3 ⊗ σ1 ⊗ I1)⊗ Ik−3,

P2k−1(e24) = P2k(e24)

= (P2k−1(e42))
t

= (P2k(e42))
t

= 0,

P2k−1(e33) = P2k(e33)

= ( 1
2

)k−1
e11 ⊗ Ik−1.

For each 1 � i � 18, define zki ∈ (C23 ⊗ C2k−3
)⊗ C2k = C2k ⊗ C2k by

zk1 = (e1 ⊗ e1)⊗ e2 + (e4 ⊗ e1)⊗ e3, zk2 = (e3 ⊗ e1)⊗ e2,

zk3 = (e7 ⊗ e1)⊗ e2 + (e6 ⊗ e1)⊗ e3, zk4 = (e5 ⊗ e1)⊗ e2,

zk5 = (e2 ⊗ e1)⊗ e3 − (e1 ⊗ e1)⊗ e4, zk6 = (e1 ⊗ e1)⊗ e3,

zk7 = (e6 ⊗ e1)⊗ e3 − (e5 ⊗ e1)⊗ e4, zk8 = (e2 ⊗ e1)⊗ e4,

zk9 = (e2 ⊗ e1)⊗ e2 − (e3 ⊗ e1)⊗ e3, zk10 = (e4 ⊗ e1)⊗ e2,

zk11 = (e8 ⊗ e1)⊗ e2 − (e5 ⊗ e1)⊗ e3, zk12 = (e6 ⊗ e1)⊗ e2,

zk13 = (e3 ⊗ e1)⊗ e3 − (e4 ⊗ e1)⊗ e4, zk14 = (e8 ⊗ e1)⊗ e3,

zk15 = (e7 ⊗ e1)⊗ e3 − (e8 ⊗ e1)⊗ e4, zk16 = (e3 ⊗ e1)⊗ e4,

zk17 = (e6 ⊗ e1)⊗ e4, zk18 = (e7 ⊗ e1)⊗ e4.

Finally, we define the matrix A(k) ∈ M2k (C)⊗ M2k (C) by

A(k) =
18∑
i=1

zki z
k∗
i + zk6z

k∗
6 + zk14z

k∗
14.

Then A(k) ∈ V2[M2k (C)]. Since only aij(k) /= 0 for 2 � i, j � 4, k � 3, where

A(k) = ∑2k
i,j=1 aij(k) ⊗ eij, we can easily calculate the pairing (3.1) as follows:

〈A(k), P2k〉 = 〈A(k), P2k−1〉 =
4∑

i,j=2

〈P2k(eij), aij〉 = −
(

1

2

)k−2

.
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For 1 � i � 18, define wk
i ∈ (C23 ⊗ C2k−3

)⊗ C2k = C2k ⊗ C2k by

wk
1 = (e3 ⊗ e1)⊗ e2 − (e2 ⊗ e1)⊗ e3, wk

2 = (e1 ⊗ e1)⊗ e2,

wk
3 = (e4 ⊗ e1)⊗ e2 + (e1 ⊗ e1)⊗ e3, wk

4 = (e2 ⊗ e1)⊗ e2,

wk
5 = (e5 ⊗ e1)⊗ e2 − (e8 ⊗ e1)⊗ e3, wk

6 = (e7 ⊗ e1)⊗ e2,

wk
7 = (e6 ⊗ e1)⊗ e2 + (e7 ⊗ e1)⊗ e3, wk

8 = (e8 ⊗ e1)⊗ e2,

wk
9 = (e1 ⊗ e1)⊗ e3 − (e2 ⊗ e1)⊗ e4, wk

10 = (e3 ⊗ e1)⊗ e3,

wk
11 = (e4 ⊗ e1)⊗ e3 − (e3 ⊗ e1)⊗ e4, wk

12 = (e6 ⊗ e1)⊗ e3,

wk
13 = (e5 ⊗ e1)⊗ e3 − (e6 ⊗ e1)⊗ e4, wk

14 = (e1 ⊗ e1)⊗ e4,

wk
15 = (e8 ⊗ e1)⊗ e3 − (e7 ⊗ e1)⊗ e4, wk

16 = (e4 ⊗ e1)⊗ e4,

wk
17 = (e5 ⊗ e1)⊗ e4, wk

18 = (e8 ⊗ e1)⊗ e4.

Then we see that

A(k)T =
18∑
i=1

wk
i w

k∗
i + wk

10w
k∗
10 + wk

12w
k∗
12,

and so A(k) ∈ V2[M2k (C)]. Consequently we have shown that for any k � 3

〈A(k), P2k〉 = 〈A(k), P2k−1〉 = −( 1
2

)k−2
< 0,

with someA(k) ∈ V2[M2k (C)] ∩ V2[M2k (C)]. By the result in [2] mentioned in this
section, we conclude the following:

Theorem 3.1. Fix any positive integer k � 3 and let Vn be the real (n+ 1)-dimen-
sional spin factor in M2k (C) for each n = 2k − 1 or 2k. Then the unital positive
projections Pn : M2k (C) → M2k (C) with the property Pn((M2k (C))h) = Vn are all
atomic positive maps.

The spin factor of dimension 6 (up to isomorphism) can be both reversible and
non-reversible in concrete representations. Theorem 3.1 provides a representation in
which V5 is non-reversible.
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