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SUMMARY

Immunoglobulin G (IgG) glycosylation modulates
antibody activity and represents a major source of
heterogeneity within antibody preparations. De-
pending on their glycosylation pattern, individual
IgG glycovariants present in recombinant antibody
preparations may trigger effects ranging from
enhanced pro-inflammatory activity to increased
anti-inflammatory activity. In contrast, reduction of
IgG glycosylation beyond the central mannose core
is generally believed to result in impaired IgG activity.
However, this study reveals that a mono- or disac-
charide structure consisting of one N-acetylglucos-
amine with or without a branching fucose residue is
sufficient to retain the activity of the most active hu-
man and mouse IgG subclasses in vivo and further
directs antibody activity to cellular Fcg receptors.
Notably, the activity of minimally glycosylated anti-
bodies is not predicted by in vitro assays based on
a monomeric antibody-Fcg-receptor interaction
analysis, whereas in vitro assay systems using im-
mune complexes aremore suitable to predict IgG ac-
tivity in vivo.

INTRODUCTION

Cytotoxic immunoglobulin G (IgG) antibodies have become an

essential component of our armament to treat human malignant

and autoimmune disease, and antibodies are under constant

development to improve their activity and safety (Lim et al.,

2010; Glennie and van de Winkel, 2003; Ruuls et al., 2008). The

sugar moiety attached to each of the two IgG heavy chains im-

pacts IgG activity by modulating the binding to classical Fcg re-

ceptors (type I FcRs) and to select members of the C-type lectin

family (type II FcRs) (Pincetic et al., 2014; Arnold et al., 2007). For

example, afucosylated IgG preparations have a more than 10-

fold higher affinity for mouse FcgRIV and human FcgRIIIA, result-
2376 Cell Reports 13, 2376–2385, December 22, 2015 ª2015 The Au
ing in enhanced cytotoxic activity (Nimmerjahn and Ravetch,

2005; Shinkawa et al., 2003). In contrast, IgG glycovariants rich

in terminal sialic acid residues and galactose residues have an

anti-inflammatory and immunomodulatory activity by losing af-

finity for type I FcRs while simultaneously gaining the capacity

to bind type II FcRs (Schwab and Nimmerjahn, 2013). Therefore,

therapeutic antibodies aiming at an optimal cytotoxic or immu-

nomodulatory activity need to be evaluated for the precise

composition of their sugar moiety to prevent unwanted activities.

As production cell lines and culture conditions can impact IgG

glycosylation, this represents a major quality control issue

(Beck et al., 2008). Furthermore, novel approaches aiming at

generating antibodies with defined sugar moieties and a minimal

level of heterogeneity within the glycan moiety are in the focus of

antibody research. An alternative to circumvent this complexity

is to generate antibody Fc mutants that no longer require the

sugar moiety for their activity (Sazinsky et al., 2008; Jung et al.,

2010). A potential problem with this approach may be that these

protein-engineered antibodies become immunogenic in pa-

tients, limiting their repetitive use. Another promising approach

to eliminate the heterogeneity within the sugar moiety would

be to generate antibodies with only the minimal level of glycosyl-

ation sufficient to maintain IgG activity in vivo. At present, how-

ever, the most widely accepted view is that reducing the level

of IgG glycosylation beyond the mannose-rich central core im-

pairs or fully abrogates IgG activity (Arnold et al., 2007; Collin

et al., 2008). However, there is evidence that at least one mouse

IgG subclass may be less prone to inactivation following enzy-

matic deglycosylation with endoglycosidase S (EndoS), which

removes the majority of the IgG sugar moiety by cleaving it after

the first N-acetylglucosamine (GlcNAc) residue (Albert et al.,

2008; Collin et al., 2008). Moreover, it has been demonstrated

that the size of the immune complex generated upon antibody

binding to its target cell/molecule can mitigate the requirement

for IgG glycosylation, at least in vitro (Lux et al., 2013; Pound

et al., 1993). Whether this generally translates to other mouse

and human IgG subclasses and is relevant for IgG activity in vivo

is not known. To study this, we generated human andmouse IgG

subclass glycosylation variants that solely have a mono- or

disaccharide sugar moiety instead of their native sugar domain.
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We demonstrate that, quite unexpectedly, mouse IgG2c and hu-

man IgG1 and IgG3 subclasses, which represent the most active

and therapeutically most widely used IgG subclasses, remained

fully functional in this minimally glycosylated form, suggesting

that enzymatic processing of heterogeneously glycosylated

IgG preparations may represent a strategy to generate well-

defined and highly active therapeutic antibody preparations.

RESULTS

A Mono- or Disaccharide Residue Is Sufficient to
Maintain Mouse IgG2c Antibody Activity In Vivo
Previous studies provided convincing evidence that removal of

the majority of the asparagine 297 (N297)-linked sugar moiety

of IgG from different species by EndoS treatment results in

impaired antibody activity in vitro and in vivo (Collin et al.,

2008). Although, in the majority of these studies, mouse IgG1,

IgG2b, and IgG subclasses of other rodents were used, we noted

that a mouse IgG2c variant of an autoantibody may remain func-

tional in this minimally glycosylated form (Albert et al., 2008). If

generally applicable, then this result would be of great interest,

as IgG2c is the most active mouse IgG subclass, due to its ca-

pacity to interactwith allmouse activating Fcg receptors (FcgRs),

resulting in superior cytotoxic activity (Nimmerjahn and Ravetch,

2006). To investigatewhether IgG2c antibodies are generally less

prone to being inactivated through deglycosylation, we used

three well-established in vivo model systems, including B cell

and melanoma cell depletion via CD20- or gp75-specific anti-

bodies, and autoantibody-mediated phagocytosis of platelets

via the platelet-specific 6A6 antibody. In all of these model sys-

tems, IgG2c antibodies were demonstrated to be themost active

IgG subclass and tomediate their activity via the activating Fc re-

ceptors FcgRI and IV (Nimmerjahn and Ravetch, 2006). Treat-

ment with EndoS resulted in highly pure antibody preparations

that contained only a minimal sugar moiety consisting of a single

GlcNAc with or without a branching fucose residue, as deter-

mined by mass spectrometry and lectin blot analysis (Figure S1)

(Collin et al., 2008). Injecting mice with the EndoS-treated

aCD20-IgG2c, but not with the EndoS-treated IgG2b switch

variant, resulted in a depletion of B cells in the blood and spleen

indistinguishable from the respective fully glycosylated IgG sub-

classes (Figures 1A–1D). Notably, removal of the complete sugar

domain by PNGase F treatment impaired IgG2c activity, estab-

lishing that the disaccharide structure is sufficient to retain this
Figure 1. In Vivo Activity of Minimally Glycosylated IgG Subclasses

(A–D) Shown are representative examples (A and C) and the quantifications (B an

IgG2b in their glycosylated (untreated), disaccharide (EndoS), or deglycosylated (P

and spleen (C and D) of C57BL/6 mice 24 hr after antibody administration. PBS-

normalized to the PBS control group, which was set to 100% (data not shown).

(E and F) Shown are representative lungs (E) and the quantification of lungmetasta

the TA99-IgG2c antibody in its fully glycosylated (untreated) or disaccharide form

(G) Depicted is the platelet-depleting activity of 6A6-IgG2c glycovariants in their

EndoS), or deglycosylated (PNGase F/N297A) forms in C57BL/6 mice 4 hr after

(H) Residual platelet counts in the peripheral blood of C57BL/6 mice 4 hr after in

IgG2b, and the 6A6-IgG2c-Hinge-IgG2b variant antibodies.

In (G) and (H), platelet counts after autoantibody injection were normalized to pla

Bar graphs indicate mean values/counts ± SEM of at least two independent exper

with an ANOVA and a Bonferroni correction. *p < 0.05; **p < 0.01; ***p < 0.001.
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IgG subclass in a fully functional state. Similar results were ob-

tained with the EndoS-treated gp75-specific antibody TA99-

IgG2c, which was as potent as the fully glycosylated IgG2c

variant in depleting melanoma metastasis in the lung of mice in-

jected with B16-F10 melanoma cells, followed by treatment with

the differentially glycosylated IgG2c variants (Figures 1E and 1F).

Finally, we confirmed these results for the platelet-specific

6A6-IgG2c variant and further demonstrated that this antibody

retained more than 50% of its activity, even if only one GlcNAc

residue without the branching fucose residue was present (Fig-

ures 1G; Figure S1). Again, removal of the sugar residues either

by PNGase F treatment or by mutating the N297 acceptor site

into an alanine residue abolished the 6A6-IgG2c activity. To

investigate whether the hinge region, which is one distinguishing

feature between IgG2c and IgG2b, was responsible for this

subclass-specific effect, we generated a chimeric antibody con-

sisting of the IgG2b CH1 and hinge domain fused to IgG2c CH2-

CH3 domains. As this chimeric antibody remained fully active in

its disaccharide glycoform, a major contribution of the IgG2c

hinge region seems unlikely (Figure 1H), suggesting that distinc-

tive features of the CH2-CH3 region may be responsible for this

effect. Taken together, our analysis revealed that cytotoxic anti-

bodies as well as autoantibodies of the IgG2c subclass retain

their in vivo activity, even if they only contain a mono- or disac-

charide sugar moiety, whereas they become functionally inacti-

vated if the entire sugar domain is absent.

Immune Complex Binding to FcgRs, Rather Than a
Monomeric Antibody-FcgR Interaction Analysis,
Predicts Minimally Glycosylated IgG2c Activity In Vivo
To analyze how differential IgG deglycosylation affects the bind-

ing to individual FcgRs, we performed surface plasmon reso-

nance (SPR) analysis with immobilized IgG2c antibodies and

soluble FcgRs (Figure 2A). In addition, an ELISA-based assay

in which monomeric IgG2c antibody preparations are immobi-

lized to plastic wells and soluble FcgR preparations are used

to detect bound antibodies was used as an independent exper-

imental approach to study the direct protein-protein interaction

of differentially glycosylated antibodies with soluble FcgRs (Fig-

ure 2B). Surprisingly, both of these assays demonstrated that

EndoS-treated IgG2c antibodies showed a strong reduction in

affinity for the activating FcgRs I and IV, in line with data obtained

with EndoS-treated human IgG subclasses (Allhorn et al., 2008).

The affinity was further diminished if the monosaccharide IgG2c
d D) of the differential capacity of the CD20-specific switch variants IgG2c and

NGase F) form to deplete B cells (CD19+IgM+) in the peripheral blood (A and B)

injected mice served as controls, and B cell counts shown in (B) and (D) were

sis at day 11 (F) of mice injected with B16-F10melanoma cells and treated with

(EndoS). PBS-injected mice served as controls.

fully glycosylated (untreated), disaccharide (EndoS), monosaccharide (-FUC/

injection of equal antibody amounts.

jection of the untreated and EndoS-treated platelet-specific 6A6-IgG2c, 6A6-

telet counts before antibody administration, which were set to 100%.

iments with three to five mice per group. Statistical significance was evaluated

thors
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Figure 2. Impact ofMinimal IgG2cGlycosyl-

ation on the Interaction with Soluble Fcg

Receptors

(A) SPR sensorgrams showing the binding of five

different concentrations of soluble (s) FcgRI and

FcgRIV toward immobilized IgG2c glycovariants in

their fully glycosylated (untreated), disaccharide

(EndoS), monosaccharide (-FUC/EndoS), or agly-

cosylated (N297A) forms. RU, response units, KD,

dissociation constant.

(B) Shown is the binding of murine soluble FcgRs

to immobilized IgG2c glycovariants as determined

by ELISA analysis. Bar graphs indicate mean value

± SEM of six independent experiments. Statistical

significance was evaluated with an ANOVA and a

Bonferroni correction. OD, optical density. *p <

0.05; **p < 0.01; ***p < 0.001.
variant was studied in SPR analysis and was comparable to the

loss of affinity for aglycosylated IgG2c in which the N297 residue

is replaced with an alanine (N297A). In contrast, analysis of

IgG2c immune complex binding to soluble FcgRs (Figure 3A)

or FcgR-expressing Chinese hamster ovary (CHO) cells (Fig-

ure 3B) revealed a completely different picture. Here, IgG2c

binding to FcgRs remained largely unimpaired if they contained

only a mono- or disaccharide sugar moiety, consistent with pre-

vious in vitro studies investigating human IgG immune complex

binding to FcgR-expressing cells (Lux et al., 2013). This effect

was especially pronounced for the binding to the high-affinity

FcgRI and themedium-affinity FcgRIV. Of note, the afucosylated

IgG2c monosaccharide variant showed an increased FcgRIV

binding compared to the disaccharide variant in the ELISA-

based assay (Figure 3A), consistent with previous studies

showing that, in mice, FcgRIV has the ability to recognize afuco-

sylated antibodies with enhanced affinity (Nimmerjahn and Rav-
Cell Reports 13, 2376–2385, De
etch, 2005). A similar glycosylation-inde-

pendent binding of IgG2c to FcgRI and

FcgRIV became evident in an alternative

assay system studying immune complex

binding to CHO cells transfected with

the individual mouse FcgRs, although,

here, no increased binding of afucosy-

lated monosaccharide IgG2c glycovar-

iants to FcgRIV was noted (Figure 3B).

Also in line with the in vivo data, IgG1

and IgG2b immune complexes largely

lost their capacity to bind to their acti-

vating FcgR counterparts upon EndoS

and PNGase F treatment (Figure S2).

Minimally Glycosylated Mouse and
Human IgG Variants Function via
Activating FcgRs and Have a
Diminished Binding to C1q
In a final set of experiments, we investi-

gated which activating FcgRs are

responsible for the activity of mono- and

disaccharide antibodies. As shown in Fig-
ure 3C, the activity of the fully glycosylated platelet-specific 6A6-

IgG2c antibody was equally dependent on both FcgRI and

FcgRIV, confirming previous results (Biburger et al., 2011). The

disaccharide variant, however, showed a more pronounced

dependence on FcgRI, although FcgRIV was still required for

its full functional activity (Figure 3D). In contrast, the activity of

the monosaccharide variant became more dependent on

FcgRIV but still required FcgRI for maximal triggering of platelet

phagocytosis (Figure 3E), consistent with the in vitro immune

complex binding data demonstrating enhanced binding of afu-

cosylated IgG2c to this activating FcgR (Figure 3A). Although

the B-cell-specific CD20-IgG2c antibody was also largely

dependent on FcgRs I and IV in its mono- and disaccharide

forms (Figures 3F–3H), some notable differences became

obvious. Thus, IgG2c-dependent B cell depletion remained fully

active, even if the antibody was in its monosaccharide form (Fig-

ure 3H), whereas IgG2c-mediated platelet phagocytosis was
cember 22, 2015 ª2015 The Authors 2379



reduced by half compared to the disaccharide variant (Figure 3E).

Removing the final GlcNAc residue, however, impaired B cell

depletion (Figure 1B). To establish whether this finding is also

relevant for human therapeutic antibody preparations used in

the clinic, we investigated the impact of EndoS treatment on

the activity of rituximab, which is of the human IgG1 subclass

and of an IgG3 switch variant in a humanized mouse model.

Consistent with the results obtained in our monomeric IgG-

FcgR analysis, previous in vitro studies with human IgG sub-

classes noted a strong reduction in affinity for human FcgRs

upon EndoS or endoglycosidase D (EndoD) treatment (Allhorn

et al., 2008; Yamaguchi et al., 2006). As shown in Figures 4A

and 4B; however, IgG1 and IgG3 disaccharide variants of this

antibody fully retained their capacity to deplete human B cells

in vivo. In line with the data for the mouse CD20-specific anti-

body, rituximab-IgG1 also remained active if only one GlcNac

residue was present at the N297 residue but lost its cytotoxic

effector functions if this final sugar residue was lacking (Figures

4A and 4B). As both IgG-triggered activation of the classical

complement pathway and binding to cellular FcgRs may be

involved in mediating B cell depletion, we further analyzed the

capacity of the human IgG1 and IgG3 antibodies to bind to

the complement component C1q (Meyer et al., 2014). Of note,

the capacity of both subclasses to bind to C1q was reduced to

a level similar to that seen for aglycosylated IgG preparations,

regardless of whether they were present in a monomeric or anti-

gen-bound form (Figures 4C and 4D). Given that rituximab has

only a limited capacity to kill target cells via complement-medi-

ated cytotoxicity (CDC) in vitro (data not shown), we turned to

ofatumumab, a CD20-specific human IgG1 antibody with

enhanced CDC activity. Consistent with the previous results,

the ofatumumab mediated deposition of C3b, and, ultimately,

the lysis of B cells was abrogated if the antibody contained

only a disaccharide sugar domain upon EndoS treatment (Fig-

ures 4E and 4F), suggesting that mono- or disaccharide antibody

preparations, while largely maintaining their FcgR-dependent

activities, lose their capacity to trigger a C1q-dependent com-

plement activation.

DISCUSSION

The sugarmoiety attached to each of the two heavy chainswithin

the IgG molecule represents a major source of heterogeneity in

an antibody preparation, and individual IgG glycoforms have

been demonstrated to impact antibody activity. A variety of pre-

vious studies have provided conclusive evidence that glycosyla-

tion is essential for both the pro- and anti-inflammatory activities

of IgG (Pincetic et al., 2014). Thus, an IgG antibody lacking the

N297-attached sugar domain is generally considered as a mole-

cule incapable of interacting with cellular FcgRs or the comple-

ment pathway (Arnold et al., 2007). Based on this model,

enzymes with the capacity to specifically deglycosylate IgGmol-

ecules, such as the Streptococcus pyogenes-derived enzyme

EndoS, which cleaves the sugar moiety after the first GlcNAc

residue, have been used very successfully in pre-clinical mouse

model systems to suppress the activity of mouse- and other ro-

dent-derived self-reactive antibodies (Albert et al., 2008; Allhorn

et al., 2008). Although we could confirm these findings for select
2380 Cell Reports 13, 2376–2385, December 22, 2015 ª2015 The Au
IgG subclasses, our study reveals an unexpected general resis-

tance of mouse IgG2c and human IgG1 and IgG3 subclasses to

become inactivated upon deglycosylation via EndoS. Thus, a

mono- or disaccharide sugar domain was fully sufficient to main-

tain cytotoxic antibody activity. Of great interest, human IgG1

and mouse IgG2c are the most potent pro-inflammatory and

cytotoxic IgG subclasses, and the human IgG1 backbone is

used widely in therapeutic antibody preparations. This is of great

importance, as it suggests that antibody binding to its cognate

antigen and/or avidity effects can overcome the loss in affinity

observed in monomeric IgG-FcgR analysis. Fully aglycosylated

human IgG1 and IgG3 and mouse IgG2c, however, were no

longer active in all of the in vivo model systems, suggesting

that a monosaccharide residue can be sufficient to maintain an

Fc conformation that allows a productive engagement of cellular

FcgRs. Evidence along these lines was provided by nuclear

magnetic resonance (NMR) spectroscopy, showing that different

chemical shift changes affecting selective amino acids occur in

the human IgG1 CH2 domain if it contains a disaccharide,

compared to no sugarmoiety at all, and by recent structural anal-

ysis of IgG in solution (Yamaguchi et al., 2006; Subedi and Barb,

2015). Of interest for clinical applications, our results suggest

that mono- or disaccharide antibodies largely mediate their ac-

tivity via the FcgR system while the activation of the classical

complement pathway is impaired. Althoughwe could not directly

assess this in vivo, the functional data obtained in our in vitro

CDC assay, along with results showing that EndoS-treated

red-blood-cell-specific antibodies can no longer mediate com-

plement-dependent phagocytosis of red blood cells in a model

of autoimmune hemolytic anemia, strongly support a more gen-

eral relevance for this observation (Allhorn et al., 2010). Consid-

ering the findings of studies suggesting that rituximab-mediated

complement activation interferes with an FcgR-dependent NK

(natural killer)-cell-mediated lysis of tumor cells and that patients

with low levels of C1q respond better to rituximab therapy,

mono- or disaccharide IgG1 antibodies may be less prone to

complement-dependent inhibition of ADCC reactions (Racila

et al., 2008; Wang et al., 2009). Of further interest, the only

in vitro assay systems predicting this unchanged activity were

immune-complex-based ELISA and fluorescence-activated

cell sorting (FACS) analyses but not monomeric IgG-FcgR inter-

action studies based on SPR or ELISAs. However, even the im-

mune-complex-based assays predicted false-positive results;

for example, EndoS-treated IgG2b preparations still interacted

with FcgRIV, or aglycosylated IgG2c immune complexes

showed an unchanged binding to FcgRI and a substantial resid-

ual, or even unchanged, binding to FcgRIV while losing their ac-

tivity in vivo. A more detailed knowledge about how the size of

the immune complex generated in vitro correlates with the size

of the immune complex formed with B cells, platelets, or tumor

cells in vivo may be essential to generate optimal in vitro assay

systems.

With respect to limiting the heterogeneity within therapeutic

antibody preparations, our results clearly demonstrate that a

minimal level of IgG glycosylation is sufficient for full antibody ac-

tivity, which may help to generate well-defined therapeutic IgG

preparations without unwanted anti-inflammatory or immuno-

modulatory activities.
thors
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EXPERIMENTAL PROCEDURES

Animals

Female mice at 8–16 weeks of age on the C57BL/6 background obtained

from Janvier Labs were used in all experiments. FcgRI-deficient mice

(FcgRI�/�) and FcgRIV-deficient mice (FcgRIV�/�) on the C57BL/6 back-

ground were provided by Jeffrey Ravetch (Rockefeller University). FcgRI�/�

and FcgRIV�/� were crossed in the lab to obtain FcgRI/FcgRIV�/� double-

deficient mice (Biburger et al., 2011). Immunodeficient Rag2/gc�/� mice

were provided by Hergen Spits (Academic Medical Center [AMC] Amster-

dam). Rag2/gc�/� FcgR�/� mice were generated by crossing Rag2/gc�/�

mice with FcgR�/� mice, followed by breeding to a homozygous deletion

for all three respective genes (Lux et al., 2014). Mice were kept in the animal

facilities of Friedrich-Alexander-University Erlangen-N€urnberg under specific

pathogen-free conditions in individually ventilated cages, in accordance with

the guidelines of the NIH and the legal requirements of Germany and the

United States.

Generation of PBMC Humanized Mice

Adult Rag2/gc�/� FcgR�/� mice were irradiated with 6 Gy and injected intra-

peritoneally with 53 106 human peripheral blood mononuclear cells (PBMCs)

6 hr after irradiation as described previously (Lux et al., 2014). PBMCs were

isolated by density centrifugation from individual buffy coats. Isolated PBMCs

were frozen and stored in liquid nitrogen until further use.

Antibodies and Reagents

The mouse CD20-specific IgG2b/IgG2c, the human CD20-specific rituximab

IgG1/IgG3, the platelet-specific 6A6, and the 2,4,6-trinitrophenyl (TNP)-spe-

cific 7B4-IgG1/IgG2c/IgG2b antibodies were produced by transient transfec-

tion of 293T cells with plasmids encoding for the respective antibody heavy

and light chains as described previously (Nimmerjahn and Ravetch, 2005).

HEK293S GnTI� cells were used to produce afucosylated IgG antibodies.

The TA99-IgG2c antibody was purchased from BioXCell, and ofatumumab

was kindly provided by Paul W.H.I. Parren (Genmab). For all experiments, re-

combinant EndoS was used, which was provided by Mattias Collin (Lund

University). For in vitro digestion, IgG antibodies were incubated with

0.04 mg EndoS/mg IgG in PBS at 37�C for 24 hr. Complete deglycosylation

of IgG was achieved by digestion with 80U PNGase F/mg IgG (New England

Biolabs) overnight at 37�C in H2O. The efficiency of EndoS/PNGase F treat-

ment was analyzed by lectin blotting with lens culinaris agglutinin (LCA) as

described previously (Albert et al., 2008) and by mass spectrometry analysis.

Soluble Flag-tagged Fc receptors were generated by transient transfection of

HEK293T cells, and cell culture supernatants were used directly for IgG-

binding ELISAs.

Mass Spectrometry Analysis

Glycoproteins (25 mg) were digested overnight with 200 ng of sequencing-

grade trypsin at 37�C (Worthington Biochemical). Glycopeptides were purified

by reverse-phase solid-phase extraction with Chromabond C18ec beads

(Marcherey-Nagel), and purified tryptic digests were analyzed on a nanoACQ-

UITY UPLC system (Waters) coupled to a micrOTOF-Q mass spectrometer

(Bruker Daltonics).
Figure 3. Impact of Minimal IgG2c Glycosylation on the Interaction of
(A) Binding of anti-TNP-IgG2c TNP-BSA immune complexes to immobilized mur

(B) Shown is the binding of murine anti-TNP-IgG2c TNP-BSA immune complex

fluorescent intensity.

(C–E) Depicted are the residual platelet counts in the peripheral blood of C57B

amounts of the fully glycosylated (untreated) (C), disaccharide (EndoS) (D), and m

counts after autoantibody injection were normalized to platelet counts before an

(F–H) Shown are the residual counts of CD19+IgM+ blood B cells in C57BL/6, Fcg

specific IgG2c antibody in its fully glycosylated (untreated) (F), disaccharide (End

cohorts receiving CD20-specific antibodies were normalized to the B cell counts

Bar graphs indicate mean value ±SEMof six to nine independent experiments. Sta

*p < 0.05; **p < 0.01; ***p < 0.001.
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Anti-CD20 IgG-Induced B Cell Depletion

25 mg anti-CD20-IgG switch variants were injected intravenously into mice as

described previously (Biburger et al., 2011). B cell counts in peripheral blood

were analyzed by flow cytometry before and at 6 and 24 hr after antibody in-

jection. The B cell count in spleen was analyzed 24 hr after antibody applica-

tion. For quantification, B cell counts in animals injected with PBS were set to

100%, and B cell counts in antibody-treated animals are depicted as the frac-

tion of residual B cells compared to the PBS value.

B16-F10 Lung Metastasis Model

Experiments were performed as described previously, with minor modifica-

tions (Nimmerjahn and Ravetch, 2005). C57BL/6 mice were injected with 5 3

105 B16-F10 melanoma cells intravenously and were injected either with

PBS or with 100 mg of TA99-IgG2c glycosylation variants on days 0, 2, 4, 7,

and 9 intraperitoneally. At day 11, mice were sacrificed, and metastasis in

the lungs were counted.

Platelet Depletion Model

Experiments were performed essentially as described previously (Biburger

et al., 2011). In brief, mice were injected intraperitoneally with 4 mg of the re-

combinant 6A6 antibody isotype switch variants diluted in 250 ml of PBS.

Platelet counts before injection and 4 hr after injection were determined by

blood collection (50 ml) from retroorbital plexus and measured at a 1:4 dilution

in PBS in an Advia 120 hematology system (Siemens). For quantification,

platelet counts before autoantibody injection were set to 100%, and the

platelet count 4 hr after antibody injection is shown as the fraction of residual

platelets compared to this initial value.

Rituximab-IgG-Induced B Cell Depletion in Rag2/gc/FcgR�/�

2.5 mg anti-CD20 rituximab-IgG switch variants was injected 18 hr after PBMC

transfer into 12- to 14-week-old PBMC-humanized Rag2/gc�/�/FcgR�/�mice

intraperitoneally. HumanB cell counts in the peritoneumwere analyzed by flow

cytometry 24 hr after antibody injection.

Flow Cytometry

Flow cytometry analysis was conducted on a FACS Canto II (BD Biosciences)

with single-cell suspensions of murine peripheral blood and spleen cells and

human PBMCs isolated from the peripheral blood of humanized mice and hu-

mans (isolated by Ficoll density gradient centrifugation). A detailed description

of the method and antibodies used for FACS analysis can be found in the Sup-

plemental Experimental Procedures.

Immunofluorescence Microscopy

5-mm sections of frozen tissue were air dried overnight, followed by fixation in

acetone. Slides were stained with anti-B220/CD45R (clone RA3-6B2; BD

Biosciences), anti-TCR-b (clone H57-597; Biolegend), and anti-CD31 (clone

390; Biolegend). After incubation, the excess of fluorescent dye was removed

by multiple washing steps with PBS. Microscope slides were analyzed on an

Axiovert 200 M fluorescence microscope (Carl Zeiss).

SPR Analysis

A Biacore X100 biosensor system was used to assay the interaction of soluble

Fcg receptors I and IV with the indicated glycosylation variants. Antibodies
Immune Complexes with Fcg Receptors in Vitro and In Vivo
ine soluble FcgRs as measured by ELISA analysis. OD, optical density.

es to CHO cells expressing the indicated mouse Fcg receptors. MFI, median

L/6, FcgRI�/�, FcgRIV�/�, and FcgRI/IV�/� mice 4 hr after injection of equal

onosaccharide (-FUC/EndoS) (E) variants of the 6A6-IgG2c antibody. Platelet

tibody administration, which were set to 100%.

RI�/�, FcgRIV�/�, and FcgRI/IV�/� mice 24 hr after injection of 25 mg of CD20-

oS) (G), or monosaccharide (-FUC/EndoS) form (H). B cell counts in the mouse

of the PBS control group, which was set to 100% (data not shown).

tistical significancewas evaluated with an ANOVA and a Bonferroni correction.

thors
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were immobilized to one flow cell of a CM5 sensor chip (Biacore) by standard

amine coupling, as suggested by the manufacturer. Soluble Fcg receptors

were injected at five different concentrations (2-fold dilutions starting from

5 mg/ml for FcgRI and 40 mg/ml for FcgRIV binding) through flow cells at

room temperature in HBS-EP running buffer (10 mM HEPES [pH 7.4],

250 mM NaCl, 3.4 mM EDTA, and 0.005% surfactant P20) at a flow rate of

30 ml/min. Soluble Fcg receptors were injected for 60 s, and dissociation of

bound molecules was observed for 10 min. Background binding to control

flow cells was subtracted automatically. Affinity constants were derived from

sensorgram data using simultaneous fitting to the association and dissociation

phases and global fitting to all curves in the set (the 1:1 Langmuir binding

model closely fitted the observed sensorgram data and was used in all

experiments).

Monomeric FcgR-Antibody Interaction Analysis via ELISA

100 ng 6A6-IgG glycosylation variants were coated on 96-well plates in PBS

and incubated with cell culture supernatants of soluble Flag-tagged FcgRs.

Binding of FcgRs to immobilized IgG was detected with anti-Flag M2-HRP

antibody (Sigma-Aldrich). Soluble FcgR binding to wells without IgG served

as a blank/negative control that was subtracted from the sample signal de-

picted in the figures.

Analysis of IC Binding to Soluble Murine FcgRs

Experiments were conducted as described previously (Nimmerjahn and Rav-

etch, 2008). A more detailed description can be found in the Supplemental

Experimental Procedures.

Analysis of IC Binding to Cellular Murine FcgRs

Immune complexes were incubated with 100,000 CHO cells stably expressing

individual murine FcgRs for 1 hr under gentle shaking at 4�C. Bound ICs were

detected by flow cytometry on a FACS Canto II, using a PE-conjugated goat

anti-mouse IgG F(ab0)2 fragment from Dianova. Data were analyzed with

FACSDiva software (BD Biosciences).

C1q ELISA

96-well microtiter plates were coated with 100 ng rituximab IgG1/IgG3 glyco-

variants in 0.05 M carbonate/bicarbonate buffer (pH 9.6) and blocked with 1

3 PBS/3% BSA/0.1% gelatin/0.05% Tween 20, followed by incubation with

200 ng native human C1q (AbD Serotec). To analyze C1q binding to anti-

body-antigen complexes, 96-well microtiter plates were coated with

100 ng TNP-13-BSA in 0.05 M carbonate/bicarbonate buffer (pH 9.6)

blocked with 13 PBS/3% BSA/0.1% gelatin/0.05% Tween 20, followed by

an incubation with 100 ng of human anti-TNP-IgG (clone 7B4) in 13 PBS/

3% BSA/0.1% gelatin/0.05% Tween 20. After incubation with 200 ng native

C1q (AbD Serotec), bound C1q was detected with 200 ng of a horseradish-

peroxidase (HRP)-conjugated sheep anti-human C1q antibody (AbD

Serotec).
Figure 4. Impact of Minimal Human IgG1 and IgG3 Glycosylation on

Functions

(A and B) Shown are representative examples (A) and the quantification (B) of B c

2.5 mg rituximab IgG1 or IgG3 in their fully glycosylated (untreated), disaccharide

(C) Depicted is the C1q binding to immobilized rituximab-IgG1 and -IgG3 variants

(PNGase F) forms as measured by ELISA. OD, optical density.

(D) Shown is the C1q binding to human IgG1 and IgG3 variants of TNP-specific an

(untreated), disaccharide (EndoS), or deglycosylated (PNGase F) forms as meas

(E) Quantification of C3 deposition on the human LCL1.11 B cell line upon additi

(PNGase F) variants of the CD20-specific human IgG1 antibody ofatumumab. C3

tensity (MFI) is shown. Cells incubated with heat-inactivated serum (no compleme

(F) Evaluation of CDC activity of glycosylated (untreated), disaccharide (EndoS), a

the LCL1.11 human B cell line. Complement-dependent lysis of target cells was

presence or absence of ofatumumab served as negative controls.

Bar graphs indicate mean counts/values ± SEM of two to three independent exp

significance was evaluated with an ANOVA and a Bonferroni correction or Krusk
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CDC Assay

For the CDCassay, 50 ml of the EBV (Epstein-Barr virus)-immortalized humanB

cell line LCL1.11 (106/ml) and 50 ml ofatumumab (20 mg/ml, either untreated,

EndoS treated, or PNGase F treated) were incubated for 30 min at 37�C with

5% CO2 in human serum or heat-inactivated (30 min at 56�C) serum lacking

functional complement proteins as a control. Cells were harvested, stained

with DAPI to identify dead cells or anti-C3/C3b/iC3b (Cedarlane) to detect

complement deposition on the cell surface, and analyzed via FACS analysis

(BD Biosciences). Data acquisition and analysis were performed with the

FACSDiva software (BD Biosciences).

Statistics

All data are expressed as mean + SEM. Data were analyzed and plotted with

GraphPad Prism software (GraphPad Software). In brief, normal distribution

was tested with a Kolmogorov-Smirnov test. After passing a normality test,

an ANOVA (and subsequent post hoc tests and Bonferroni correction) was

used to determine statistical differences between more than two groups.

Non-parametric distribution was analyzed using a Kruskal-Wallis test with

Dunn’s post hoc test. p < 0.05 was considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures
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