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In this paper, we consider the time-frequency localization of the generator of a principal
shift-invariant space on the real line which has additional shift-invariance. We prove that
if a principal shift-invariant space on the real line is translation-invariant then any of
its orthonormal (or Riesz) generators is non-integrable. However, for any n � 2, there
exist principal shift-invariant spaces on the real line that are also 1

n Z-invariant with an
integrable orthonormal (or a Riesz) generator φ, but φ satisfies

∫
R

|φ(x)|2|x|1+ε dx = ∞
for any ε > 0 and its Fourier transform φ̂ cannot decay as fast as (1 + |ξ |)−r for any
r > 1

2 . Examples are constructed to demonstrate that the above decay properties for the
orthonormal generator in the time domain and in the frequency domain are optimal.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, a principal shift-invariant space on the real line is a shift-invariant space V 2(φ) generated by a function
φ ∈ L2 := L2(R),

V 2(φ) :=
{∑

k∈Z

c(k)φ(· − k)

∣∣∣ c := (
c(k)

)
k∈Z

∈ �2 := �2(Z)

}
, (1.1)

such that {φ(· − k) | k ∈ Z} is a Riesz basis for V 2(φ), i.e., there exist positive constants A and B such that

A‖c‖�2 �
∥∥∥∥∑

k∈Z

c(k)φ(· − k)

∥∥∥∥
2
� B‖c‖�2 for all c := (

c(k)
)

k∈Z
∈ �2. (1.2)

The function φ is called the generator of the principal shift-invariant space V 2(φ), and it is called the orthonormal generator
if {φ(· − k) | k ∈ Z} is an orthonormal basis for V 2(φ), i.e., (1.2) holds for A = B = 1. Principal shift-invariant spaces have
been widely used in approximation theory, numerical analysis, sampling theory and wavelet theory (see, e.g., [2,3,8,11,18]
and the references therein).

The classical models of principal shift-invariant spaces on the real line are the Paley–Wiener space PW also known as the
space of bandlimited functions (the set of all square-integrable functions bandlimited to [−1/2,1/2]) and the spline space
Sn−1

n (the set of all (n − 1)-differentiable square-integrable functions whose restriction on any integer interval [k,k + 1] co-
incides with a polynomial of degree at most n). More precisely, the Paley–Wiener space PW is the shift-invariant space
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generated by the sinc function sinc(x) = sinπx
πx , i.e. PW = V 2(sinc) and the spline space Sn−1

n is generated by the B-
spline βn , i.e. Sn−1

n = V 2(β
n) where β0 is the characteristic function on [0,1) and βn,n � 2, are defined iteratively by

βn(t) = ∫
R

βn−1(t − τ )β0(τ )dτ .
Now we consider principal shift-invariant spaces that are invariant under additional set of translates other than Z. The

shift-invariant spaces with additional invariance have been used in the study of wavelet analysis and sampling theory [19,
10,17], and have been completely characterized in [1] for L2(R) and in [4] for L2(Rn). For a subspace V of L2(R), let

τ (V ) := {
t ∈ R

∣∣ f (· − t) belong to V for all f ∈ V
}
. (1.3)

For any closed subspace V of L2, one may verify that τ (V ) is a closed additive subgroup of R, and hence τ (V ) is either {0},
or R, or αZ for some α > 0. It can be shown that [1] for a principal shift-invariant space V 2(φ) on the real line

τ
(

V 2(φ)
) = R or τ

(
V 2(φ)

) = 1

n
Z for some n ∈ N. (1.4)

We say that a shift-invariant space V on the real line has additional invariance if τ (V ) � Z. It is well known that the
Paley–Wiener space PW are invariant under all translations. Thus,

τ (PW) = R.

A closed subspace V of L2 with τ (V ) = R is usually known as a translation-invariant space. The fact that the space of
bandlimited functions PW is translation-invariant (τ (PW) = R) makes it useful for modeling signals and images. However,
it is known that any function φ that generates a Riesz basis for PW has slow spatial-decay in the sense that φ /∈ L1(R), e.g.,
sinc(x) = sinπx

πx . This slow spatial-decay property for the generator of principal shift-invariant spaces V 2(φ) that are also
translation-invariant is not unique to the space of bandlimited functions PW. In fact, in this paper, we first show that the
generator φ of any translation-invariant principal shift-invariant space V 2(φ) on the real line is not integrable.

Theorem 1.1. Let φ ∈ L2 and {φ(· − k) | k ∈ Z} be a Riesz basis for its generating space V 2(φ). If V 2(φ) is translation-invariant then
φ /∈ L1 := L1(R).

The slow spatial-decay of the generators of shift-invariant spaces that are also translation-invariant is a disadvantage for
the numerical implementation of some analysis and processing algorithms.

On the other hand, Riesz bases for the spline spaces Sn−1
n = V 2(β

n) can be generated by the compactly supported B-
spline functions βn. This is one of the reasons that spline spaces are often used in signal and image processing algorithms
as well as in numerical analysis. Moreover, the B-spline functions βn are also well localized in frequency domain, since
β̂n(ξ) = O (|ξ |−n−1). However, the spaces Sn−1

n = V 2(β
n) have no invariance other than by integer shifts. In fact, it can

be shown that any principle shift-invariant space V 2(φ) generated by a compactly supported function φ cannot have any
invariance other than by integer shifts [17,1].

One way to circumvent some of the problems is to seek principle shift-invariant spaces V 2(φ) that are close to being
translation invariant, with a generator φ which is well localized in both space and frequency domains, i.e., φ and φ̂ are well
localized. Specifically, we ask whether we can find a shift-invariant space V (φ) such that V (φ) is also 1

n Z-invariant for some

2 � n ∈ N, and such that φ and φ̂ are well localized. It turns out that it is possible to construct functions φ that are well
localized in time and frequency domains, that generate shift-invariant spaces V 2(φ) that are also 1

n Z-invariant. However,
there are uncertainty and Balian–Low type obstructions, as will be described below. Specifically, the classical uncertainty
principle tells us that there is a lower limit on the simultaneous time-frequency localization of functions as shown by

Theorem (Uncertainty principle). For any function f ∈ L2(R), we have

‖ f ‖2
2 � 4π

∥∥xf (x)
∥∥

2

∥∥ξ f̂ (ξ)
∥∥

2, (1.5)

and the equality holds only if

f (x) = ce−sx2

for s > 0 and c ∈ R.

If we impose more conditions, the time-frequency localization deteriorates even further (see, e.g., [5–7,9,13–16] and the
references therein). For example, if the Gabor system {Em Tn g}m,n∈Z = {e2π imx g(x + n)}m,n∈Z of a function g is a Riesz basis
for L2(R), we will have the following Balian–Low theorem:

Theorem (Balian–Low). Let g ∈ L2(R). If {Em Tn g} is a Riesz basis for L2(R), then( ∞∫
−∞

∣∣xg(x)
∣∣2

dx

)( ∞∫
−∞

∣∣ξ ĝ(ξ)
∣∣2

)
dξ = ∞.
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The Balian–Low theorem implies that if function g generates a Gabor Riesz basis, then it is not possible for the func-
tions g and ĝ to be simultaneously well localized. In particular∣∣g(x)

∣∣ <
c

|x|r ,
∣∣ĝ(ξ)

∣∣ <
c

|ξ |r
cannot hold simultaneously with r > 3/2.

1.1. Balian–Low type results for shift-invariant spaces

For the case of a shift-invariant space V 2(φ) which is also 1
n Z-invariant for some 2 � n ∈ N, we obtain the following

surprising result:

Theorem 1.2. If φ ∈ L2 has the property that {φ(· − k) | k ∈ Z} is a Riesz basis for its generating space V 2(φ), and that V 2(φ) is
1
n Z-invariant for some n � 2, then for any ε > 0, we have∫

R

∣∣φ(x)
∣∣2|x|1+ε dx = +∞. (1.6)

Remark 1.

(i) Theorem 1.2 is a Balian–Low type result. If we choose ε = 1 in (1.6) of Theorem 1.2, we get
∫

R
|xφ(x)|2 dx = +∞.

It should be noted that in the Balian–Low theorem
∫ ∞
−∞ |xg(x)|2 dx can be finite, while in the case of Theorem 1.2∫

R
|xφ(x)|2 dx is always infinite. For the case 
p = ∫

R
|φ(x)|2|x|p dx, the theorem above should be comparable to the

(1,∞) version of the Balian–Low theorem [6,13].
(ii) If we do not require other invariances besides integer shifts, then we can find V 2(φ) such that {φ(· − k): k ∈ Z} is an

orthonormal basis for V and such that φ decays exponentially in both time and frequency. In particular for such a φ it
is obvious that (

∫ ∞
−∞ |x|α |g(x)|2 dx)(

∫ ∞
−∞ |ξ |β |ĝ(ξ)|2 dξ) < ∞, where α,β > 0 are any positive real numbers.

There is also a decay restriction in the Fourier domain. Specifically, the Fourier transform of an integrable generator φ

of a principal shift-invariant space which is 1
n Z-invariant for some integer n � 2 cannot decay faster than |ξ |−1/2−ε for any

ε > 0.

Theorem 1.3. Let 2 � n ∈ N. Let φ ∈ L1 ∩ L2 have the property that {φ(· − k) | k ∈ Z} is a Riesz basis for its generating space V 2(φ),
and that V 2(φ) is 1

n Z-invariant, then for any ε > 0,

sup
ξ∈R

∣∣φ̂(ξ)
∣∣|ξ |1/2+ε = +∞. (1.7)

We conclude from Theorem 1.3 that there is an obstruction to pointwise frequency (non)-localization property.

Remark 2. The conclusion of Theorem 1.3 remains valid if we weaken the condition that φ ∈ L1 ∩ L2 to φ ∈ L2 and φ̂ is
continuous.

1.2. Optimality of the Balian–Low type results

Now, we show the optimality of the results of Theorems 1.2 and 1.3.
The optimality of Theorem 1.2 is obvious since the φ = sinc function generates a translation invariant space and∫

R
|φ(x)|2|x|1−ε dx < ∞ for any 0 < ε < 1.
The following result shows that (1.7) in Theorem 1.3 is sharp and that for any 2 � n ∈ N there exists a generator φ ∈

L1 ∩ L2 (that depends on n) for V 2(φ) such that φ̂ decays like |ξ |−1/2. This is done by constructing time-frequency localized
generators φ that achieve the desired properties:

Theorem 1.4. For each integer n � 2, there exists a function φ ∈ L1 ∩ L2 (and hence φ̂ is continuous) which depends on n, such that
{φ(· − k) | k ∈ Z} is an orthonormal basis for its generating space V 2(φ), V 2(φ) is 1

n Z-invariant, and∫
R

∣∣φ(x)
∣∣2(

1 + |x|)1−ε
dx < ∞, (1.8)

sup
ξ∈R

∣∣φ̂(ξ)
∣∣|ξ |1/2 < +∞. (1.9)
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Remark 3.

(i) Note that by giving up the translation invariance and only allowing 1/n invariance as in Theorem 1.4, we are able to
have an L1 generator, while this is not possible for translation invariance as shown in Theorem 1.1.

(ii) Note that Theorem 1.4 shows the optimality of both Theorems 1.2 and 1.3 simultaneously.

We turn our attention to the integral measure of time-frequency localization for generators of 1
n Z-invariant spaces.

Unlike what was proven for the translation-invariant case in Theorem 1.1, we prove that by sacrificing a little frequency
localization, it is possible for generators of such spaces to be in L1, even when satisfying the optimality condition (1.8).

Theorem 1.5. For any 2 � n ∈ N, ε > 0, γ � 0, δ > 0, 1 � q < ∞ with 1 + δ − q/2 < 1/(2γ ), there exists φ ∈ L2 (that depends on
ε, δ,q, γ ,n) such that {φ(· − k) | k ∈ Z} is an orthonormal basis for its generating space V 2(φ), V 2(φ) is 1

n Z-invariant and φ satisfies
the following conditions:

(1)
∫

R
|φ(x)|2(1 + |x|)1−ε dx < ∞,

(2)
∫

R
|φ(x)|(1 + |x|)γ dx < ∞,

(3)
∫

R
|φ̂(ξ)|q(1 + |ξ |)δ dξ < ∞.

Remark 4.

(i) Note that the orthonormal generator φ = sinc for the Paley–Wiener space PW satisfies the first and third localization
properties in Theorem 1.5. However, the sinc function does not satisfy the second time localization inequality. In fact no
function φ generating a shift-invariant space V 2(φ) that is also translation invariant can satisfy the second inequality
of Theorem 1.5, as is shown in Theorem 1.1. Thus by relaxing translation invariance to 1

n Z-invariance we are able to get
better time localization in the sense of the second localization inequality above. For this however, we needed to trade
off some frequency localization by allowing infinite support in frequency.

(ii) We do not know what happens for the case ε = 0.
(iii) Using Lemmas 2.5, 2.6 and 2.7, Theorem 1.5 can be shown to be valid for other norms and other weights.

2. Proofs

2.1. Proof of Theorem 1.1

To prove Theorem 1.1, we recall a characterization for the Riesz (orthonormal) basis property (see, e.g., [12]) and for the
translation-invariance property (see [1]).

Proposition 2.1. Let φ ∈ L2 . Then

(i) {φ(· − k) | k ∈ Z} is a Riesz basis for its generating space V 2(φ) if and only if

m �
∑
k∈Z

∣∣φ̂(ξ + k)
∣∣2 � M for almost all ξ ∈ R

where m and M are positive constants, and
(ii) {φ(· − k) | k ∈ Z} is an orthonormal basis for its generating space V 2(φ) if and only if∑

k∈Z

∣∣φ̂(ξ + k)
∣∣2 = 1 for almost all ξ ∈ R.

For shift-invariant spaces that are also translation invariant, the following proposition is a special case of a general result
in [1].

Proposition 2.2. Let φ ∈ L2 with the property that {φ(· − k) | k ∈ Z} is a Riesz basis for its generating space V 2(φ). Then V 2(φ) is
translation-invariant if and only if for almost all ξ ∈ R,

φ̂(ξ)φ̂(ξ + k) = 0 for all 0 �= k ∈ Z.

Now we start to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose on the contrary that there exists a principal shift-invariant space V 2(φ) on the real line such
that V 2(φ) is translation-invariant and the generator φ is integrable. Let
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O := {
ξ ∈ R

∣∣ φ̂(ξ) �= 0
}
.

Since φ ∈ L1 by assumption, φ̂ is continuous, and hence O is an open set. From Proposition 2.2 it follows that the Lebesgue
measure of the set (O + j) ∩ (O + k) is zero for all j �= k ∈ Z. This together with the fact that O is an open set gives that

(O + j) ∩ (O + k) = ∅ for all j �= k ∈ Z. (2.1)

Recall that R is connected and that any connected set is not a union of nonempty disjoint open sets. Thus {O + k | k ∈ Z}
is not an open covering of the real line, i.e., R\(⋃k∈Z(O + k)) �= ∅, which in turn implies the existence of a real number
ξ0 ∈ R with the property that

φ̂(ξ0 + k) = 0 for all k ∈ Z. (2.2)

As φ̂ is uniformly continuous by the assumption that φ ∈ L1, for any ε > 0 there exists δ > 0 such that∣∣φ̂(ξ + k) − φ̂(ξ0 + k)
∣∣ < ε for all |ξ − ξ0| < δ and k ∈ Z. (2.3)

By (2.1), for any ξ ∈ R there exists an integer l(ξ) such that∑
k∈Z

∣∣φ̂(ξ + k)
∣∣2 = ∣∣φ̂(

ξ + l(ξ)
)∣∣2

. (2.4)

Combining (2.2), (2.3) and (2.4) yields∑
k∈Z

∣∣φ̂(ξ + k)
∣∣2

< ε2 whenever |ξ − ξ0| < δ. (2.5)

Since ε > 0 can be chosen to be arbitrarily small, the last inequality contradicts the Riesz basis property that there exists
m > 0 such that m �

∑
k∈Z |φ̂(ξ + k)|2 for almost all ξ ∈ R. �

2.2. Proof of Theorem 1.2

We need a characterization of 1
n Z-invariance, which is a special case of a more general result in [1].

Proposition 2.3. (See [1].) Let n � 2 be an integer, and φ ∈ L2 with the property that {φ(·−k) | k ∈ Z} is a Riesz basis for its generating
space V 2(φ). Then V 2(φ) is 1

n Z-invariant if and only if for almost all ξ ∈ R, one and only one of the following vectors

Φm(ξ) := (
. . . , φ̂(ξ + m − n), φ̂(ξ + m), φ̂(ξ + m + n), . . .

)
, 0 � m � n − 1, (2.6)

is nonzero.

Proof of Theorem 1.2. Suppose on the contrary that∫
R

∣∣φ(x)
∣∣2(

1 + |x|)1+ε
dx < ∞. (2.7)

Then φ ∈ L1, which implies that φ̂ is a uniformly continuous function. Let Om = {ξ ∈ R | Φm(ξ) �= 0}, 0 � m � n − 1, where
Φm is defined as in (2.6). Since

Om =
⋃
k∈Z

{
ξ ∈ R

∣∣ φ̂(ξ + m + kn) �= 0
}
,

then Om,0 � m � n − 1 are open sets, and

Om + m = O0 and Om + nk = Om for all 0 � m � n − 1 and k ∈ Z. (2.8)

Moreover, the intersection between the sets Om with different m have zero Lebesgue measure (hence are empty sets) by
Proposition 2.3. Therefore {Om | 0 � m � n − 1} is not an open covering of the real line R, which implies that the existence
of a real number ξ0 ∈ R with the property that

φ̂(ξ0 + k) = 0 for all k ∈ Z. (2.9)

Let N � 1 be a sufficiently large integer, δ = N−1−ε/2, and h be a smooth function supported on [−2,2] and satisfy
0 � h � 1, and h(x) = 1 when x ∈ [−1,1]. Define φN (x) = h(x/N)φ(x). Then we obtain that
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(
1

2δ

δ∫
−δ

∑
k∈Z

∣∣(φ̂ − φ̂N)(ξ0 + ξ + k)
∣∣2

dξ

)1/2

�
(

1

2δ

∫
R

∣∣(φ̂ − φ̂N)(ξ)
∣∣2

dξ

)1/2

=
(

1

2δ

∫
R

∣∣φ(x) − φN(x)
∣∣2

dx

)1/2

� N−ε/4
( ∫

R

∣∣φ(x)
∣∣2(

1 + |x|)1+ε
dx

)1/2

, (2.10)

and (
1

2δ

δ∫
−δ

∑
k∈Z

∣∣φ̂N(ξ0 + ξ + k) − φ̂N(ξ0 + k)
∣∣2

dξ

)1/2

=
(

1

2δ

δ∫
−δ

∑
k∈Z

∣∣∣∣∣
ξ∫

0

φ̂′
N

(
ξ0 + ξ ′ + k

)
dξ ′

∣∣∣∣∣
2

dξ

)1/2

�
(

1

2δ

δ∫
−δ

ξ

ξ∫
0

∑
k∈Z

∣∣φ̂′
N

(
ξ0 + ξ ′ + k

)∣∣2
dξ ′ dξ

)1/2

�
(

1

2δ

δ∫
−δ

ξ

ξ∫
0

∑
k∈Z

∣∣∣∣
∫
R

N2
∣∣ĥ′(Nη)

∣∣∣∣φ̂(
ξ0 + ξ ′ + k − η

)∣∣dη

∣∣∣∣
2

dξ ′ dξ

)1/2

�
(

N3

2δ

∥∥ĥ′∥∥
1

δ∫
−δ

ξ

ξ∫
0

∫
R

∣∣ĥ′(Nη)
∣∣(∑

k∈Z

∣∣φ̂(
ξ0 + ξ ′ + k − η

)∣∣2
)

dηdξ ′ dξ

)1/2

� N−ε/2
∥∥ĥ′∥∥

1

(
ess sup

ξ∈R

∑
k∈Z

∣∣φ̂(ξ + k)
∣∣2

)1/2

, (2.11)

where φ̂N (ξ) = N
∫

R
ĥ(Nη)φ̂(ξ − η)dη is used to obtain the second inequality, while the third inequality is obtained by

letting |ĥ′(Nη)| = |ĥ′(Nη)|1/2|ĥ′(Nη)|1/2 and using Hölder inequality. Also we have that

∑
k∈Z

∣∣φ̂N(ξ0 + k)
∣∣2 =

∑
k∈Z

∣∣∣∣
∫
R

e−2π i(ξ0+k)xφ(x)
(
1 − h(x/N)

)
dx

∣∣∣∣
2

�
1∫

0

(∑
l∈Z

∣∣φ(x + l)
∣∣∣∣1 − h

(
(x + l)/N

)∣∣)2

dx

�
1∫

0

(∑
l∈Z

∣∣φ(x + l)
∣∣2(

1 + |x + l|)1+ε
)(∑

l∈Z

(
1 − h

(
(x + l)/N

))2(
1 + |x + l|)−1−ε

)
dx

� 2

( ∞∑
l=N

|l|−1−ε

)
×

( ∫
R

∣∣φ(x)
∣∣2(

1 + |x|)1+ε
dx

)
, (2.12)

where the first equality follows from (2.9). Combining (2.10), (2.11) and (2.12) with Proposition 2.1 gives

m � ess inf
ξ∈R

(∑
k∈Z

∣∣φ̂(ξ + k)
∣∣2

)1/2

�
(

1

2δ

δ∫
−δ

∑
k∈Z

∣∣φ̂(ξ0 + ξ + k)
∣∣2

dξ

)1/2

�
(

1

2δ

δ∫ ∑
k∈Z

∣∣φ̂N(ξ0 + ξ + k) − φ̂N(ξ0 + k)
∣∣2

dξ

)1/2
−δ
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+
(∑

k∈Z

∣∣φ̂N(ξ0 + k)
∣∣2

)1/2

+
(

1

2δ

δ∫
−δ

∑
k∈Z

∣∣(φ̂ − φ̂N)(ξ0 + ξ + k)
∣∣2

dξ

)1/2

� C N−ε/4 → 0 as N → ∞, (2.13)

which is a contradiction. �
2.3. Proof of Theorem 1.3

Proof. Note that φ ∈ L1 implies that φ̂ is uniformly continuous. Now, suppose on the contrary that∣∣φ̂(ξ)
∣∣ � C

(
1 + |ξ |)−1/2−ε

(2.14)

for some positive constants C and ε > 0. This together with the continuity of the function φ̂ implies that Gφ(ξ) =∑
k∈Z |φ̂(ξ + k)|2 is a continuous function. Therefore there exists a positive constant m such that

Gφ(ξ) � m for all ξ ∈ R (2.15)

by Proposition 2.1 and the continuity of the function Gφ . Using the argument in the proof of Theorem 1.2, we can find a
real number ξ0 ∈ R such that φ̂(ξ0 + k) = 0 for all k ∈ Z, which implies that Gφ(ξ0) = 0. This contradicts (2.15). �
2.4. Proof of Theorem 1.4

To prove Theorems 1.4 and 1.5, we construct a family of principal shift-invariant spaces on the real line which are 1
n Z-

invariant for a given integer n � 2. Let g be an infinitely-differentiable function that satisfies g(x) = 0 when x � 0, g(x) = 1
when x � 1, and (g(x))2 + (g(1 − x))2 = 1 when 0 � x � 1. For positive numbers α,β > 0 and a natural number n � 2,
define ψα,β,n with the help of the Fourier transform by

ψ̂α,β,n(ξ) = h0(ξ) +
∞∑
j=1

β j−1∑
l=0

(β j)
−1/2h j

(
ξ − n(γ j + l)

) +
∞∑
j=1

β j−1∑
l=0

(β j)
−1/2h j

(−ξ − n(γ j + l)
)
, (2.16)

where β j = �2 jβ� (the smallest integer larger than or equal to 2 jβ ), γ j = ∑ j−1
k=0 βk , g0(x) = g(x + 1)g(−x + 1), g1(x) =

g(x + 1)g(−2αx + 1), and

h j(ξ) =
{

g0(2ξ/(1 − 2−α)) if j = 0,

g1(2 jα(2ξ − 1 + 2− jα)/(2α − 1)) if j � 1.
(2.17)

The functions ψ̂α,β,n(ξ) with α = 1, β = 2 and n = 2 and hi(ξ), 0 � i � 3, with α = 1 are plotted in Fig. 1.

Lemma 2.4. For α,β > 0 and an integer n � 2, let ψα,β,n be defined as in (2.16). Then ψα,β,n is an orthonormal generator of its
generating space V 2(ψα,β,n) and the principal shift-invariant space V 2(ψα,β,n) is 1

n Z-invariant.

Proof. As each h j , for j � 0, is supported in (−1/2,1/2) by construction,

∣∣ψ̂α,β,n(ξ)
∣∣2 = ∣∣h0(ξ)

∣∣2 +
∞∑
j=1

β j−1∑
l=0

(β j)
−1

∣∣h j
(
ξ − n(γ j + l)

)∣∣2 +
∞∑
j=1

β j−1∑
l=0

(β j)
−1

∣∣h j
(−ξ − n(γ j + l)

)∣∣2
,

which implies that

∑
k∈Z

∣∣ψ̂α,β,n(ξ + k)
∣∣2 =

∑
k∈Z

∣∣h0(ξ + k)
∣∣2 +

∞∑
j=1

∑
k∈Z

(∣∣h j(ξ + k)
∣∣2 + ∣∣h j(−ξ + k)

∣∣2)

= ∣∣h0(ξ)
∣∣2 +

∞∑
j=1

∣∣h j(ξ)
∣∣2 +

∞∑
j=1

∣∣h j(−ξ)
∣∣2

(2.18)

for any ξ ∈ (−1/2,1/2). Set

H(ξ) := ∣∣h0(ξ)
∣∣2 +

∞∑∣∣h j(ξ)
∣∣2 +

∞∑∣∣h j(−ξ)
∣∣2

.

j=1 j=1
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Fig. 1. The functions hi , 0 � i � 3 with α = 1 on the top, and the function ψ̂α,β,n with α = 1, β = 2 and n = 2 on the bottom.

Then H(ξ) is a symmetric function supported on (−1/2,1/2) and for any ξ ∈ [1 − 2− jα,1 − 2−( j+1)α]/2 with j � 0,

H(ξ) = ∣∣h j(ξ)
∣∣2 + ∣∣h j+1(ξ)

∣∣2

= ∣∣g
(−2( j+1)α

(
2ξ − 1 + 2− jα)/(

2α − 1
) + 1

)∣∣2 + ∣∣g
(
2( j+1)α

(
2ξ − 1 + 2−( j+1)α

)/(
2α − 1

) + 1
)∣∣2

= 1 (2.19)

by the construction of the functions g and h j , j � 0. Therefore H(ξ) = 1 for all ξ ∈ (−1/2,1/2), which together with (2.18)
implies that∑

k∈Z

∣∣ψ̂α,β,n(ξ + k)
∣∣2 = 1 for all ξ ∈ R\(1/2 + Z). (2.20)

Then ψα,β,n is an orthonormal generator for its generating space V 2(ψα,β,n) by (2.20) and Proposition 2.1.

By (2.16), ψ̂α,β,n is supported on (−1/2,1/2) + nZ. Then V 2(ψα,β,n) is 1
n Z-invariant by (2.20) and Proposition 2.3. �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let ψα,β,n be as in (2.16) for α,β > 0, and set φ = ψα,β,n . Then by Lemma 2.4 it suffices to prove (1.9)
for the function φ just defined. From (2.16) it follows that∣∣φ̂(ξ)

∣∣|ξ |1/2 = ∣∣ψ̂α,β,n(ξ)
∣∣|ξ |1/2

� sup
{∣∣h0(ξ)

∣∣|ξ |1/2, sup
j�1,0�l�β j−1

β
−1/2
j

∣∣h j
(
ξ − n(γ j + l)

)∣∣|ξ |1/2,

sup
j�1,0�l�β j−1

β
−1/2
j

∣∣h j
(−ξ − n(γ j + l)

)∣∣|ξ |1/2
}
.

Note that, from its definition, h j(ξ − n(γ j + l)) has support in [n(γ j + l),n(γ j + l) + 1] and has maximal value 1. Thus the
term |h j(ξ − n(γ j + l))||ξ |1/2 can be bounded above by (n(γ j + l) + 1)1/2 for all ξ and 0 � l � β j − 1. Thus, it follows from
the last inequality and the relation γ j + β j = γ j+1 that
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∣∣φ̂(ξ)
∣∣|ξ |1/2 � 1 + C sup

j�1
(β j)

−1/2(γ j+1)
1/2 < ∞, (2.21)

where C is a positive constant. Hence (1.9) holds. In particular, we can show that

0 < lim sup
|ξ |→∞

∣∣φ̂(ξ)
∣∣|ξ |1/2 < ∞. (2.22)

This proves the pointwise frequency localization of the theorem. The time localization inequality is a direct consequence of
Lemma 2.5 below. The fact that φ is also in L1 follows from Lemma 2.6 choosing p = 1, γ = 0. �
2.5. Proof of Theorem 1.5

Theorem 1.5 is an immediate consequence of the following three lemmas:

Lemma 2.5. Let ε ∈ (0,1), α,β > 0, n be an integer with n � 2, and ψα,β,n be defined as in (2.16). Then∫
R

∣∣ψα,β,n(x)
∣∣2|x|1−ε dx < ∞. (2.23)

Lemma 2.6. Let γ � 0, 1 � p < 2, n be an integer with n � 2, and ψα,β,n be defined as in (2.16) for positive numbers α,β > 0 with
β(1/p − 1/2) + α(p − 1 − γ )/p > 0. Then∫

R

∣∣ψα,β,n(x)
∣∣p(

1 + |x|)γ dx < ∞. (2.24)

Lemma 2.7. Let δ > 0, 1 � q < ∞, n be an integer with n � 2, and ψα,β,n be defined as in (2.16) for positive numbers α,β > 0 with
α > β(1 + δ − q/2). Then∫

R

∣∣ψ̂α,β,n(ξ)
∣∣q(

1 + |ξ |)δ
dξ < ∞. (2.25)

Proof of Lemma 2.5. Taking the inverse Fourier transform of both sides of (2.16) yields

ψα,β,n(x) = 1 − 2−α

2
g∨

0

(
1 − 2−α

2
x

)
+ 2α − 1

2

∞∑
j=1

(β j)
−1/22− jα g∨

1

(
2α − 1

2 jα+1
x

)

× eπ ix(1−2− jα)

(β j−1∑
l=0

e2π ixn(γ j+l)

)
+ 2α − 1

2

∞∑
j=1

(β j)
−1/22− jα

× g∨
1

(
−2α − 1

2 jα+1
x

)
× e−π ix(1−2− jα)

(β j−1∑
l=0

e−2π ixn(γ j+l)

)
, (2.26)

where g∨
0 and g∨

1 are the inverse Fourier transforms of the functions g0 and g1 respectively. Since both g0 and g1 are
compactly supported and infinitely differentiable, their inverse Fourier transforms g∨

0 and g∨
1 have polynomial decay at

infinity. In particular∣∣g∨
0 (x)

∣∣ + ∣∣g∨
1 (x)

∣∣ � C
(
1 + |x|)−2

, x ∈ R

for some positive constant C . Hence( ∫
R

∣∣ψα,β,n(x)
∣∣2(

1 + |x|)1−ε
dx

)1/2

�
(

1 − 2−α

2

)( ∫
R

∣∣g∨
0 (x)

∣∣2(
1 + |x|)1−ε

dx

)1/2

+ (
2α − 1

) ∞∑
j=1

(β j)
−1/22− jα

( ∫ ∣∣∣∣g∨
1

(
2α − 1

2 jα+1
x

)∣∣∣∣
2( sinβ jnπx

sinnπx

)2(
1 + |x|)1−ε

dx

)1/2
R
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� C + C
∞∑
j=1

2− j(β+α+αε)/2
( ∫

R

(
1 + 2− jα|x|)−2

(
sinβ jπx

sinπx

)2

dx

)1/2

= C + C
∞∑
j=1

2− j(β+α+αε)/2

( 1/2∫
−1/2

(∑
l∈Z

(
1 + 2− jα|x + l|)−2

)(
sinβ jπx

sinπx

)2

dx

)1/2

� C + C
∞∑
j=1

2− j(β/2+αε/2)

( 1/2∫
−1/2

(
sinβ jπx

sinπx

)2

dx

)1/2

� C + C
∞∑
j=1

2− j(β+αε)/2

( 1/2∫
−1/2

(
min

(
β j,

1

2|x|
))2

dx

)1/2

� C + C
∞∑
j=1

2− jαε/2 < ∞, (2.27)

where C is a positive constant which could be different at different occurrences. �
Proof of Lemma 2.6. Similar to the argument in Lemma 2.5 we have

( ∫
R

∣∣ψα,β,n(x)
∣∣p(

1 + |x|)γ dx

)1/p

� C + C
∞∑
j=1

2− j(β/2+α(1−(1+γ )/p))

( 1/2∫
−1/2

(
sinβ jπx

sinπx

)p

dx

)1/p

�
{

C + C
∑∞

j=1 2− j(β(1/p−1/2)+α(p−1−γ )/p) if 1 < p < 2,

C + C
∑∞

j=1 j2− j(β/2−γ α) if p = 1

< ∞,

from which the lemma follows. �
Proof of Lemma 2.7. By (2.16), we have

∫
R

∣∣ψ̂α,β,n(ξ)
∣∣q(

1 + |ξ |)δ
dξ

=
∫
R

∣∣h0(ξ)
∣∣q(

1 + |ξ |)δ
dξ +

∞∑
j=1

β j−1∑
l=0

β
−q/2
j

∫
R

∣∣h j
(
ξ − n(γ j + l)

)∣∣q(
1 + |ξ |)δ

dξ

+
∞∑
j=1

β j−1∑
l=0

β
−q/2
j

∫
R

∣∣h j
(−ξ − n(γ j + l)

)∣∣q(
1 + |ξ |)δ

dξ

� C + C
∞∑
j=1

β j−1∑
l=0

2−β j(q/2−δ)

∫
R

∣∣h j
(
ξ − n(γ j + l)

)∣∣q
dξ

+ C
∞∑
j=1

β j−1∑
l=0

2−β j(q/2−δ)

∫
R

∣∣h j
(−ξ − n(γ j + l)

)∣∣q
dξ

� C + C
∑
j�1

2 jβ(δ−q/2+1)−α j < ∞, (2.28)

where C is a positive constant which could be different at different occurrences. Hence the lemma is established. �



A. Aldroubi et al. / Appl. Comput. Harmon. Anal. 30 (2011) 337–347 347
Acknowledgments

The authors would like to thank the reviewers for their insightful comments. The first named author would like to
thank Professors Christopher Heil, Palle Jorgensen, and Gestur Olafsson for their stimulating discussions. The second named
author contributed to this project while visiting the Department of Mathematics, at Vanderbilt University on his sabbatical
during the fall of 2009. The second named author would like to thank Professor Akram Aldroubi and the department for
the hospitality.

References

[1] A. Aldroubi, C.A. Cabrelli, C. Heil, K. Kornelson, U.M. Molter, Invariance of a shift invariant space, J. Fourier Anal. Appl. 16 (2010) 60–75.
[2] A. Aldroubi, K. Gröchenig, Non-uniform sampling in shift-invariant space, SIAM Rev. 43 (4) (2001) 585–620.
[3] A. Aldroubi, Q. Sun, W.-S. Tang, Convolution, average sampling, and Calderon resolution of the identity of shift-invariant spaces, J. Fourier Anal. Appl. 11

(2005) 215–244.
[4] M. Anastasio, C. Cabrelli, V. Paternostro, Invariance of a shift-invariant space in several variables, preprint, 2009.
[5] J. Benedetto, W. Czaja, P. Gadzinski, A. Powell, The Balian–Low theorem and regularity of Gabor systems, J. Geom. Anal. 13 (2003) 239–254.
[6] J. Benedetto, W. Czaja, A. Powell, J. Sterbenz, An endpoint (1,∞) Balian–Low theorem, Math. Res. Lett. 13 (2–3) (2006) 467–474.
[7] J. Benedetto, C. Heil, D. Walnut, Differentiation and the Balian–Low theorem, J. Fourier Anal. Appl. 1 (4) (1995) 355–402.
[8] M. Bownik, The structure of shift-invariant subspaces of L2(Rn), J. Funct. Anal. 177 (2000) 282–309.
[9] W. Czaja, A. Powell, Recent developments in the Balian–Low theorem, in: Harmonic Analysis and Applications, in: Appl. Numer. Harmon. Anal.,

Birkhäuser, 2006, pp. 79–100.
[10] C.K. Chui, Q. Sun, Tight frame oversampling and its equivalence to shift-invariance of affine frame operators, Proc. Amer. Math. Soc. 131 (2003) 1527–

1538.
[11] C.K. Chui, Q. Sun, Affine frame decompositions and shift-invariant spaces, Appl. Comput. Harmon. Anal. 20 (2006) 74–107.
[12] C. de Boor, R.A. DeVore, A. Ron, The structure of finitely generated shift-invariant spaces in L2(Rd), J. Funct. Anal. 119 (1) (1994) 37–78.
[13] Z. Gautam, A critical-exponent Balian–Low theorem, Math. Res. Lett. 15 (3) (2008) 471–483.
[14] J.-P. Gabardo, D. Han, Balian–Low phenomenon for subspace Gabor frames, J. Math. Phys. 45 (8) (2004) 3362–3378.
[15] K. Gröchenig, D. Han, C. Heil, G. Kutyniok, The Balian–Low theorem for symplectic lattices in higher dimensions, Appl. Comput. Harmon. Anal. 13 (2)

(2002) 169–176.
[16] C. Heil, A. Powell, Gabor Schauder bases and the Balian–Low theorem, J. Math. Phys. 47 (11) (2006) 113506.
[17] J. Hogan, J. Lakey, Non-translation-invariance and the synchronization problem in wavelet sampling, Acta Appl. Math. 107 (2009) 373–398.
[18] M. Unser, T. Blu, Fractional splines and wavelets, SIAM Rev. 42 (2000) 43–67.
[19] E. Weber, On the translation invariance of wavelet subspaces, J. Fourier Anal. Appl. 6 (2000) 551–558.


	Uncertainty principles and Balian-Low type theorems in principal shift-invariant spaces
	Introduction and main results
	Balian-Low type results for shift-invariant spaces
	Optimality of the Balian-Low type results

	Proofs
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Proof of Theorem 1.4
	Proof of Theorem 1.5

	Acknowledgments
	References


