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Abstract Tight junction (TJ) constitutes the barrier by con-
trolling the passage of ions and molecules via paracellular path-
way and the movement of proteins and lipids between apical
and basolateral domains of the plasma membrane. Claudins,
occludin, and junctional adhesion molecules are the major three
transmembrane proteins at TJ. This study focuses a newly
identified mammalian TJ gene, claudin-19, in kidneys. Mouse
claudin-19 composes of 224 amino acids and shares 98.2%
and 95% amino acid homology with rat and human, respec-
tively; the most evolutionary-related claudins are claudin-1
and -7, which share �75% DNA sequence homology with clau-
din-19. Claudin-19 is abundantly expressed in the mouse and
rat kidneys among the organs examined by Northern blots,
and to a much less extent, also found in brain by RT-PCR.
Claudin-19 and zonula occludens-1 (ZO-1) are localized at
junctional regions of Madin–Darby canine kidney (MDCK)
cells by immunofluorescent microscopy. In addition, ZO-1 is
found in the claudin-19-associated protein complexes in MDCK
cells by co-immunoprecipitation. Using aquaporin-1 and aqu-
aporin-2 antibodies as markers for different renal segment,
strong expression of claudin-19 was observed in distal tubules
of the cortex as well as in the collecting ducts of the medulla.
To less extent, claudin-19 is also present in the proximal tu-
bules (cortex) and in the loop of Henle (medulla). Furthermore,
intense claudin-19 immunoreactivity is found co-localized with
the ZO-1 in kidneys from postnatal day 15, day 45, and adult
rats and mice. Similar localizations of claudin-19 and ZO-1 are
also observed in human kidneys. Since these renal segments are
mainly for controlling the paracellular cation transport, it is
suggested that claudin-19 may participate in these processes.
In human polycystic kidneys, decreased expression and dyslo-
calization of claudin-19 are noticed, suggesting a possible cor-
relation between claudin-19 and renal disorders. Taken
together, claudin-19 is a claudin isoform that is highly and spe-
cifically expressed in renal tubules with a putative role in TJ
homeostasis in renal physiology.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Cell–cell interaction is crucial for tissue patterning and mor-

phogenesis as well as homeostasis of normal tissues. Structural

integrity of normal epithelia is maintained by junctional com-

plexes, such as tight junctions (TJs) [1,2]. TJ fibrils are com-

posed of three major transmembrane proteins, namely

claudins, occludin, and junctional adhesion molecules (JAMs)

[1,2]. Among them, claudin constitutes the largest TJ protein

family with at least 24 claudins identified, whereas only two

occludins and three JAMs [1,3,4] are found. All claudins are

predicted to have molecular weights ranging between 20 and

27 kDa [1,4]. Structurally, each claudin has two extracellular

loops, one intracellular loop, one intracellular carboxyl- (C-)

and one intracellular amino- (N-) terminus. In particular, the

last several amino acids of the C-terminus constitute PDZ-

binding motifs. The two extracellular loops form adhesive con-

tacts lining the TJ seals [4]. Functionally, TJ forms physical

barriers in epithelia and endothelia to regulate paracellular

transports of ions, water, and molecules by discriminating sizes

and charges [5].

Kidney functions as a filter unit and an osmoregulator in the

body by regulating the body’s fluid volume and mineral/solute

composition partly via paracellular transport. It accomplishes

these roles by the presence of segmented nephrons, such as

proximal tubules, with specific and diverse properties. For in-

stance, proximal tubules are regarded as ‘leaky’ segments,

whereas distal tubules are termed as the ‘tight’ portions along

the renal nephrons [6]. To fine-tune the paracellular transport

in renal nephrons, kidneys are equipped with a large number

of claudins and each claudin demonstrates diversified renal dis-

tributions. For instance, all claudins, except claudin-6, -9, -13,

and -14, are found in total kidney extracts by Northern blot

analysis [7]. Claudin-2, -10, and -11 are situated at the proxi-

mal tubules, whereas claudin-3, -7, and -8 are found in the dis-

tal tubules [7–9]. In particular, claudin-2 restricted in proximal

tubules is only expressed in Madin–Darby canine kidney

(MDCK) II cells (with low transepithelial electrical resistance),

but not MDCK I cells (with high transepithelial electrical resis-

tance) [9–11], demonstrating the specific roles of claudin-2 in

maintaining the ‘leaky’ TJ in proximal tubules. In addition

to the expression in kidney, claudins are also detected in other

organs and tissues [4]. For instance, claudin-11 is highly ex-

pressed in the testis [12] and claudin-19 is found in the Schw-

ann cells [13]. The expression of claudins in different organs
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82173614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jmluk@hkucc.hku.hk 


924 N.P.Y. Lee et al. / FEBS Letters 580 (2006) 923–931
appears to be crucial on development and cellular physiology.

It is noted that claudin-6 is present in embryonic epithelia and

is shown to have a role in epithelial cell differentiation [14]. The

significance of claudins in kidneys is clearly illustrated in hu-

man patients with hypomagnesemia hypercalciuria syndrome,

which is caused by claudin-16 defects [15]. Based on the variety

and specificity of claudins in kidneys, we speculated the pres-

ence of other unidentified claudins in the kidney to regulate

paracellular conductance and/or maintain renal homeostasis.

The present study has characterized a newly identified clau-

din-19 with implications in renal physiology.
2. Materials and methods

2.1. Animals
Sprague–Dawley rats were obtained from the Laboratory Animal

Unit (The University of Hong Kong, Hong Kong). BALB/cByJ mice
were purchased from Jackson Laboratory (Bar Harbour, ME). Ani-
mals were housed individually in a pathogen-free ventilation cage at
the veterinary care facility of the Experimental Animal Surgery labora-
tory. The conductions of animal experiments were approved by the
guidelines set forth by the University’s Committee on Using Live Ani-
mals for Teaching and Research. Kidneys were collected from rats and
mice in different postnatal ages (day 15, day 45 and adult). The dis-
sected tissues were immediately preserved in buffered formalin for his-
tological examinations.

2.2. Clinical samples
Surgically resected and postmortem polycystic kidney specimens

were selected from archival materials filed in the Department of
Pathology, Queen Mary Hospital, Hong Kong. Clinical history of pa-
tients was reviewed by renal pathologist (KWC) to confirm the diagno-
sis of autosomal dominant polycystic kidney disease. Normal kidney
tissues were selected for control from archival autopsy materials, as
previously described [16]. Tissues were fixed in buffered 10% formalin,
routinely processed and embedded in paraffin blocks.

2.3. RACE cloning of mouse claudin-19
Molecular cloning of mouse claudin-19 was done by RACE using

the Marathon-ready cDNA library (Clontech, Palo Alto, CA). For
the 5 0-RACE experiments, mouse kidney Marathon-ready cDNA
was subjected to two consecutive rounds of PCR as described by man-
ufacturer’s instructions using adaptor primer (AP) 1 and claudin-19
anti-sense (Cld-19-AS) primers (5 0-CCAGGGCCAGGAGTGA-
ATCGTAGAGT-3 0). 1 ll of one-tenth diluted PCR product was used
for the second round of PCR using AP 2 and Cld-19-AS nested primer
(5 0-CGCAAGACATCCACAGCCCTTCGTAG-30). PCR products
were subsequently cloned into the pTOPO2.1 vector (Invitrogen,
Carlsbad, CA) and sequenced using M13 primer. For the 3 0-RACE
experiment, Cld-19-S (5 0-AATTTGGCCCAGCTCTGTTCGTCG-3 0)
and Cld-19-S nested primers (5 0-AGGGCGAACAGCATCCCACA-
GC-3 0) were used instead. Sequences were assembled using the DNasis
version 2.1 program (Hitachi Software Engineering, San Bruno, CA)
and submitted to a BLAST analysis for identification.

2.4. Phylogenetic analysis on claudin-19
Multiple sequence alignment of cldn19 genes in different species and

generation of phylogenetic tree of the mouse claudin family were car-
ried out using ClustalW program (http://www.ebi.ac.uk/clustalw/)[17].
Presentation of the alignment was performed using the BoxShade 3.21
program (http://www.ch.embnet.org/software/BOX_form.html).

2.5. Northern blot analysis
The expression levels of cldn19 mRNA in various mouse and rat tis-

sues were examined by using multi-tissue Northern blots (Seegene Inc.,
Seoul, Korea). A 307 bp PCR fragment corresponding to mouse
claudin-19 was amplified using moCld-19-S (5 0-CACTCCTGGC-
CCTGGACGGTCATAT-3 0) and moCld-19-AS (5 0-AGGCCCAGC-
CGACGAACAGA-3 0) primers. DNA fragment was radiolabeled
with a-[32P]-dCTP (DuPont NEN, Boston, MA) using Rediprime II
DNA labelling system (Amersham, Piscataway, NJ) and purified by
spin columns (Princeton Separations, Adelphia, NJ) as described
[18]. In brief, membranes were pre-hybridized with Rapid-hyb buffer
(Amersham) at 65 �C for 2 h. Hybridizations were performed at
65 �C for 18 h in the Rapid Hyb-buffer containing radioactive probes
(1 · 106 cpm). Membranes were washed once in 2· SSC, 0.1% SDS
and once in 1· SSC, 0.1% SDS each at 45 �C for 20 min before
subjected to autoradiography for 12–48 h. Hybridization signals were
captured using BioMax autoradiography film (Eastman Kodak,
Rochester, NY).
2.6. RT-PCR
Semi-quantitative RT-PCR was performed as in previously de-

scribed procedures [19,20] to determine the relative expressions of
cldn19 in different organs and tissues. Briefly, total RNA from frozen
tissues was prepared using the RNeasy Mini Kit (Qiagen, Valencia,
CA) and converted into cDNA using Superscript II RNase H- reverse
transcriptase and oligo(dT)12–18 primer (Gibco-Invitrogen, Carlsbad,
CA). Mouse b-actin (sense primer: 5 0-AGCCATGTACGTAGC-
CATCC-3 0; anti-sense primer: 5 0-CTCTCAGCTGTGGTGGTGAA-
3 0; product size: 350 bp), claudin-19, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (sense primer: 5 0-ACCACAGTCCATGC-
CATCAC-3 0; anti-sense primer: 5 0-TCCACCACCCTGTTGCTGTA-
3 0; product size: 470 bp) primers were used for PCR. In brief, 5 ll of
cDNA was mixed with 45 ll 1· PCR reaction buffer (10 mM Tris–
HCl; pH 9.0, 50 mM KCl, 1.5 mM MgCl2, and 0.1% Triton X-100),
containing 200 nM primers, 200 lM dNTPs, and 5 U Taq DNA poly-
merase (Roche, Palo Alto, CA). Preliminary experiments were per-
formed to determine the linearity of the PCR products by using
different concentrations of primers and cDNA. Different temperatures
and cycles of the PCR were carried out also [20]. PCR conditions were
30 cycles of 94 �C for 40 s, 64 �C for 30 s, and 72 �C for 40 s, which was
followed by a final extension at 72 �C for 10 min. The housekeeping b-
actin and GAPDH gene were used as the internal control and for nor-
malization of the PCRs. Parallel samples with no reverse transcriptase
served as the RT-ve control. The amplified PCR products were sepa-
rated on a 2% agarose gel, stained with ethidium bromide and visual-
ized by UV illumination. The gel images were captured and the relative
changes of PCR products were quantified by Syngene CCDBIO
Acquisition and Analysis Software (Hitachi Genetics System,
Alameda, CA).
2.7. Immunohistochemical localizations of claudin-19 in MDCK I cells

and kidney tissues
Immunocytochemistry and immunohistochemistry were performed

as described [21]. In brief, �1 · 104 MDCK I cells (ATCC, Manassas,
VA) grown on coverslips were fixed with ice-cold methanol/acetone
(v/v; 1:1) and rehydrated in PBS. After incubating in 3% bovine serum
albumin (BSA) (w/v in PBS) for 1 h, sections were incubated with rab-
bit anti-claudin-19 polyclonal antibody (#7161) (1:100), which was
synthesized by Alpha Diagnostic (San Antonio, TX) and raised against
the claudin-19 peptide sequence flanking amino acids 23–39 (ASTA-
LPQWKQSSYAGDAC) (Fig. 1) or rabbit anti-zonula occludens-1
(ZO-1) polyclonal antibody (1:200) (Zymed, South San Francisco,
CA). After that, sections were incubated with species-matched FITC-
conjugated secondary antibody (1:50; in 3% BSA/PBS) (Zymed) for
30 min at room temperature. After DAPI (Molecular Probes, Eugene,
OR) counterstain, slides were mounted with Vectashield medium (Vec-
tor Laboratories, Burlingame, CA). Images were examined with Nikon
epifluorescent upright microscope E600 (Nikon, Tokyo, Japan) and
captured with a 3-CCD color camera DC-330 (DAGE-MTI, Michigan
City, IN). For immunohistochemistry, paraffin tissue sections were cut
at 4-lm thick and endogenous peroxidase activity was blocked with
0.3% hydrogen peroxide (v/v in methanol). BSA blocking and primary
antibody incubation were the same as those described above. Both
aquaporin (AQ)-1 and AQ-2 antibodies were commercially available
(Calbiochem, San Diego, CA) and used at a dilution of 1:500 in 2%
BSA. After that, sections were incubated with horseradish peroxidase
(HRP)-conjugated anti-rabbit antibodies (Zymed) for 1 h at room tem-
perature. The localizations of claudin-19, AQ-1, AQ-2, and ZO-1 were
visualized using 3,3-diaminobenzidine tetrahydrochloride (DAB)
(Zymed). For negative controls, peptide-neutralized antibody or rabbit
immunoglobulin G (IgG) (1:500) were used.
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Fig. 1. Multiple sequence alignment of claudin-19 protein among different species and phylogenetic tree of the mouse claudin gene family. Claudin-
19 amino acid sequences from mouse (AF486651), rat (XM_216519), human (NM_148960), zebra fish (NM_131770), and C. elegans (NM_077446)
were aligned (A). Putative membrane-spanning domains are represented by solid bars above the sequences (A). Residues conserved in all five species
are highlighted with black backgrounds and marked with ‘\’ below the sequences (A). Conservative substitutions are shaded in grey (A). Phylogenetic
tree was constructed based on the amino acid sequences of different mouse claudin family members and demonstrated the evolutionary conservations
among different claudin family members (B). The branch length is in proportion to the amount of inferred evolutionary changes (B). moCld19 was
reported in this study (B).
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2.8. Immunoprecipitation and SDS–PAGE
Immunoprecipitation and western blot were performed as previously

described [20,22]. MDCK cells were grown to monolayer in a 100 mm
culture dish. Total cell lysates were extracted using lysis buffer (20 mM
Tris, 0.15 M NaCl, 2 mM EDTA, 10% glycerol, 1% NP-40, 1 mM
PMSF at pH 7.4) as described [20]. 500 lg cell lysates were first pre-
cleared using 50 ll protein A (Amersham) for 2 h at 4 �C with agita-
tion. Precleared lysates were incubated with either antibodies
(claudin-19 or ZO-1) or preimmune normal rabbit serum (NRS) as a
negative control overnight at 4 �C with agitation before the addition
of 100 ll protein A to precipitate the immunocomplexes. After
washing with lysis buffer, proteins were eluted by boiling the immuno-
precipitates at 100 �C for 7 min in a denaturing sample buffer with
2-mercaptoethanol. Eluted proteins were resolved by running a 5%
SDS–PAGE. After electro-transfer to PVDF membrane, target pro-
teins were detected by chemiluminescence using ECL western blotting
detection kit (Amersham).
3. Results

3.1. Molecular cloning and characterization of claudin-19 cDNA

The 675 bp cldn19 cDNA was amplified in RACE reactions

(GenBank Accession No.: AF486651). It encoded a 224 amino
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acid protein with a calculated molecular weight of 23.8 kDa

(Fig. 1A). The gene was mapped to the mouse chromosome

4. The cldn19 gene contained five exons with a huge intron be-

tween exon 3 and exon 4. Hydrophilicity analysis (TMHMM

v2.0) predicted that like other claudins, claudin-19 contained

four transmembrane domains with both intracellular N- and

C-terminus (Fig. 1A). The first putative extracellular loop

was longer than the second putative extracellular loop

(Fig. 1A). Multiple amino acid sequence alignments among

different species (mouse, rat, human, zebra fish, and C. elegans)

were carried out (Fig. 1A). Mouse claudin-19 shared 98.2%

and 95% amino acid identities with rat and human counter-

parts, respectively, and to much less extent with zebra fish

and C. elegans (Fig. 1A).

3.2. Phylogenetic and tissue distribution of claudin-19

The deduced amino acid sequence of mouse claudin-19 and

amino acid sequences of other mouse claudin members were

used to construct the phylogenetic tree (Fig. 1B). Claudin-19

was found on the same root of the phylogenetic tree of clau-

din-1 and -7, which shared 73% and 75% similarity with clau-

din-19, respectively (Fig. 1B). Mouse cldn19 mRNA transcript

(�1.0 kb) was exclusively expressed in the kidney by Northern

blot analysis (Fig. 2A). The same probe was used to detect

claudin-19 in rat tissues, and similar tissue expression pattern

was obtained (Fig. 2B). Semi-quantitative RT-PCR method

was employed to further examine the expression profile of

claudin-19 in mouse (Fig. 2C) and rat (Fig. 2D) tissues. Thus,

claudin-19 was abundantly detected in the kidney tissue, and

with much weaker expression in the brain as well (Fig. 2C

and D). Actin (Fig. 2C) and GADPH (Fig. 2D) were used as

positive controls in PCR.
Fig. 2. Expression of claudin-19 mRNA in mouse and rat tissues. Mouse (A
claudin-19 DNA probes. Each lane contained 20 lg of total RNA from diffe
Sp, spleen; K, kidney; St, stomach; Si, small intestine; Sm, skeletal muscle; S
band with size of �1.0 kb corresponding to claudin-19 was detected in both m
was used as a loading control (A and B). The expressions of claudin-19 mRN
PCR. A PCR product of size 307 bp representing the presence of claudin-19 w
b-actin (C) or GAPDH (D), the house-keeping genes.
3.3. ZO-1 is associated with claudin-19-containing protein

complexes at the junction sites in MDCK cell

Immunoreactive claudin-19, which appeared as green immu-

nofluorescence, was found at the junction sites in confluent

MDCK cell monolayers (Fig. 3A and B), similar to the local-

ization of ZO-1 (Fig. 3C and D). No immunofluorescent signal

was detected with the corresponding IgG isotype control in the

parallel experiments (Fig. 3E and F). Due to their close prox-

imity in the localizations in MDCK cell monolayers, immuno-

precipitation was performed to investigate whether ZO-1 is

part of the protein complexes with claudin-19, and indeed, a

putative associated adaptor in the claudin-19-containing pro-

tein complexes (Fig. 3G).

3.4. Localizations of claudin-19, AQ-1, AQ-2, and ZO-1 in

human, rat, and mouse kidney

Aquaporin-1 (AQ-1) is a marker for the proximal tubules

and descending thin limbs of loop of Henle, whereas aquapo-

rin-2 (AQ-2) is specific for the collecting ducts [23]. These two

markers and the morphological structures of the kidney were

used to determine the localization of claudin-19 in kidneys.

In the cortex, the distal tubules were recognized as AQ-1 and

AQ-2 double-negative tubules surrounding the glomerulus,

whereas the collecting ducts contained AQ-2 staining only

but not AQ-1. Representative immunohistochemical staining

for claudin-19, AQ-1, and AQ-2 in serial sections of human

kidneys are shown in Fig. 4. Peptide-pre-absorbed controls

for both aquaporin antibodies were preformed, which yielded

no positive reaction in the sections (data not shown). The pres-

ent immunohistochemical findings indicated that claudin-19

was predominantly expressed in the distal tubules, albeit much

lesser extent in the proximal tubules, in the cortex of rat,
) and rat (B) multi-tissue Northern blots were hybridized with mouse
rent mouse (A) or rat (B) tissues (B, brain; H, heart; Lg, lung; L, liver;
k, skin; Th, thymus; T, testis; U, un-pregnant uterus; P, placenta). A
ouse and rat Northern blots. RNA gel stained with ethidium bromide
A in mouse (C) and rat (D) tissues were assayed by semi-quantitative
as detected. RNA in different organs and tissues were normalized using



Fig. 3. Immunofluorescence cytochemistry and immunoprecipitation of claudin-19 and ZO-1 in MDCK cell monolayers. Immunoreactive claudin-
19 (A) and ZO-1 (C), appeared as green immunofluorescence, were detected by immunofluorescent microscopy. No signal was found when the
corresponding IgG was used (E). The nuclei of MDCK cells were counter-stained with DAPI for visualizations (B, D, and F). Magnification (A–F):
200·. Immunoprecipitation was performed using claudin-19 antibody, ZO-1 antibody, and preimmune NRS to investigate whether ZO-1 is a binding
partner of claudin 19-associated protein complex in MDCK cells (G). MDCK lysate without carrying out immunoprecipitation was run in parallel
lane for the identification of the target ZO-1 band on western blot (G). NRS IP denoted the negative control of claudin-19 immunoprecipitation,
which used the pre-immune NRS in place of the primary antibody.
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mouse, and human kidneys (Fig. 4). In the medulla region,

claudin-19 was largely expressed in the collecting ducts with

mild expressions in the loop of Henle (Fig. 4). The results were

read and confirmed by certified renal pathologist (KWC). The

expressions of both claudin-19 (Fig. 5A–C) and ZO-1

(Fig. 5E–G) were detected in developing kidneys isolated from

postnatal day 15, day 45, and adult mouse kidneys. Similar

expression patterns were observed in rat kidneys for claudin-

19 (Fig. 5I–K) and ZO-1 (Fig. 5M–O). From day 45 onwards,

brown immunoprecipitates corresponding to the localizations

of claudin-19 (Fig. 5B and C) and ZO-1 (Fig. 5F and G) were

specifically detected in mouse kidneys. Similar localizations

were observed in rat kidney sections for claudin-19 (Fig. 5J

and K) and ZO-1 (Fig. 5N and O). Surprisingly, prominent

localizations of claudin-19 (Fig. 5A–C and I–K) and ZO-1

(Fig. 5E–G and M–O) were also found in the nuclei. By con-

trast, no positive signal was detected in control sections incu-

bated with peptide pre-absorbed antibody in parallel control

experiments (Fig. 5D, H, L, and P).

3.5. Expressions of claudin-19 and ZO-1 in normal and

polycystic human kidneys

Immunoreactivity of claudin-19 (Fig. 6A) and ZO-1

(Fig. 6C) were found to localize at the apical and basolateral

junction sites between neighbouring cells and lumen linings

in the renal tubules in human kidneys. Junctions, cytoplasm,

and nuclei were stained positive for claudin-19, similar to the

localizations of claudin-19 and ZO-1 in rat and mouse kidneys

(Fig. 5). Interestingly, some very intense staining (both clau-

din-19 and ZO-1) was found in the nuclei of the cells in healthy
human kidney. In polycystic kidneys, the renal cyst epithelia

demonstrated decreased expression and variable localization

of claudin-19 with diffuse staining pattern throughout the cyto-

plasm (Fig. 6B). Likewise, ZO-1 also yielded dyslocalization in

polycystic human kidney (Fig. 6D). However, minimal locali-

zation of ZO-1 was still found at the apical junction sites in

polycystic human kidney (Fig. 6D). By contrast, immuno-

reactivty of claudin-19, but not ZO-1, was still observed in

the nuclei in polycystic human kidney.
4. Discussion

The present study described the molecular cloning and char-

acterization of a newly identified TJ gene (cldn19) that is pre-

dominantly expressed in mouse and rat kidneys. Phylogenetic

analysis demonstrated that claudin-1 and -7 are in the same

evolutionary branch of claudin-19, postulating that these three

claudins share similar structural features and functional roles.

Although the three claudins are positively identified in kidneys

by Northern blot analysis in this and other study [7], they exhi-

bit distinct and overlapping renal distributions. Claudin-1 and

-7 are found in the high-resistant part of nephrons (collecting

ducts and distal tubules) and low-resistant renal segments

(proximal tubules and glomerulus) [7,8,24]. By contrast, local-

izations of claudin-19 are predominantly expressed in the high-

resistant segments of nephrons, having an important function

for the reabsorption of Ca2+, Mg2+, and water [25,26] and sug-

gestion that claudin-19 could be an essential cation transporter

in ‘tighter’ renal epithelium. This notion is further supported by



Fig. 4. Localizations of claudin-19 in the cortex and medulla of the kidneys. Rat, mouse, and human serial consecutive kidney sections were stained
for the presence of claudin-19, aquaporin-1, and aquaporin-2 using immunohistochemistry. Stars, arrows, and open triangles denoted the
corresponding renal tubules in the serial sections stained for different antibodies for comparisons. Glomerular structures were annotated with letter
‘‘G’’.
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Fig. 5. Localizations of claudin-19 and ZO-1 in mouse and rat kidneys by immunohistochemistry. Mouse (A–H) and rat (I–P) kidney sections were
stained with claudin-19 (A–C and I–K) and ZO-1 (E–G and M–O) antibodies at postnatal day 15 (D15), day 45 (D45), and adult. Brown signs
corresponded to the localizations of claudin-19 and ZO-1 in the kidney tubules. Control sections were stained with the same antibodies pre-absorbed
with peptide for claudin 19 or NRS for ZO-1. Magnification: 200·.

Fig. 6. Expression patterns of claudin-19 and ZO-1 in normal and polycystic human kidneys. Localizations of claudin-19 (A and B) and ZO-1 (C and
D) in healthy (A and C) and polycystic (B and D) human kidneys were examined by immunohistochemistry as described. Magnification: 200·.
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the presence of claudin-19 at the junction sites in MDCK I cell

monolayers, which also express claudin-1 (a claudin in the high

electrical resistant renal segments), but not claudin-2 (a claudin

in low electrical resistant renal segments) [9,11,24]. While water

reabsorption in kidneys is mainly coordinated by aquaporins

[27], claudin-19 is speculated to have complementary roles in

adjusting the cationic paracellular conductance along these seg-
ments. On the other hand, claudin-7 and claudin-19 demon-

strate distinct cellular localizations. Claudin-7 is highly

concentrated at the basolateral membrane [8], whereas clau-

din-19 is found mainly in the renal lumen linings, with slight

expression in the basolateral sites, in this study. These findings

suggest that claudin-19 complements the roles of other claudins

in the kidneys.
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Deduced amino acid sequence analysis reveals the structural

and functional diversity among claudin-1, -7, and -19. Both the

amino acid sequences of the C-termini of mouse claudin-1

(Accession No.: O88551) and -7 (Accession No.: NP_058583)

are ended in YV, a site that has been shown to bind PDZ do-

main-containing proteins [28], including ZO family members,

which are adaptors at the site of TJ [4]. However, the C-termi-

nus of claudin-19 is terminated in GV amino acid residues.

Unexpectedly, claudin-19 still appeared to be associated with

ZO-1 at the junction sites in MDCK I cell monolayers and is

found to be in a protein complex comprising of at least ZO-

1 by immunoprecipitation. This suggests that ZO-1 either di-

rectly binds to claudin-19 or is in the proximity of claudin-19

via bindings with other claudin members, such as claudin-1

that has been shown to co-localize with ZO-1 in MDCK cells

[11] and possesses C-terminal YV amino acid residues [1].

However, a recent study demonstrated that ZO-1 also binds

to the C-terminus of claudin-16, which ends in TRV amino

acids instead of YV residues [29], suggesting the diversified

ZO-1-binding sites of claudins. Claudin-ZO-1 binding is

significant for the functions of claudins. As demonstrated

in claudin-16 mutation, an inactivation of PDZ-binding

motifs in claudin-16 and subsequent ZO-1 dissociation leads

to childhood hypercalciuria [30]. As such, these observations

open the possibility of claudin-19/ZO-1 interactions and also

suggest the presence of other putative binding partners of

claudin-19.

Besides, claudin-19, there are claudin-1, -3, -4, -7, -8, and -16

also residing in the distal tubules and collecting ducts

[7,8,15,24], and their roles in paracellular transport of cations

in the renal tubules have been demonstrated [31]. The biological

importance of these claudin members in renal and other organ

have been clearly demonstrated in mutants and gene-targeting

studies [32]. For instance, claudin-16 mutations lead to defects

in renal ion homeostasis, resulting in the development of hypo-

magnesemia and hypercalciuria [15]. For other claudins that

are found in the distal tubules and collecting ducts, their muta-

tions also associate with defects in other organs [32]. Since these

claudins are highly expressed in other organs and not restricted

in kidneys, no report has illustrated any renal dysfunction due

to their associated mutations [32]. Because claudin-19 was

highly expressed in kidneys, any malfunctions and mutations

of this TJ molecule may lead to renal disorders. Mutations of

proteins with significant functions are commonly associated

with diseases. In kidneys, mutations in claudin-16, which is

restrictedly expressed in the thick ascending limb of Henle

and distal convoluted tubule, lead to hypomagnesemia with

hypercalciurai and childhood hypercalciuria [15,30]. Herein,

claudin-19 demonstrated decreased expression and altered

localizations in polycystic human kidney. Expression of clau-

din-19 at the tubule lumen linings was significantly diminished

in polycystic kidney tissue when compared to the healthy kid-

ney counterparts. Clinical symptoms of polycystic kidney dis-

ease include the development of fluid-filled cysts in affected

kidneys. Lack of cell surface E-cadherin and sequestrations of

E-cadherin in intracellular pool were also reported in polycystic

kidney cells [33], similar to the present observations of claudin-

19 in polycystic kidneys. These findings suggest the interrela-

tionship between claudin-19 and E-cadherin, probably via

polycystin in the manifestations of polycystic kidney diseases.

Besides, increasing evidences have consolidated the inter-corre-

lation between AJ and TJ proteins [34].
In view of predominant expression of claudin-19 in kidneys,

it is suggested that claudin-19 shares significant roles with

other claudin molecules in regulating the paracellular trans-

port and homeostasis in kidneys. Despite that, our recent

study has demonstrated that the promoter region of cldn19

gene is structurally different from other claudin members,

and presumably, its expression is under different regulatory

mechanism [35]. Other important questions including the spe-

cific role of claudin-19 in regulating TJ function in the distal

tubules and collecting duct and how its expression is downreg-

ulated in polycystic kidneys are under investigation.
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