Development of radiophotoluminescence glass dosimeter usable in high temperature environment

Fuminobu Sato a,*, Naoki Zushi a, Tadaaki Nagai a, Teruya Tanaka b, Yushi Kato a, Takayoshi Yamamoto c, Toshiyuki Iida a

a Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
c Oarai Research Center, Chiyoda Technol Corporation, 3681 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, Japan

HIGHLIGHTS

- A new radiophotoluminescence (RPL) glass dosimeter was developed for use in high temperature conditions.
- The RPL intensity of the glass dosimeter was satisfactorily sustained at 573 K for 3 h.
- The RPL response of the glass dosimeter had satisfactory linearity in the dose range from 10 to 10^4 mGy.

A R T I C L E I N F O

Article history:
Received 27 December 2012
Received in revised form 12 February 2013
Accepted 19 March 2013

Keywords:
Glass dosimeter
Radiophotoluminescence
Temperature-proof performance

A B S T R A C T

A new radiophotoluminescence (RPL) glass dosimeter was developed for use in high temperature conditions such as nuclear emergencies. Its glass material was successfully made by a melting method from reagent grade powder of Ca(H₂PO₄)₂, NaPO₃, and AgCl. The new RPL glass dosimeter expectedly emitted orange photons for exposure to UV light after gamma-ray irradiation. It was confirmed that its RPL intensity was proportional to absorbed dose in the range from 10 to 10^4 mGy. As for its temperature-proof performance, it was found that the RPL sensitivity hardly changed at 573 K for 3 h but gradually went down 25% for 50 h.

© 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.

1. Introduction

In the nuclear disaster at the Fukushima Daiichi nuclear power plant, a large amount of radioactive substance was released into the environment. The high-level radioactivity seriously prevents engineers from approaching the broken nuclear reactors. In addition, although precise dose measurement is required for radiation safety management, the high temperature and humidity conditions make it difficult to use electronic radiation instruments.

Thermoluminescence dosimeters (TLDs) have the advantages of high sensitivity, wide measurable dose range and others. However, some TLDs have peaks above 373 K in their glow curve (Datz et al., 2010), and they are not suitable for use in high temperature environment because of the large fading of the main dosimetry peak at high temperature. Development of a new dosimeter usable at high temperature is one of many tasks for decommissioning the broken nuclear power plant.

Fundamental characteristics of a radiophotoluminescence (RPL) glass dosimeter were investigated for personal dosimetry and environmental monitoring (Piesch et al., 1986). The RPL glass dosimeter has excellent characteristics such as small fading effect at room temperature (Lee et al., 2009), good dose linearity and high reproducibility (Ranogajec-Komor et al., 2008). A commercially available RPL glass dosimeter is made of a silver activated metaphosphate glass, of which composition is xNaPO₃·(1 − x)Al(PO₄)₃ (0 < x < 1, Na–Al glass) from the viewpoint of the RPL efficiency and effective atomic number (Miyamoto et al., 2011). However, the Na–Al glass dosimeter is difficult to use at high temperature because of the fading effect over 423 K.

Phosphate glass in general is formed by anions that are made of PO₄ tetrahedra and linked metal cations. Large concentration of alkali metal such as Li⁺ and Na⁺ is allowable incorporated in the phosphate glass. In a silver activated phosphate glass, silver atoms exist uniformly and stably in the form of Ag⁺. Yokota and Imagawa...
elucidated that electrons and holes were caused by ionizing radiation and diffused in the phosphate glass, and induced the formation of Ag³⁺ and Ag⁰ as RPL centers (Yokota and Imagawa, 1967). The RPL centers have high stability at room temperature and emit orange photons for exposure to UV light. The holes trapped in Ag⁰ centers are believed to be transferred from neighboring PO₄ tetrahedra. The reaction speed at the room temperature is slow owing to low mobility of Ag⁺ and hole in the phosphate glass. In actual use, therefore, a process of preheating at 343–373 K accelerates the formation of the Ag⁺⁺ centers. This charge transfer process is the main cause of the known RPL buildup. Meanwhile, the reaction speed for the formation of Ag⁰ center is faster than that for Ag⁺⁺. The Ag⁰⁺ center is easily formed at room temperature. Moreover, Dmitryuk et al. have proposed that the RPL center is originated from Ag枯燥 formed by the combination of Ag⁰ and double Ag⁺⁺. The mobility of Ag⁺⁺ is one of important parameters of RPL center formation (Dmitryuk et al., 1996). In the further heating of annealing process, accumulated RPL centers disappear through the recovery of Ag⁺⁺ from Ag⁺⁺⁺ or Ag⁰. The formation and thermal tolerance of RPL centers are related to the molecular structure of phosphate glass. The characteristics of RPL centers can be partially controlled by the content of the linked metal cations such as alkali metals, alkali earths and aluminum.

We have tried to develop a new glass dosimeter usable in high temperature conditions such as nuclear emergencies. A temperature-proof RPL glass dosimeter was well synthesized and its characteristics were examined in this study.

2. Experimental

Fig. 1 shows mean molar volume of metaphosphate glass (Tsuchida et al., 2011). Ag-doped NaPO₃ glass is crystalline material with RPL effect. The mobility of Na⁺⁺, Ag⁺⁺ and hole increases with the sodium concentration. Therefore, sodium cation plays an important role in the RPL center formation (Dmitryuk et al., 1996). However, only NaPO₃ cannot be used as material for a practical RPL glass dosimeter owing to its deliquescence. The molar volume of Al(PO₃)₃ is fairly large owing to the conformation of Al³⁺ with triple bonding. In fact, a commercially available glass dosimeter is made from NaPO₃ and Al(PO₃)₃ and it has appropriate hardness and water resistance. The RPL centers in the Na–Al glass are stable at room temperature and the fading hardly occurs until 423 K.

From a viewpoint of molar volume of metaphosphate glass, xNaPO₃ (1 – x)Ca(PO₃)₂ (0 ≤ x ≤ 1, Na–Ca glass) is one of candidate materials for RPL glass dosimeters usable in high temperature environment. The molar volume of Ca(PO₃)₂ is comparatively smaller than that of Al(PO₃)₃. The distance between Ag⁺⁺ and neighboring molecules is short and Ag⁺⁺ is moderately secured by neighboring molecules. Therefore, the temperature tolerance of the RPL centers might be higher than that of the Na–Al glass. Be(PO₃)₂ and Li(PO₃) with small molar volume are also candidate materials for temperature-proof glass dosimeters. However, beryllium compounds are difficult to handle owing to their toxicity. Also, a RPL glass dosimeter containing Li for neutron dosimetry was developed by Maki et al., but its temperature tolerance has not been examined yet (Maki et al., 2011a).

Ag-doped Na–Ca glass was made from reagent grade phosphate powder by a melting method (Lee et al., 2011). The kinds of the reagent grade powders were calcium dihydrogenphosphate [Ca(H₂PO₄)₂], sodium metaphosphate (NaPO₃) and silver chloride (AgCl). Approximately, 85 g of Ca(H₂PO₄)₂, 10 g of NaPO₃ and 0.2 g of AgCl were added to an alumina crucible. The alumina crucible was set in an electrical furnace. In a pretreatment, water was removed from the mixture through the heat-treatment at 523 K for 15 min. The mixture was melted and kept at 1473 K for 10 h in the crucible. After homogenization, the melting mixture was poured into a brass mould preheated at 773 K. The temperature of fabricated glass was kept at 793 K for 24 h and it was slowly cooled down to room temperature in 10 h. The cooled glass was cut into small pieces of 5 × 5 × 1 mm³ with a rotating diamond saw blade. The surface of the glass plates was polished with alumina and cerium lapping disks. The atomic weight composition of the Na–Ca glass dosimeter sample was as follows: O (49%), Na (3%), P (32%), Ca (16%) and Ag (0.1%).

The Na–Ca glass dosimeter samples were irradiated with 60Co gamma-rays up to 10 Gy. Moreover, the Na–Al glass dosimeters were used as references. The atomic weight composition of the Na–Al glass dosimter was as follows: O (51%), Na (11%), Al (6%), P (32%) and Ag (0.2%). There was not a large difference in the RPL spectra and the sensitivity among the synthesized Na–Al glass dosimeter and a commercial dosimeter FD-7. After the preheating of the RPL dosimeters for the build-up of RPL centers with different temperatures (300–700 K), their responses were examined with a RPL readout system (Maki et al., 2011b). The uncertainty in the RPL measurement was less than 5%. It is known that the RPL has some different decay-time components. The component with a decay time of 2–4 µs is proportional to the concentration of RPL centers, i.e., radiation dose. The wavelength spectra of RPL photons from the glass dosimeter samples were measured with a calibrated photon spectrometer.

3. Results and discussion

Fig. 2 shows an example of typical radiophotoluminescence spectra of Na–Ca glass dosimeter samples to gamma-rays. A pulse laser of 355 nm in wavelength was used as a UV light excitation source. It was found that the RPL spectrum of the gamma-ray-irradiated Na–Ca glass dosimeter sample had a large peak around 650 nm in wavelength. It was also confirmed from comparative similar experiments that there was not a large difference in the shape of the RPL spectrum between the Na–Ca and Na–Al glass dosimeter. For non-irradiated glass, there was intrinsic photoluminescence which was scarcely connected to radiation dose. For Ca–Na glass without Ag, moreover, the intrinsic photoluminescence was hardly observed for the UV light excitation. It is
supposed from these results that the intrinsic photoluminescence originates from complex molecular configuration with Ag⁺.

The optical absorption spectrum of the Na–Ca glass dosimeter sample was measured with a UV–visible spectrophotometer. Measured optical absorption spectrum showed the Na–Ca glass dosimeter was transparent in the visible region and its absorption coefficient was approximately 1.4 cm⁻¹ at 355 nm for UV light excitation. Therefore, the self-absorption effect for the RPL is considered to be sufficiently small because of the transparency in the visible range.

Fig. 3 shows examples of a change in RPL intensity of the glass dosimeter samples after the preheating process at different temperatures (60 min). The absorbed dose for the glass dosimeter samples was 100 mGy (⁶⁰Co gamma-ray). The buildup for the Na–Ca glass dosimeter sample was explicitly observed over 573 K and the fading was evidently caused over 623 K. The temperature dependence for the buildup and the fading was strongly related to the composition of the phosphate glass. The formation speed of the RPL center in the Na–Ca glass was slow at the room temperature owing to low mobility of Ag⁺ and/or hole, and thus the formation of the RPL centers was accelerated by the preheating process. The RPL sensitivity is defined as the ratio of RPL intensity to absorbed dose. It was found from the present experiments that the RPL sensitivity of the Na–Ca glass dosimeter was approximately 0.8% of that of the Na–Al glass dosimeter. Fig. 4 shows a change in the RPL intensity of the Na–Ca glass dosimeter sample at 573 K. It was found that the RPL sensitivity of the Na–Ca glass dosimeter hardly changed at 573 K for 3 h but gradually went down 25% for 50 h due to the fading.

Fig. 5 shows the relation between absorbed dose and RPL intensity for the Na–Ca glass dosimeter sample, which was irradiated with ⁶⁰Co gamma-rays. The preheating process was performed at 573 K for an hour. It was confirmed that the RPL response of the Na–Ca glass dosimeter had satisfactory linearity in the dose range from 10 to 10⁶ mGy. The lowest detectable dose of a glass dosimeter generally depends on the performance of a RPL readout system. It has been found in this study that the lowest detectable dose is 5 mGy for the Na–Ca glass dosimeter and 10 μGy for the Na–Al glass dosimeter, respectively. In high dose range over 10 Gy, light transmittance loss is significant (Miyamoto et al., 2011). Therefore, correction on light absorption coefficient is necessary for the
confirmation of dose linearity. Instead, not RPL but light absorption might be appropriate for high dose measurement.

4. Conclusion

A new Na–Ca glass dosimeter usable in high temperature environment was successfully made by a melting method from several kinds of reagent grade phosphate powder and others. It was found that its RPL spectrum had a broad peak around 650 nm. In addition, there was not a large difference in the shape of the RPL spectrum between the new Na–Ca glass and normal Na–Al glass dosimeters. It was also confirmed that the RPL intensity of the Na–Ca glass dosimeter was satisfactorily sustained at 573 K for 3 h and it had good dose linearity in the range from 10 to 10^4 mGy, although the RPL sensitivity was approximately 0.8% of that of Na–Al glass dosimeter. The lowest detectable dose was 5 mGy. The Na–Ca glass dosimeter is suitable for use in high temperature and high radiation dose conditions such as nuclear emergencies.

Acknowledgments

The authors sincerely thank our colleagues H. Aoi and S. Hisakado of Osaka University for their valuable suggestions in the preparation of phosphate glass samples. This work was supported in part by System Development Program for Advanced Measurement and Analysis, Japan Science and Technology Agency (JST).

References


