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Abstract

We perform a theoretical study of the following query-view security problem: given a view V to be published, does V logically
disclose information about a confidential query S? The problem is motivated by the need to manage the risk of unintended infor-
mation disclosure in today’s world of universal data exchange. We present a novel information-theoretic standard for query-view
security. This criterion can be used to provide a precise analysis of information disclosure for a host of data exchange scenarios,
including multi-party collusion and the use of outside knowledge by an adversary trying to learn privileged facts about the data-
base. We prove a number of theoretical results for deciding security according to this standard. We also generalize our security
criterion to account for prior knowledge a user or adversary may possess, and introduce techniques for measuring the magnitude of
partial disclosures. We believe these results can be a foundation for practical efforts to secure data exchange frameworks, and also
illuminate a nice interaction between logic and probability theory.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Traditional security mechanisms protect data at the physical level. For example, firewalls and other perimeter
mechanisms prevent the release of raw data, as do conventional access controls for file systems and databases. In
data exchange, however, such mechanisms are limited since they can only protect the data up to the first authorized
recipient. When data is exchanged with multiple partners, information may be unintentionally disclosed, even when
all physical protection mechanisms work as intended. As an extreme example, Sweeney demonstrated this [26] when
she retrieved the privileged medical data of William Weld, former governor of the state of Massachusetts, by linking
information from two publicly available databases, each of which was considered secure in isolation.1

✩ An extended abstract of this paper originally appeared as [Gerome Miklau, Dan Suciu, A formal analysis of information disclosure in data
exchange, in: Conference on Management of Data (SIGMOD), ACM Press, 2004, pp. 575–586].
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1 A voter registration list for governor Weld’s home city included the voters’ names, zip, birth-date, and sex. The state’s Group Insurance
Commission published a database containing “anonymized” medical data, including only the patients’ zip, birth-date, and sex, but omitting the
name. Only one person matched governor Weld’s zip, birth-date, and sex, allowing Sweeney to retrieve his medical records.
0022-0000/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
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We address the case when data originates at a single source, but may be exchanged with multiple partners and
further disseminated. This does not address Sweeney’s case, but that of a single source protecting its data. To prevent
unintended information disclosure, we need a formalism to protect the data at the logical level. Specifically, we study
the following fundamental problem, called the query-view security problem: given views V1,V2, . . . that we want
to publish, do they logically disclose any information about a query S that we want to keep secret? The views are
expressed in a query language, and may remove data items through projections or selections, or break associations
between data items. Adopting the nomenclature of the cryptographic community we say that Alice wants to give
Bob the views V1,V2, . . . over a public channel, but would like to prevent an adversary Mallory (or even Bob) from
learning the answer to secret query S. The query expressions S,V1,V2, . . . are known by the adversary, the answers
to V1,V2, . . . are published, while the underlying database remains secret.

In many cases a disclosure may not reveal a fact with complete certainty or an exact answer to a query. Consider a
database consisting of a single relation:

Employee(name,department,phone).

Imagine Alice publishes the view projecting on (name,department) to Bob, and publishes the view projecting
(department,phone) to Carol:

VBob = Πname,department(Employee),

VCarol = Πdepartment,phone(Employee).

Alice wants to protect employees’ phone numbers, so the secret query would be:

S = Πname,phone(Employee).

If Bob and Carol collude, they cannot compute the answer to S since the association between name and phone is
not present in VBob and VCarol. However a partial disclosure has occurred, and it is a potentially serious threat to the
security of S. For example, if only four people work in each department then an adversary can guess any person’s
phone number with a 25% chance of success by trying any of the four phone numbers in her department.

For a more complex example, consider a manufacturing company that needs to exchange XML messages with
several partners. Each message type is a dynamic view that computes on request some information about the com-
pany’s manufacturing data: V1 contains detailed information about parts for a specific product, to be exchanged with
suppliers; V2 contains detailed information about products’ features, options, and selling prices, to be exchanged with
retailers and customers; while V3 provides labor cost information to be sent to a tax consulting firm. The company
wants to keep secret the internal manufacturing cost for its products, which can be expressed in terms of a query S.
Conventional protection mechanisms can ensure that each message is received and read only by authorized users, but
are powerless beyond that point. At a minimum, the company would like to audit each of the three views and ensure
that it does not disclose the secret information to its authorized recipient. But in addition the company would like to
understand if any information is disclosed when views are combined (colluded), for example, when V3 is accidentally
or intentionally sent to a supplier, or when the tax consulting firm merges with one of the customers. None of these
tasks are performed today, manually or automatically, because there is no clear understanding of when and how much
information is disclosed at the logical level.

Our study of logical information disclosure applies directly to the following data exchange scenarios:

Multi-party collusion. Alice would like to publish n views V1, . . . , Vn to n different users. Given a secret query S,
which are the multiple party collusions among the users that will violate the confidentiality of S?

Prior knowledge. Suppose Mallory, the adversary, has some knowledge about the database represented in the form of
a query K . Can Alice publish V without disclosing anything about the secret query S? The prior knowledge
may be common knowledge, such as the fact that social security numbers are unique or that phone numbers
with the same area code are in the same state, or may be more specific knowledge about the domain that
Mallory has acquired somehow.

Relative security. Alice has already published a view U . This already leaked some information about a secret
query S, but was considered an acceptable risk by Alice. Now she wishes to publish an additional view V .
Does V disclose any additional information about S over what was already disclosed by U? This is not the
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Table 1
Pairs of views and queries, over relation Emp(name,department,phone) and an informal description of their information disclosure

View(s) Query Information disclosure Query-view security

(1) V1(n, d):−Emp(n, d,p) S1(d):−Emp(n, d,p) Total No
(2) V2(n, d):−Emp(n, d,p) S2(n,p):−Emp(n, d,p) Partial No

V ′
2(d,p):−Emp(n, d,p)

(3) V3(n):−Emp(n, d,p) S3(p):−Emp(n, d,p) Minute No
(4) V4(n):−Emp(n,Mgmt,p) S4(n):−Emp(n,HR,p) None Yes

same as saying that the query S is secure with respect to the pair of views U , V , because S is not secure with
respect to U .

Encrypted views. Given an adversary who has access to a version of the database in which each attribute has been
encrypted, is confidential query S secure? These “views” are increasingly available to users, for instance in
controlled publishing scenarios [21], private computation protocols [2] or in architectures designed to support
untrusted database service providers [17]. Encrypted views can be handled with the techniques described
here. We apply our results to this setting in Section 5.4.

Our first contribution is a formal definition of query-view security that captures the disclosure of partial informa-
tion. Inspired by Shannon’s notion of perfect secrecy [24], the definition compares the likelihood of an adversary
guessing the answer to secret query S with and without knowledge of views V1,V2, . . . , Vn. When the difference is
zero, we say that the query is secure with respect to the views. To the best of our knowledge this is the first attempt
to formalize logical information disclosure in databases. Our second contribution consists of a number of theoretical
results about query-view security: we prove a necessary and sufficient condition for query-view security, and show
that the security problem for conjunctive queries is Π

p

2 -complete; we generalize query-view security to account for
pre-existing knowledge; and when the query is not secure with respect to a view, we characterize the magnitude of
disclosure. These theoretical results illuminate an interesting connection between logic and probability theory.

1.1. A spectrum of information disclosure

Table 1 contains a set of query-view pairs referring to an Employee relation, along with an informal description of
the information the views disclose about the query. These examples represent a spectrum of information disclosure,
beginning with total disclosure, and ending with a secure query and view. The first query and view is an obvious
example of a total disclosure because S1 is answerable using V1.

Example (2) is precisely the example mentioned above in which Bob (given V2) and Carol (given V ′
2) collude

to cause a partial disclosure. It is worth noting that a contained rewriting of S2 using V2,V
′
2 exists here. For small

departments, it may be easy for Mallory to guess the association between names and phone numbers.
As another example of partial disclosure, consider example (3), whose view is V3 = Πname(Employee). We ask

whether query S3 = Πphone(Employee) is secure when this view is published. In this case the view omits phone
entirely and would seem to reveal nothing about phone numbers in S3. Surprisingly, the view does disclose some
information about the secret query. In particular, it can reveal something about the size of the Employee relation, and
therefore contains some small amount of information about the omitted column. We describe this further in Section 4.

The last example, Table 1(4), is a case where no information is disclosed. The names of employees in the Manage-
ment department reveal nothing about the names of employees in the Human Resources department.

1.2. Paper organization

In the next section we provide an overview of related work, and explain why existing database techniques are
insufficient for analyzing information disclosure. Section 3 presents notation and a probabilistic model of databases.
Section 4 describes our definition of query-view security and its main results. Section 5 extends these results to include
prior knowledge, and query-view security for encrypted views. Section 6 presents two approaches for relaxing the
security standard. We conclude in Section 7. A complete proof of the hardness of deciding query-view security is
provided in Appendix A.
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2. Related work

Below we distinguish the query-view security problem from superficially-related database problems, describe con-
nections to related theoretical results and alternative models, and provide pointers to contributions in this area that
have appeared since the original publication [22] of our work.

2.1. Query answering

The basic problem addressed in query answering [18] is: given a view V (or several such views), answer a query
S by using only the data in the view(s). A more refined version, called query rewriting, asks for the answer to be
given as a query over the view(s) V . The connection to our problem is that, whenever S can be answered from V ,
then S is obviously not secure, as in Table 1(1). However, adopting non-answerability as a criterion for security would
clearly be a mistake: it would classify example (2) as secure. As we claim above, even though the query S may be not
answerable using V , substantial information about the query may be revealed, allowing an attacker to guess the secret
information with a high probability of success.

A related strategy considers a view V and its answer v = V (I) as a constraint on the set of possible database
instances, making some impossible. The set of possible answers to a query S given V may therefore be reduced. (If
this set happens to have size 1, then the answer to S is determined by v = V (I).) We might say S is secure given V

if every possible answer to S remains possible given V . This criterion would classify examples (2) and (3) correctly.
That is, it would capture the partial disclosures in these cases, but not in others. However, this standard of security
ignores the likelihood of the possible answers of S. For example, consider the boolean query and view below:

S( ):−Employee(Jane,Shipping,1234567),

V ( ):−Employee(Jane,Shipping,p),Employee(n,Shipping,1234567).

In the absence of the view, the query S (which asserts the presence of a particular tuple in the database) may be true
or false. Given the answer to V on the database, S could still evaluate to true or to false. However, the probability that
S is true is substantially higher given that V is true, and so a serious disclosure has occurred. In general, while V may
not rule out any possible answers to S, some answers may become less likely, or in the extreme, virtually improbable
without contradicting a security criterion based on possible answers. Our definition of query-view security handles
this case.

2.2. Database security

Access control mechanisms in databases [5,8] are used to define the rights of authorized subjects to read or modify
data elements, and therefore usually offer control at a physical level, rather than a logical level. For example, a simple
access control policy might prohibit access to confidential columns in a relation. This is similar to publishing a view
after projecting out those columns. We have shown that such a view can in fact contain a partial disclosure about the
confidential column (see Example 4.2).

A statistical database publishes views consisting of aggregate functions over a subset of records. Information is thus
hidden by aggregating data, and the security problem is to ensure that data in individual tuples remains secret. The
security of statistical databases has a long history [1,8]. Disclosures are classified as exact disclosures of confidential
statistics, negative disclosures (the answer to statistic S is not value x) and approximate disclosures (the answer to
statistic S is in range [l1, l2] with confidence p%) [8]. A wide range of techniques have been developed to provide
security including query restriction, data perturbation, and output perturbation [1]. The present work on query-view
security is orthogonal: we do not hide data by aggregation, but rather through projections or selections, or breaking
associations. Rather than statistics, we need to use probability theory to reason about query-view security.

The authors of [11] study formal definitions of privacy in the context of privacy preserving data mining. In this
setting the goal is to permit accurate data mining models to be built over aggregates while preventing disclosure
of individual items. Here the published view is the result of applying a randomization operator to data values or a
distribution of data values. It is shown that a known information-theoretic definition of privacy may permit certain
disclosures, and they propose an extended measure to account for this drawback.
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A protection mechanism for relational databases was proposed in [3] based on a probabilistic definition of security
similar to our own. An algorithm for deciding query-view security was not known, and relative security and quantified
security were not addressed. In [4] the same authors focus on comparing probabilistic independence (closely related to
our security criterion) with algebraic independence, but are not concerned with a decision procedure for probabilistic
independence.

2.3. Alternative models

Query-view security could be defined by comparing the entropy [25] of S with the conditional entropy of S given V .
If this is done for all possible answers s, v̄ (computing the entropy of event S = s, and S = s given V̄ = v̄) then the
condition is equivalent to our security criterion. However, it would be more common to compare the entropies of the
events defined by S and V , aggregating over the answers to S and V . This would result in a criterion strictly weaker
than ours.

The goal of the probabilistic relational model [15,19] is to model statistical patterns in huge amounts of data. The
issues addressed are learning models from existing data, modeling statistics about a given database (e.g. to be used by
a query optimizer), and inferring missing attribute values. These techniques do not provide us with means to reason
about information disclosure, which is independent of a particular data instance.

For semistructured data, Yang and Li [27] study the problem of unintended disclosures in publishing. The disclo-
sures result from the fact that semantic constraints hold over the data instances. Views that remove data items therefore
does not necessarily afford secrecy. The authors propose algorithms for computing the maximal document that can be
published without allowing illegal inferences.

2.4. Theoretical connections

A query is independent of an update if the application of the update cannot change the result of the query, for
any state of the database. Detecting update independence is useful for maintenance of materialized views [6,10,
20] and efficient constraint checking [16]. Deciding whether a tuple t is critical for a query Q (a notion we define
and study in Section 4.2) is equivalent to deciding whether Q is independent of the update that deletes t from the
database. Update independence is undecidable for queries and updates expressed as datalog programs [20], but has
been shown decidable for certain restricted classes of queries like conjunctive queries with comparisons [6,10,20]. The
tight bounds shown in this paper for deciding crit(Q) constitute an interesting special case for update independence.

The so-called FKG inequality [14] is a theoretical result about the correlation between events in a probability
space. It is closely related to our security criterion, and can be used to show that P(V ∧S) � P(V )P(S), for monotone
boolean properties V and S. However, it says nothing about when equality holds, and its inductive proof offers little
insight. Our Theorem 4.8 reproves this inequality and furthermore proves the necessary and sufficient condition for
equality to hold.

Another topic that connects logic to probability theory are the 0-1 laws [12,13], which hold for a logical language
if, for each formula, the probability that a formula is true converges to either 0 or 1 as the size of the domain tends to
infinity. Our definition of query-view security is not related to 0-1 laws: our domain size does not grow to infinity but
remains fixed and we are concerned about the effect of one formula (the view) on another (the secret query).

2.5. Subsequent work

Following the publication of [22], the authors, along with Nilesh Dalvi, have recently considered a relaxed notion
of query-view security based on a substantially different probability distribution over databases [7]. We describe this
approach in Section 6.2.

In [9] it is assumed that a set of views has been published to the adversary, regardless of disclosure about a
secret query. A new view, considered for publication, is then evaluated for additional disclosure. (We consider such
a scenario in Section 5.2.) The authors study a version of query-view security similar to our own, but also consider
weaker variants. They provide complexity bounds for these decision problems under general probability distributions,
and for more expressive integrity constraints.
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3. Background and notation

As we mentioned, many disclosures do not involve an adversary computing S completely according to standard
database query semantics. Instead a partial disclosure reveals to Mallory something about the likelihood of answers
to a secret query S. After an overview of notation, we present our security model that allows formal statements about
the probability of a database and query answer. Our discussion is based on the relational model.

3.1. Basic notations

We assume a standard relational schema consisting of several relation names R1,R2, . . . , each with a set of attribute
names. Let D be the finite domain, which includes all values that can occur in any attributes in any of the relations.
For example, D may be the set of decimal numbers up to an upper bound, and all strings up to a given length. In a
particular setting we may consider further restricting D, e.g. to include only valid disease names, valid people names,
or valid phone numbers.

We use datalog notation to denote tuples belonging to the relations of the given schema. For example, R1(a, b, c)

denotes a tuple in R1, and R3(b, a, a) denotes a tuple in R3. Let tup(D) be the set of all tuples over all relations in
the schema that can be formed with constants from the domain D. A database instance I is any subset of tup(D),
and we denote by inst(D) the set of all database instances over the domain D. A query of arity k is a function
Q : inst(D) → P(Dk). For an instance I , Q(I) denotes the result of applying Q to I . A boolean query is a query of
arity 0. A monotone query has the property I ⊆ I ′ ⇒ Q(I) ⊆ Q(I ′). Except where noted, our discussion will focus
on conjunctive queries with inequalities, written in datalog notation. For example:

Q(x):−R1(x, a, y),R2(y, b, c),R3(x,−,−), x < y, y �= c.

Here x, y are variables, − are anonymous variables (each occurrence of − is distinct from all others) and a, b, c are
constants.

3.2. The security model

We assume a probability distribution on the tuples, P : tup(D) → [0,1], s.t. for each ti ∈ tup(D), P(ti) = xi repre-
sents the probability that the tuple ti will occur in a database instance. We will refer to the pair (D,P) as a dictionary.
A dictionary induces a probability distribution on specific instances: for any I ∈ inst(D), the probability that the
database instance is precisely I is:

P[I ] =
∏

ti∈I

xi ·
∏

tj /∈I

(1 − xj ). (1)

For example, if the schema consists of a single table Patient(name,disease) representing sensitive data in a hospital,
then the domain D may consist of all possible names (e.g. those occurring in a phone book for the entire coun-
try), together with all possible diseases cataloged by the CDC. For each tuple ti = Patient(name,disease), P(ti) is
the (very small) probability that a person with that name and that disease is in the hospital’s database. To illustrate,
assuming 108 distinct names and 500 distinct diseases2 there are n = 5 × 1010 tuples in tup(D), and one possible
probability distribution is P(ti) = 200/n for every ti ∈ tup(D). This is a uniform probability distribution, for which
the expected database size is 200 tuples. A more accurate, but far more complex probability distribution is one that
takes into account the different risk factors of various ethnic groups and for each diseases. For example, the proba-
bility of a tuple Patient(“John Johnson”, “Cardiovascular Disease”) will be slightly higher than the probability of the
tuple Patient(“Chien Li”, “Cardiovascular Disease”), if Americans have a higher risk of a Cardiovascular Disease than
Chinese, and the nationality of John Johnson is likely to be American while that of Chien Li is likely to be Chinese.

The probability P(ti) may be too complex to compute in practice, but computing it is not our goal. Instead we will
assume that Mallory can compute it, and can use it to derive information about the secret query S. Thus, we endow
the adversary with considerable power, and study under which circumstances no information is disclosed.

2 Fewer than 500 are listed at http://www.cdc.gov/health/.
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Given a probability distribution over database instances, a query S attains some answer s with probability equal to
the sum of the probabilities of the satisfying instances:

P
[
S(I) = s

] =
∑

{I∈inst(D)|S(I)=s}
P[I ]. (2)

Remark. In our model the tuples are independent probabilistic events. This is a limitation. In practice, the occurrence
of tuples may be correlated due to underlying relationships in the data or integrity constraints. If tuples are positively
correlated (respectively, negatively correlated) the presence of one tuple increases (decreases) the likelihood of an-
other. For example, a key constraint introduces strong negative correlations. We will address some of these limitations
in Section 5 by studying query-view security relative to prior knowledge that expresses a functional dependency.
However, extending our results to a model that can capture arbitrary correlations between tuples remains an open
problem.

4. Query-view security

In this section we formalize our notion of query-view security, describe its basic properties, and state our main
theorems which result in a decision procedure for query-view security.

4.1. Definition of query-view security

Our standard for query-view security is inspired by Shannon’s definition of perfect secrecy [24]. Let V̄ =
V1, . . . , Vk be a set of views, and S a “secret” query. Both the views and the query are computed over an in-
stance I of a relational schema. We consider an adversary, Mallory, who is aware of the domain and probability
distribution over instances (the dictionary), and is given V̄ (I ) (but not I ). Mallory’s objective is to compute S(I).
The definition below captures the intuition that V̄ (I ) discloses no information about S(I). Below, V̄ (I ) = v̄ means
V1(I ) = v1 ∧ · · · ∧ Vk(I ) = vk .

Definition 4.1 (Query-view security). Let (D,P) be a dictionary. A query S is secure with respect to a set of views V̄

if for any possible answer s to the query, and any possible answers v̄ to the views, the following holds:

P
[
S(I) = s

] = P
[
S(I) = s

∣∣ V̄ (I ) = v̄
]
. (3)

Query-view security is denoted S |P V , or simply S | V if P is understood from the context.

The left-hand side of Eq. (3) represents the a priori probability that S attains a particular answer s over the in-
stance I , which can be computed by Mallory using (D,P). The right-hand side is also the probability that S(I) = s

but conditioned on the fact that V̄ (I ) = v̄. The security condition asserts the equality of these two probabilities (for
all possible s, v̄) and therefore says that nothing beyond the a priori knowledge is provided by V̄ . Equation (3) is also
the familiar definition of independence of two statistical events. Accordingly, S is secure with respect to V̄ iff S and
V̄ are statistically independent events. We can rewrite (3) as follows:

P
[
S(I) = s

]
P
[
V̄ (I ) = v̄

] = P
[
S(I) = s ∧ V̄ (I ) = v̄

]
. (4)

Next we apply the definition in two examples:

Example 4.2 (Non-security). Consider a single relation R(X,Y ) and domain D = {a, b}. There are 4 possible tuples
R(a, a), R(a, b), R(b, a), R(b, b), and the set of instances inst(D) contains the 16 subsets of these. Assume for
simplicity that P(ti) = 1/2 for each tuple ti , and consider the following query and view:

V (x):−R(x, y),

S(y):−R(x, y).

V projects the first attribute of R while S projects the second. Although we might expect that the view provides
no information about the query, it is actually not the case that S | V . Informally, the answer to V contains some
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information about the size of the database which impacts answers to S. Consider a particular answer {(a)} for S.
There are 3 equally-likely instances generating this answer: {R(a, a)}, {R(b, a)}, and {R(a, a),R(b, a)}. Therefore,
we have a priori probability:

P
[
S(I) = {

(a)
}] = 3/16.

Now suppose we are given that V (I) = {(b)}. There are again 3 instances, only one of which causes S(I) = {(a)}, so
because each instance is equally-likely we have:

P
[
S(I) = {

(a)
} ∣∣ V (I) = {

(b)
}] = 1/3.

This contradicts (3) for the particular answers considered, and it follows that S and V are not secure for this particular
probability distribution. We show in the next section that they are not secure for any distribution.

Example 4.3 (Security). As an example of a secure query and view, consider the same schema and dictionary, and:

V (x):−R(x, b),

S(y):−R(y, a).

Here S is secure with respect to V . We prove this later, but illustrate here with one example. Consider one possible
output of S: S(I) = {(a)}. There are 4 instances that lead to this output, {R(a, a)}, {R(a, a),R(a, b)}, {R(a, a),
R(b, b)}, and {R(a, a), R(a, b), R(b, b)}, hence:

P
[
S(I) = {

(a)
}] = 4/16 = 1/4.

Consider also one possible output of V , say V (I) = {(b)}. There are four instances I satisfying this constraint:
{R(b, b)}, {R(b, b), R(a, a)}, {R(b, b),R(b, a)}, {R(b, b), R(a, a), R(b, a)}. Of these only one also results in S(I) =
{(a)}, hence:

P
[
S(I) = {

(a)
} ∣∣ V (I) = {

(b)
}] = 1/4.

One can manually check, for all possible combinations of outputs of S and V , that the probability of S is unchanged
by publishing V . We will provide an easier criterion for checking this shortly.

4.1.1. Discussion
Several properties of query-view security follow, providing intuition and justifying our choice of definition.

Symmetry. It follows from Bayes’ Theorem that security is a symmetric relation: S | V̄ iff V̄ | S.

Security (not obscurity). We always assume that publishing the views V̄ includes exposing both the view definitions
and their answers over the hidden database. Basing the security on concealing the view and query expressions is
dangerous. We thus avoid the pitfall of “security by obscurity,” identified long ago by the cryptographic community
as ineffective [23].

Instance-independence. If the query S is secure with respect to the views V̄ , it remains so even if the underlying
database instance I changes: this follows from the fact that Eq. (3) must hold for any query output s and any view
outputs v̄. We say that query-view security is instance independent. This property is necessary in applications like
message-based data exchange, were messages are exchanged continuously, even as the database changes. Once S | V̄
has been checked, the views V̄ (I ) can safely be exchanged without any compromise of S(I). In fact, one can prove
that if successive instances are independent from one another, then even if Mallory collects snapshots of the views at
various moments of time, V̄ (I1), V̄ (I2), . . . , V̄ (It ), he still cannot learn anything about any of S(I1), . . . , S(It ). This
way of defining security is different from the standard definition in statistical databases. There the security criteria
often apply to a particular database instance, and may fail if the instance is later updated. For example, one security
criterion requires that the aggregate function be computed only on cells that are “large enough.” One data instance
may be secure, but it becomes insecure when tuples are deleted (making some cells too small), or when tuples are
inserted (creating new cells, which are small).
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Dictionary-independence. The definition of query-view security S | V̄ is for a particular dictionary (D,P). In prac-
tice, however, the dictionary is often ill-defined: for example, the probability distribution P is impossible to compute,
and even the domain D may be hard to define precisely. Thus, we are interested in a stronger version of security, which
is dictionary-independent. Our results in the next section provide necessary and sufficient conditions for dictionary-
independent security. They show, surprisingly, that, in some cases, security for some dictionary implies security for
all dictionaries (see Theorem 4.8 and Proposition 4.9).

Collusions. Given V̄ = V1, . . . , Vk , we will show in Theorem 4.5 that S | V̄ if and only if S | Vi for all i = 1, . . . , k.
This has the following consequence. If we send different views to different users, but have determined that the secret
query S is secure with respect to each view separately, then nothing will be leaked about S even if the recipients
collude, i.e. exchange the views they received and try to learn something about S by examining all the views together.
This strong property is a consequence of our adoption of a notion of perfect secrecy to define security. Disclosure
through collusion happens when each view leaks very little information when taken separately, but together may leak
a lot of information about S. We will re-examine collusion in Section 6 when we discuss measuring disclosures.

Query answering. The database community has studied extensively the following query answering problem. Given
a set of views V̄ = V1, . . . , Vk and another view V ′ find a function f s.t. for any instance I , V ′(I ) = f (V̄ (I )): in this
case we say that V ′ is answerable from V̄ . In the related query rewriting problem, f is restricted to be expressed in a
query language. It is natural to ask about the relationship to security. Intuitively, if V ′ is answerable from V̄ , then the
information content of V ′ is not more than that of V̄ , and any query S which is secure with respect to V̄ should be
also secure with respect to V ′. This intuition is correct, as the following straightforward argument shows. We have

P
[
V ′(I ) = v′] =

∑

v̄

{
P
[
V̄ (I ) = v̄

] ∣∣ f (v̄) = v′}

and

P
[
S(I) = s ∧ V ′(I ) = v′] =

∑

v̄

{
P
[
S(I) = s ∧ V̄ (I ) = v̄

] ∣∣ f (v̄) = v′}

which implies that the view V ′ satisfies Eq. (4). In particular, if V is a boolean view, then it follows that S | V iff
S | ¬V .

A similar result holds when security fails: if ¬(S | V̄ ) and another query S′ is computable from S, then ¬(S′ | V̄ ).

Aggregates. When applied to queries with aggregates our definition of security results in a very strict condition: no
query and view containing an aggregate over a common tuple are secure. Techniques from statistical databases are
better-suited for the case of queries with aggregates, and are orthogonal to our discussion. We therefore omit aggregate
functions from the query language we consider.

4.2. Fundamental theorems of query-view security

At this point, the only obvious procedure for deciding query-view security is to compute probabilities for each
answer to the query and view. In addition to the computational complexity of this strategy, it requires re-computation
for each dictionary. In this subsection we present techniques for deciding query-view security by analyzing the query
and view definitions, and prove that this technique is dictionary-independent.

Definition 4.4 (Critical tuple). Let D be a finite domain and Q be a query. A tuple t ∈ tup(D) is critical for Q if there
exists an instance I ∈ inst(D) such that Q(I − {t}) �= Q(I). The set of critical tuples of Q is denoted critD(Q), or
simply crit(Q) when D is understood from the context.

The intuition is that t is critical for Q if there exists some instance where dropping t makes a difference.
For a simple illustration, consider the boolean query Q():−R(a1, x) and let D = {a1, . . . , an}. Any tuple of the

form R(a1, ai), i = 1, . . . , n, is critical for Q, because Q returns true on the database consisting of the single tuple
R(a1, ai), but if we remove that tuple then we get the empty database on which the query returns false.
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We can now formulate the characterization of query-view security. The proof is in Section 4.3.

Theorem 4.5. Let D be a domain. Let S be a query and V̄ be a set of views. Then S |P V̄ for every probability
distribution P iff critD(S) ∩ critD(V̄ ) = ∅.

Here crit(V̄ ) is crit(V1) ∪ · · · ∪ crit(Vk). In particular it follows that S |P V̄ for all P iff S |P Vi for all i = 1, . . . , k

and for all P. The theorem says that the only way a query can be insecure with respect to some views is if they have
some common critical tuple. This result translates the probabilistic definition of query-view security into a purely
logical statement, which does not involve probabilities. This is important, because it allows us to reason about query-
view security by using traditional techniques from database theory and finite model theory.

Next we revisit the query and view examples from the last section and apply Theorem 4.5.

Example 4.6. In Example 4.2, we saw that security fails to hold for V (x):−R(x, y) and S(y):−R(x, y). Every tuple
is critical for V : for example, R(a, b) is critical for V because V ({ }) = {} while V ({R(a, b)}) = {(a)}. Similarly,
every tuple is critical for S, so because crit(V ) ∩ crit(S) is non-empty, we conclude ¬(S |P V ) at least for some
probability distribution P.

Example 4.7. We argued in Example 4.3 that security holds for V (x):−R(x, b) and S(y):−R(y, a). The critical
tuples of S are crit(S) = {R(a, a),R(b, a)}, and similarly crit(V ) = {R(a, b),R(b, b)}. Because crit(S)∩crit(V ) = ∅,
Theorem 4.5 allows us to conclude S |P V for every probability distribution P.

So far S and V̄ were allowed to be arbitrary queries. We now restrict S and V̄ to be monotone queries, and will
prove that the definition of query-view security is, for all practical purposes, dictionary-independent. The main step is
the following theorem, whose proof is in Section 4.3.

Theorem 4.8 (Probability-independence). Let D be a domain, and S, V̄ be any monotone queries. Let P0 be a prob-
ability distribution s.t. ∀t , P0(t) �= 0 and P0(t) �= 1. If S |P0 V̄ then for every probability distribution P, S |P V̄ .

This is a surprising theoretical result, which says that if a query is secure even for one probability distribution, then
it is secure for all such distributions. Continuing Example 4.2, both S and V are monotone. It follows that ¬(S |P V )

for any probability distribution P which is �= 0 and �= 1. Notice that for the trivial distribution P(t) = 1, ∀t , we have
S |P V , because in this case the answer to both S and V are known.

We still need to show that the definition is insensitive to a particular choice of domain, and for that we will further
restrict all queries to be conjunctive queries. As we vary the domain D, we will always assume that D includes all the
constants occurring in S and V̄ .

Proposition 4.9 (Domain-independence). Let n be the largest number of variables and constants occurring in any of
the conjunctive queries S,V1, . . . , Vk . If there exists a domain3 D0 s.t. |D0| � n(n+1), and critD0(S)∩critD0(V̄ ) = ∅,
then for any domain D, s.t. |D| � n(n + 1), critD(S) ∩ critD(V̄ ) = ∅.

We now discuss how to decide query-view security for conjunctive queries S and V̄ . Our goal is to check dictionary-
independent security, hence we need to check whether critD(S) ∩ critD(V̄ ) = ∅, and we assume that the domain D

is “large enough.” The previous proposition gives us an exponential time algorithm: pick a domain D0 with n(n + 1)

constants, then enumerate exhaustively all instances I ⊆ D0 and tuples t ∈ I , checking whether t is a critical tuple
for S, and for V̄ . This also shows that the query-view security problem is in complexity class Π

p

2 .4

3 For conjunctive queries without order predicates it suffices to pick the domains D0,D with size � n. When order predicates are allowed, then
we need n fresh constants between any two constants mentioned in the queries, which leads to n(n + 1).

4 Recall that NP is the class of problems that can be expressed as {z | ∃y φ(y, z)} where the “certificate” y has length polynomial in z and φ is
PTIME computable. Complexity class Π

p
2 consists of problems that can be expressed as {z | ∀x ∃y φ(x, y, z)} where x, y are polynomial in z and

φ is PTIME computable.
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Theorem 4.10. The problem of deciding, for conjunctive query Q, whether a tuple t /∈ crit(Q) is Π
p

2 -hard (query
complexity).

This is a non-trivial result, whose proof uses a lengthy reduction from the ∀∃3-CNF problem, and is included in
Appendix A. We illustrate with an example why computing crit(Q) is non-obvious. Clearly, any critical tuple t must
be an homomorphic image of some subgoal of Q. But the following example shows the converse is not true:

Q():−R(x, y, z, z, u),R(x, x, x, y, y).

Consider the tuple t = R(a, a, b, b, c), which is a homomorphic image of the first subgoal. Yet t is not critical. Indeed,
let I be any database s.t. Q(I) = true. Then the first subgoal must be mapped to t . But that means that both x and y

are mapped to a. Thus the second subgoal must be mapped to the tuple t ′ = R(a, a, a, a, a) and then t ′ ∈ I . Then the
first subgoal can also be mapped to t ′, hence t is not critical.

Next, we show that deciding whether crit(S) ∩ crit(V ) = ∅ is at least as hard as deciding whether a tuple t is not
critical for a query Q. Indeed, if we define V = Q, and S( ):−t (i.e. S simply checks for the presence of the tuple t),
then t /∈ crit(Q) iff crit(S) ∩ crit(V ) = ∅. For the former we have claimed that it is Π

p

2 -hard. In summary:

Theorem 4.11. The problem of deciding whether a conjunctive query S is secure with respect to a set of conjunctive
views V1, . . . , Vk is Π

p

2 -complete (query complexity).

A practical algorithm. For practical purposes, one can check crit(S) ∩ crit(V̄ ) = ∅ and hence S | V̄ quite efficiently.
Simply compare all pairs of subgoals from S and from V̄ . If any pair of subgoals unify, then ¬S | V̄ . While false
positives are possible, they are rare: this simple algorithm would correctly classify all examples in this paper.

4.3. Proof of the fundamental theorems

The technique used in the proof of Theorems 4.5 and 4.8 is of independent interest, and we present it here. Through-
out this subsection we will fix the domain D and denote the set of tuples with tup(D) = {t1, . . . , tn}. Recall our notation
from Section 3: x1 = P[t1], . . . , xn = P[tn]. Hence, a probability distribution P is given by a set of numbers x̄ ∈ [0,1]n.

The boolean case, single view. We first prove both theorems for the case of boolean queries; moreover, we will
consider a single view, rather than a set of views. Given a boolean query Q, we denote by P[Q] the probability that
Q is true on a randomly chosen database instance. Recall from Eqs. (1) and (2) that this probability is given by:

P[Q] =
∑

{I∈inst(D)|Q(I)=true}
P[I ],

P[I ] =
∏

ti∈I

xi ·
∏

tj /∈I

(1 − xj ). (5)

Therefore P[Q] is given by a polynomial in the variables x1, . . . , xn, which we denote fQ(x1, . . . , xn) or fQ(x̄).

Example 4.12. Let D = {a, b}, and consider the boolean query:

Q():−R(a, x),R(x, x).

In this case tup(D) = {t1, t2, t3, t4}, where t1 = R(a, a), t2 = R(a, b), t3 = R(b, a), and t4 = R(b, b). Then Q can be
written as the following DNF formula:

Q = t1 ∨ (t2 ∧ t4).

To compute fQ one enumerates all 16 database instances I ⊆ tup(D). Q is true on 12 of them: {t2, t4}, {t2, t3, t4}, . . . .
For each of them we apply Eq. (5). This results in a sum of 12 expressions:

fQ = (1 − x1)x2(1 − x3)x4 + (1 − x1)x2x3x4 + · · · .
After simplification we obtain: fQ = x1 + x2x4 − x1x2x4. Let Q′:−R(b, a) (so that fQ′ = x3), and consider the
boolean formula Q∧Q′. The polynomial fQ∧Q′ is equal to fQ × fQ′ , i.e. (x1 + x2x4 − x1x2x4)x3 because Q and Q′
depend on disjoint sets of tuples.
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Before we prove the two theorems we notice that query-view security for boolean queries can be restated as follows.
Given boolean queries S and V , S |P V iff:

fS∧V (x̄) = fS(x̄) × fV (x̄) (6)

where x̄ corresponds to P. Indeed, this represents precisely Eq. (4) for one specific choice of s and v, namely s = true
and v = true. One can show that if Eq. (4) holds for (true, true), then it also holds for the other three combinations,
( false, true), (true, false), ( false, false). Thus, S |P V holds precisely if (6) holds.

We now restate the two theorems for the boolean case:

Theorem 4.5. Let D be a domain, S a query, and V a view. Then: ∀x̄ ∈ [0,1]n.fS∧V (x̄) = fS(x̄)×fV (x̄) iff critD(S)∩
critD(V ) = ∅.

Theorem 4.8. Let D be a domain. If S and V are monotone boolean queries, then: ∃x̄ ∈ (0,1)n.fS∧V (x̄) = fS(x̄) ×
fV (x̄) implies ∀x̄ ∈ [0,1]n.fS∧V (x̄) = fS(x̄) × fV (x̄).

The crux of the proof relies on a close examination of the polynomials fQ. The properties we need are summarized
below. Their proofs are straightforward and are omitted:

Proposition 4.13. Let fQ = P[Q], where Q is a boolean formula in t1, . . . , tn. Then fQ is a polynomial in the variables
x1, . . . , xn with the following properties:

(1) For each i = 1, . . . , n, the degree of xi is � 1.
(2) For each i = 1, . . . , n, the degree of xi is 1 iff ti ∈ critD(Q). (In Example 4.12, critD(Q) = {t1, t2, t4} and indeed

x1, x2, x4 have degree 1, while x3 has degree 0.)
(3) If critD(Q1) ∩ critD(Q2) = ∅ then fQ1∧Q2 = fQ1 × fQ2 .
(4) Choose values in [0,1]n−1 for all variables except for one, xi : fQ becomes a polynomial of degree � 1 in xi .

Then, if Q is a monotone boolean formula, the coefficient of xi is � 0. In Example 4.12, the coefficient of x4 in
fQ is x2 − x1x2, which is always � 0 when x1, x2 ∈ [0,1]2.

(5) Let Q0 be the boolean formula obtained from Q by setting tn = false, and Q1 be the boolean formula obtained by
setting tn = true. Then fQ0 = fQ[xn = 0] and fQ1 = fQ[xn = 1]. In Example 4.12, Q0 = t1 and fQ[x4 = 0] = x1;
similarly Q1 = t1 ∨ t2 and fQ[x4 = 1] = x1 + x2 − x1x2.

We prove now Theorem 4.5 for the boolean case.

Proof. Assume first that critD(S) ∩ critD(V ) = ∅. Then fS∧V = fS × fV , by Proposition 4.13, item (3). Assume
now that ∀x̄ ∈ [0,1]n.fS∧V (x̄) = fS(x̄) × fV (x̄) holds. Then the polynomials fS∧V and fS × fV must be identical.
In particular, fS and fV cannot have a common variable xi , otherwise its degree would be 2. Hence critD(S) and
critD(V ) cannot have a common tuple (by Proposition 4.13 item (2)). �

Next we prove Theorem 4.8 for the boolean case.

Proof. Consider the polynomial gS,V = fS∧V − fS × fV . We show by induction on the number n of tuples in
tup(D) that ∀x̄ ∈ [0,1]n, gS,V (x̄) � 0. It holds trivially for n = 0. For n > 0, gS,V is a polynomial of degree � 2
in xn, and the coefficient of x2

n is negative: this follows from Proposition 4.13 item (4) and the fact that S,V

are monotone. For xn = 0, the polynomial in n − 1 variables gS,V [xn = 0] corresponds to the boolean formulas
S[tn = false], V [tn = false] (item (5) of the proposition), hence we can apply the induction hypothesis and obtain that
gS,V � 0 for xn = 0. Similarly, gS,V � 0 for xn = 1, since now it corresponds to the boolean formulas S[tn = true],
V [tn = true]. Furthermore, since gS,V has degree � 2 and the coefficient of x2

n is � 0, it follows that gS,V � 0 for
every xn ∈ [0,1]. This completes the inductive proof. Now assume that for some x̄ ∈ (0,1)n, gS,V (x̄) = 0. We will
prove that critD(S) ∩ critD(V ) = ∅. Assume by contradiction that ti ∈ critD(S) ∩ critD(V ) for some tuple ti . Then
gS,V is a polynomial of degree 2 in xi , with a negative coefficient for x2

i , which has at least one root in (0,1). It
follows that gS,V must be < 0 either in xi = 0, or in xi = 1, contradicting the fact that gS,V � 0 for all x̄ ∈ [0,1]n. �
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The boolean case, multiple views. Let V̄ = V1, . . . , Vn be n boolean views. The next step is to show that S |P V̄ for
all P iff S |P Vi for all i = 1, . . . , n and all P. For simplicity we prove this for n = 2.

Proof. For the ‘only if’ direction we prove Eq. (4) directly. To show P[S(I) = s ∧ V2(I ) = v2] = P[S(I) = s] ×
P[V2(I ) = v2] we notice:

P
[
S(I) = s ∧ V2(I ) = v2

] =
∑

v1

P
[
S(I) = s ∧ V1(I ) = v1 ∧ V2(I ) = v2

]
,

P
[
V2(I ) = v2

] =
∑

v1

P
[
V1(I ) = v1 ∧ V2(I ) = v2

]

then we use the fact that S |P (V1,V2) to complete the argument. For the ‘if’ direction, we need to check P[S(I) =
s ∧V1(I ) = v1 ∧V2(I ) = v2] = P[S(I) = s]×P[V1(I ) = v1 ∧V2(I ) = v2]. Using Theorem 4.5 for the boolean, single
view case, it suffices to check critD(S) ∩ critD(V ) = ∅ where V (I) is the boolean query V1(I ) = v1 ∧ V2(I ) = v2.
This follows from critD(V ) ⊆ critD(V1) ∪ critD(V2), and the assumption, critD(S) ∩ critD(Vi) = ∅ for i = 1,2. �
The non-boolean case. We now generalize to non-boolean queries. Given a k-ary query Q, let t1, . . . , tm be all k-
tuples over the domain D (m = |D|k). For each i = 1, . . . ,m, define Qb

i the boolean query Qb
i (I ) = (ti ∈ Q(I)); that

is, it checks whether ti is in Q. Notice that critD(Q) = ⋃
i critD(Qb

i ), and if Q is monotone then Qb
i is monotone for

i = 1, . . . ,m.
Given a domain D and probability distribution, the following is easy to check, by applying directly Definition 4.1.

For any query S and views V̄ = V1, . . . , Vk :

S |P V̄ iff ∀i, j, l.Sb
i |P V b

j,l .

Here V b
j,l denotes (Vj )

b
l . This immediately reduces both theorems to the boolean case.

5. Modeling prior knowledge

So far we have assumed that the adversary has no knowledge about the data other than the domain D and the
probability distribution P provided by the dictionary. Next we consider security in the presence of prior knowledge,
which we denote with K . Our standard for security compares Mallory’s knowledge about the secret query S before and
after publishing the views V̄ , but always assuming he knows K . In the most general case K is any boolean statement
on the database instance I . For example, it can be a key or foreign-key constraint, some previously published views,
or some general knowledge about the domain. K is thus any boolean predicate on the instance I , and we write K(I)

whenever I satisfies K . To avoid introducing new terminology, we will continue to call K a boolean query. We do
not however restrict K by requiring that it be expressed in a particular query language.

5.1. Definition and main theorem

As before we assume domain D to be fixed. K is a boolean query, while S and V̄ are arbitrary queries.

Definition 5.1 (Prior knowledge security). Let P be a probability distribution on the tuples. We say that S is secure
with respect to V̄ under prior knowledge K if for every s, v̄:

P
[
S(I) = s

∣∣ K(I)
] = P

[
S(I) = s

∣∣ V̄ (I ) = v̄ ∧ K(I)
]
.

We denote prior knowledge security by K : S |P V̄ .

Applying Bayes’ theorem reduces the above to:

P
[
S(I) = s ∧ V̄ (I ) = v̄ ∧ K(I)

] × P
[
K(I)

] = P
[
S(I) = s ∧ K(I)

] × P
[
V̄ (I ) = v̄ ∧ K(I)

]
. (7)

Both the prior knowledge and the relative security applications mentioned in Section 1 are modeled as a security
problem with prior knowledge. In the case of relative security, we take K to be the knowledge that the prior view has
some given answer.
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Theorem 4.5, which showed query-view security is equivalent to disjointness of the critical tuples, can be gen-
eralized for security with prior knowledge. We state the theorem for the boolean case, and will discuss specific
generalizations to non-boolean queries and views. The proof is deferred to Section 5.3, after a discussion of some
applications of the theorem.

Theorem 5.2. Let D be a domain, T = tup(D), and K , S, V be arbitrary boolean queries. Then K : S |P V for all
probability distributions P iff the following holds:

COND-K. There exists sets of tuples T1, T2 and boolean queries K1, K2, V1, S2 s.t.:

T1 ∩ T2 = ∅,

K = K1 ∧ K2,

S ∧ K = K1 ∧ S2,

V ∧ K = V1 ∧ K2,

critD(K1) ⊆ T1, critD(K2) ⊆ T2,

critD(V1) ⊆ T1, critD(S2) ⊆ T2.

Informally, the theorem says that the space of tuples can be partitioned into T1 and T2 such that property K is
the conjunction of two independent properties, K1 over T1 and K2 over T2. In addition, assuming K holds, S just
says something about the tuples in T2 (and nothing more about T1). Similarly, when K holds, V just says something
about T1 (and nothing more about T2).

By itself, this theorem does not result in a practical decision procedure, because it is too general. We show, however,
how it can be applied to specific applications, and in particular derive decision procedures.

5.2. Applying prior knowledge

Application 1: No prior knowledge. As a baseline check, let us see what happens if there is no prior knowledge. Then
K = true and condition COND-K says that there are two disjoint sets of tuples T1 and T2 such that critD(S) ⊆ T2
and critD(V ) ⊆ T1. This is equivalent to saying critD(S) ∩ critD(V ) = ∅, thus we recover Theorem 4.5 for boolean
queries.

Application 2: Keys and foreign keys. The notion of query-view secrecy is affected by keys and foreign-keys con-
straints K . For an illustration, consider the boolean query: S( ):−R(a, b), and the boolean view V ( ):−R(a, c). Here
a, b, c are distinct constants. We have S |P V for any P, because critD(S) = {R(a, b)} and critD(V ) = {R(a, c)} are
disjoint. But now suppose that the first attribute of R is a key. Then by knowing V we know immediately that S is
false, which is a total information disclosure, hence K : S | V does not hold.

We apply now Theorem 5.2 to derive a general criterion for query-view secrecy in the presence of key con-
straints K . Given a domain D, define the following equivalence relation on tup(D): t ≡K t ′ if t and t ′ are tuples
over the same relation, and they have the same key. In the example above, we have R(a, b) ≡K R(a, c), and
R(a, b) �≡K R(d, b) for a new constant d . Given a query Q, denote critD(Q,K) the set of tuples t s.t. there ex-
ists a database instance I that satisfies the key constraints K and Q(I) �= Q(I − {t}). The following criterion can be
proven from Theorem 5.2 and shows how to check K : S | V̄ .

Corollary 5.3. Let K be a set of key constraints, D a domain, and S, V̄ conjunctive queries. Then S |P V̄ for any P
iff ∀t ∈ critD(S,K), ∀t ′ ∈ critD(V̄ ,K), t �≡K t ′. In particular, the problem whether K : S |P V for all P is decidable,
and Π

p

2 -complete.

As a simple illustration, in the previous example, we have critD(S,K) = {R(a, b)}, critD(V,K) = {R(a, c)}, and
R(a, b) ≡K R(a, c), hence it is not the case that K : S |P V for all P. Foreign keys can be handled similarly, however
the corresponding decidability and complexity result holds only when the foreign keys introduce no cycles.
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Proof (sketch). We give the proof for the boolean case only: the generalization to non-boolean queries is straightfor-
ward. The proof relies on two observations. Let U1,U2, . . . be the ≡K equivalence classes on tup(D). For each Ui ,
denote Li the predicate saying “at most one tuple from Ui can be in the instance I .” For example, if Ui = {t1, t2, t3}
set

Li = (¬t1 ∧ ¬t2¬t3) ∨ (t1 ∧ ¬t2 ∧ ¬t3) ∨ (¬t1 ∧ t2 ∧ ¬t3) ∨ (¬t1 ∧ ¬t2 ∧ t3).

Then K is L1 ∧ L2 ∧ · · · . The first observation is that whenever we split K into K1 ∧ K2 as in COND-K each of
the two subexpressions must be a conjunction of some Li ’s. It follows that every equivalence class Ui intersects
either critD(K1) or critD(K2) but not both. The second observation is that there exists S2 such that critD(S2) ⊆ T2
and S ∧ K = K1 ∧ S2 iff critD(S,K) ⊆ T2. Indeed, in one direction, we notice first that if I satisfies K , then S(I) =
K1(I ∩T1)∧S2(I ∩T2) = S2(I ∩T2). Then for any t ∈ critD(S,K), there exists I satisfying K s.t. S(I) �= S(I −{t}),
hence S2(I ∩T2) �= S2((I −{t})∩T2), which implies t ∈ T2. For the other direction, define S2(I ) = K2(I )∧S(I ∩T2)

(obviously critD(S2) ⊆ T2) and let us show that S ∧ K = K1 ∧ S2. Let I be an instance s.t. (S ∧ K)(I) is true; in
particular I satisfies K , hence critD(S,K) ⊆ T2 which means S(I) = S(I ∩ T2). The claim follows from the fact that
K2(I ) is true. With these two observations the proof of the corollary is straightforward and omitted. The decidability
and complexity is shown with an argument similar to that used in Theorem 4.11. �
Application 3: Cardinality constraint. What happens if Mallory has some partial knowledge about the cardinality of
the secret database? This is quite common in practice. For example, the number of patients in a hospital is likely to be
between 100 or 1000, but not 2 and not 1,000,000. In this case K is a cardinality constraint, such as “there are exactly
n tuples in I” or “there are at most n tuples” or “at least n tuples.” Surprisingly, there are no secure queries when the
prior knowledge involves any cardinality constraints! This follows from Theorem 5.2 since K cannot be expressed as
K1 ∧K2 over disjoint sets of tuples, by a simple counting argument, except for the trivial case when T1 = ∅ or T2 = ∅.
Hence, no query is perfectly secret with respect to any view in this case, except if one of them (S or V ) is trivially true
or false.

Application 4: Protecting secrets with knowledge. Sometimes prior knowledge can protect secrets! Take any queries
S, V̄ , and assume that S is not secure with respect to V̄ . Suppose now that we disclose publicly the status of every
tuple in critD(S) ∩ critD(V̄ ). That is, for each common critical tuple t we announce whether t ∈ I or t /∈ I . If we
denote with K this knowledge about all common critical tuples, then Theorem 5.2 implies that K : S |P V̄ for any P,
as we show below. For a simple illustration, assume S( ):−R(a,−) and V ( ):−R(−, b). They are not secure because
critD(S) ∩ critD(V ) = {R(a, b)}. But now suppose we disclose that the pair (a, b) is not in the database, R(a, b) /∈ I ,
and call this knowledge K . Then K : S |P V . The same is true if we publicly announce that R(a, b) is in the database
instance. We prove this formally next:

Corollary 5.4. Let K be such that ∀t ∈ critD(S) ∩ critD(V̄ ), either K |= t ∈ I , or K |= t /∈ I . Then, for every P,
K : S |P V̄ .

Proof. We will prove this for two boolean queries S,V only: the general case follows easily. Let T1 = critD(S) ∩
critD(V ), and T2 = tup(D) − T1. Let K1 = K , K2 = true, S2 = S, V1 = V ∧ K . Then the conditions of Theorem 5.2
are satisfied, hence K : S |P V for any P. �
Application 5: Prior views. Suppose Alice already published a view U (there may have been leakage about S, but
she decided the risk was acceptable). Now she wants to publish another view V , and she wonders: will I leak any more
information about S?

Using Theorem 5.2 we give below a decision procedure for the case of conjunctive queries, but only when U is a
boolean query. This is a limitation, and due to the fact that both sides of the formula (7) are linear in S and V̄ , but
not in K : this made it possible to generalize statements from boolean queries S,V to arbitrary ones, but not for K .
To simplify the statement, we also restrict S and V to be boolean: these, however, can be generalized to arbitrary
conjunctive queries.
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Corollary 5.5. Let U,S,V be boolean conjunctive queries. Then U : S |P V for every probability distribution P iff
each of the queries can be split as follows:

U = U1 ∧ U2,

S = S1 ∧ S2,

V = V1 ∧ V2.

Such that the sets critD(U1)∪ critD(S1)∪ critD(V1) and critD(V2)∪ critD(S2)∪ critD(V2) are disjoint, and U1 ⇒ S1
and U2 ⇒ V2. Hence, U : S |P V is decidable.

The proof follows rather directly from Theorem 5.2 and is omitted. For a simple illustration consider:

U :−R1(a, b,−,−),R2(d, e,−,−),

S:−R1(a,−,−,−),R2(d, e, f,−),

V :−R1(a, b, c,−),R2(d,−,−,−).

Here S is not secure with respect to either U or V . However, U : S | V . By giving out U we already disclosed
something about S, namely R1(a,−,−,−). By publishing V in addition we do not further disclose any information.

5.3. Proof of Theorem 5.2

Proof (sketch). For boolean queries, K : S |P V can be expressed as follows:

P[S ∧ V ∧ K] × P[K] = P[S ∧ K] × P[V ∧ K].
Using the notation fQ for a boolean query Q (see Section 4.3), this becomes:

fS∧V ∧K(x̄) × fK(x̄) = fS∧K(x̄) × fV ∧K(x̄). (8)

We need to prove that (8) holds for any x̄ ∈ [0,1]n iff COND-K holds. For that we need the properties of fQ in
Proposition 4.13 plus three more. Call any multi-variable polynomial g(x̄) of degree � 1 in each variable a boolean
polynomial if ∀x̄ ∈ {0,1}n, g(x̄) is either 0 or 1. Clearly, any polynomial fQ is a boolean polynomial.

Proposition 5.6.

(1) If g is a boolean polynomial then there exists a unique boolean formula Q s.t. g = fQ.
(2) Let Q be a boolean formula, and suppose fQ is the product of two polynomials fQ = g × h. Then there exists a

constant c �= 0 s.t. both cg and 1
c
h are boolean polynomials.

(3) If fQ = fQ1 × fQ2 then critD(Q1) ∩ critD(Q2) = ∅.

We can now prove the equivalence of (8) to COND-K. Assume (8) holds for every x̄ ∈ [0,1]n, i.e. this is an identity
of polynomials. Then fK divides fS∧K × fV ∧K . Hence fK = g × h where g divides fS∧K and h divides fV ∧K . By
Proposition 5.6 we can assume that g,h are boolean, hence fK = fK1 × fK2 for some boolean formulas K1,K2, and
moreover we have K = K1 ∧ K2 and critD(K1) ∩ critD(K2) = ∅. Since fK1 divides fS∧K , we can write the latter as
fS∧K = fK1 × fS2 , for some boolean query S2, which implies S ∧ K = K1 ∧ S2. Similarly, fK2 divides fV ∧K , hence
we can write the latter as fV ∧K = fV1 × fK2 for some query V1. Finally, substituting in (8) and simplifying with
fK1 × fK2 we get fS∧V ∧K = fV1 × fS2 . It follows that fV1 and fS2 have no common variables, hence critD(V1) ∩
critD(S2) = ∅. Define T1 = critD(K1) ∪ critD(V1) and T2 = tup(D) − T1. Then it follows that critD(K2) ⊆ T2 and
critD(S2) ⊆ T2, completing the proof of COND-K.

For the other direction, assume COND-K is satisfied and let us prove (8). We have:

fS∧V ∧K = f(K1∧V1)∧(K2∧S2) = fK1∧V1 × fK2∧S2 ,

fK = fK1 × fK2 ,

fS∧K = fK1 × fS2∧K2 ,

fV ∧K = fV1∧K1 × fK2

and (8) follows immediately. �
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5.4. Encrypted views

Encryption is increasingly being used to protect both published data and data stored in the DBMS. In many scenar-
ios [2,17,21], data is encrypted at the attribute level, and analyzing the disclosure of these somewhat unusual “views”
is an important open research question.

Encrypted views can be modeled in our framework. One way is to model an encrypted view of a relation as the
result of applying a perfect one-way function f to each attribute. Because our goal is to study the logical security
of a view, we assume idealized properties of the encryption primitive: namely that given f (x) it is impossible to
recover x, and that f is collision free. Under these assumptions an encrypted view is essentially an isomorphic copy
of the original relation. Clearly, such a view provides information that can be used to answer queries. For example,
Q1( ):−R(x, y),R(y, z), x �= z, is answerable using such a view. Query Q2( ):−R(a, x) is not answerable using the
view, but substantial information is nevertheless leaked.

The encrypted view reveals the cardinality of the relation R. It follows from this fact and results in Section 4.1.1 on
query-view security and answerability that no secret query S is secure with respect to an encrypted view V . However,
the definition of leakage given in Section 6 can be applied to encrypted views too, and can be used to distinguish
between cases where the information disclosure is minute and cases where leakage is substantial.

6. Relaxing the definition of security

Our standard for query-view security is very strong. It classifies as insecure query-view pairs that are considered
secure in practice. In many applications we can tolerate deviations from this strong standard, as long as the deviations
are not too large. We discuss briefly two directions for a more practical definition of security. The first strategy is a
numerical measure of information disclosure, and the second, based on [7], uses a substantially different assumption
of database probabilities which effectively ignores certain minute disclosures.

6.1. Measuring disclosures

We discuss here a measure of information disclosure that attempts to quantify the amount by which a query and
view depart from our definition of security. Ours is one possible choice of measure; others are definitely possible. The
main objective is to show that the theoretical concepts and results presented in this work can be employed to evaluate
information disclosure in practical settings. We restrict our discussion to the case of no prior knowledge.

We will define a measure of positive information disclosure. This is easier to analyze, and far more impor-
tant in practice than negative information disclosure. An example of the former is whether “John Johnson” has
“cardiovascular disease”; and example of the latter is whether “John Johnson” does not have “cardiovascular dis-
ease.” We will restrict the queries S and V̄ to be monotone queries, and will study atomic statements given by
inclusions s ⊆ S(I) and v̄ ⊆ V̄ (I ), which are monotone in I .

Our definition of leakage is the following:

leak(S, V̄ ) = sup
s,v̄

P[s ⊆ S(I) | v̄ ⊆ V̄ ] − P[s ⊆ S(I)]
P[s ⊆ S(I)] . (9)

The goal of a user wishing to publish V̄ while not disclosing S is to ensure that leak(S, V̄ ) � 1. This will ensure
that P[s ⊆ S(I)] can increase only very little after publishing the view, giving Mallory a negligible amount of positive
information. S |P V̄ iff leak(S, V̄ ) = 0.

For a given s, v̄, denote Ss(I ) and Vv̄ the boolean queries s ⊆ S(I) and v̄ ⊆ V̄ (I ). Let Ts,v̄ = critD(Ss)∩critD(Vv̄).
We know from Theorem 4.5 that, when Ts,v̄ = ∅, then the difference in Eq. (9) is 0 for this pair of s and v̄. Our
analysis of the leakage is based on the probability of I having some tuple in Ts,v̄ . Let us denote Ls,v̄(I ) the predicate
I ∩ Ts,v̄ �= ∅, and Ks,v̄ = ¬Ls,v̄ . Then by Corollary 5.4, K : Ss |P Vv̄ , and we can prove:

Theorem 6.1. Suppose that there exists some ε < 1 such that for all s and for all v̄:

P
[
Ls,v̄(I )

∣∣ Ss(I ) ∧ Vv̄(I )
]
< ε.
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Then:

leak(S, V̄ ) � ε2

1 − ε2
.

Example 6.2 (Minute leakage). We will illustrate with the example in Table 1. We abbreviate here with E(n,d,p) the
table Employee(name,department,phone). Consider the view V (d):−E(n,d,p) and the query S(n,p):−E(n,d,p)

(it corresponds to S2 in the table). To simplify the discussion we consider the case when s and v consists of a
single tuple. First, s = (dname, dphone) is a secret name–phone pair, and v = (ddept) is some department that we pub-
lish. The boolean queries are Vv(I ) = (v ∈ V (I)) and Ss(I ) = (s ∈ S(I)). We have critD(Vv) = {(−, ddept,−)},
critD(Ss) = {(dname,−, dphone)}, and Ts,v = {(dname, ddept, dphone)}. The conditional probability P[L | Ss ∧ Vv] is in
this case P[L ∧ Ss ∧ Vv]/P[Ss ∧ Vv] = P[L]/P[Ss ∧ Vv]. This corresponds to ε in Theorem 6.1. For example, as-
suming a uniform probability distribution P[t] = p for all t ∈ tup(D), and denoting n1, n2, n3 the number of names,
departments, and phone numbers in the dictionary, we have P[L] = p and P[Ss ∧Vv] = p+(1−p)(1−(1−p)n

2−1) ×
(1 − (1 − p)n1n3−1) ≈ p2n1n2n3. It follows that P[L | Ss ∧ Vv] ≈ 1/(pn1n2n3) = 1/m, where m is the expected
cardinality of an instance I . It can be shown that P[L | Ss ∧ Vv] is small for any sets s, v, implying that ε in Theo-
rem 6.1 is small. Hence the information disclosure about S by publishing V is minute. Example (3) in Table 1 can be
explained similarly.

Example 6.3 (Collusions). Continuing the example, consider now the view V (n, d):−E(n,d,p) and the query
S(n,p):−E(n,d,p) (they correspond to S2,V2 in the table). We will still restrict s and v to a single tuple. The inter-
esting case here is when s = (dname, dphone) and v = (dname, ddept). As before we obtain Ts,v = {(dname, ddept, dphone)}.
The conditional probability P[L | Ss ∧Vv] = P[L]/P[Ss ∧Vv] is slightly larger than in the previous example, because
P[Ss ∧ Vv] has decreased. The ε in Theorem 6.1 increases, suggesting more information disclosure. This is to be
expected, since now the view discloses information about the names in the secret query.

Consider now the effect of the collusion between the view V and the view V ′(d,p):−E(n,d,p) (this is V ′
2 in

Table 1). The interesting case to consider here is s = (dname, dphone), v = (dname, ddept), v′ = (ddept, dphone). We still
have Ts,v,v′ = {(dname, ddept, dphone)}. Now, P[L | Ss ∧ Vv ∧ V ′

v′ ] = P[L]/P[Ss ∧ Vv ∧ V ′
v′ ] is even smaller, because

P[Ss ∧ Vv ∧ V ′
v′ ] is smaller. The amount of leakage given by Theorem 6.1 is now larger.

6.2. Subsequent work on practical query-view security

Following the original publication of this work [22], the authors, along with Nilesh Dalvi, analyzed query-view
security under a substantially different probabilistic model which can permit a relaxed notion of security termed
practical security. For comparison purposes, we provide here a brief overview of the setting and main results for this
approach, referring the reader to [7] for a full treatment of the topic.

To capture practical query-view security we adopt a new probability distribution over databases. In this model,
individual tuples have a uniform probability of occurring in the database, but the probability of each tuple t is now
such that the expected size of the relation instance R is a given constant S (different constants may be used for different
relation names). As the domain size n grows to ∞, the expected database size remains constant. Hence, in the case
of directed graphs (i.e. a single, binary relation R), the probability that two given nodes are connected by an edge is
S/n2. Denoting by μn[Q] the probability that a boolean query Q is true on a domain of size n, our goal is to compute
μn[Q | V ] as n → ∞.

We propose as a definition of practical security limn μn[Q | V ] = 0. This is justified as follows. The adversary
faces a large domain. For example, if he is trying to guess whether “John Smith” is an employee, then he has only
a tiny probability of success: 1/n where n is the size of the domain. On the other hand, the size of the database is
much smaller, and the adversary often knows a good approximation. This definition relaxes the previous definition of
security for sensitive queries Q.

In [7] we show that limn μn[Q | V ] for conjunctive queries Q and V always exists and to provide an algorithm
for computing it. The key technical lemma is to show that, for each conjunctive query Q there exists two numbers
c, d s.t. μn[Q] = c/nd + O(1/nd+1). Moreover, both d and c can be computed algorithmically. Since μn[Q | V ] =
μn[QV ]/μn[V ], the main result follows easily.

With this condition of practical security in mind we distinguish the following cases:
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Perfect query-view security. This is the condition analyzed in this paper. V | Q can be rewritten as μn[Q | V ] =
μn[Q] for all n large enough. Here V provides no information about Q.

Practical query-view security. limn→∞ μn[Q | V ] = 0. This implies that the difference of probabilities is zero in the
limit (since limn μn[Q] = 0 for all practical purposes). For finite n, V may in fact contain some information
for answering Q, but it is considered negligible in this model.

Practical disclosure. 0 < limn→∞ μn[Q | V ] < 1. Disclosure is non-negligible in this case. Our main result allows
us to compute this quantity in terms of expected database size S.

7. Conclusion

We have presented a novel definition of security for analyzing the information disclosure between relational views
and queries. This definition of security captures very subtle partial disclosures, and has some surprising consequences,
highlighting disclosures in query-view pairs commonly considered safe. Our analysis includes tight complexity
bounds for deciding query-view security of conjunctive queries and views under tuple-independent probability distri-
butions. We also provide useful results for disclosure relative to pre-existing knowledge an adversary may possess,
and we adapt our results to a number of practical scenarios.

This security standard is best viewed as a theoretical ideal, and is probably too strong a criterion for many practical
applications. Therefore, an important future direction is too extend the present investigation to a relaxed security stan-
dard. We have proposed two initial directions towards this goal in Section 6. The other major direction for extending
this work is to accommodate more complex probability distributions.
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Appendix A. Proof of Theorem 4.10

Here we prove Theorem 4.10: The problem of deciding, for conjunctive query Q, whether a tuple t /∈ crit(Q) is
Π

p

2 -hard.

A.1. Some notations

If Q(I) is true, then there exists a homomorphism h :Q → I . We consider only instances I s.t. Q(I) is true, and
we will assimilate such an instance with the pair (I, h). We say that t is not necessary for (I, h) if there exists a
homomorphism hnew :Q → I − {t}. The condition “t is not necessary for Q” is equivalent to:

∀(I, h).∃hnew.
(
hnew :Q → I − {t}) is a homomorphism. (A.1)

Given an instance (I, h), we say that t is necessary for (I, h) if there exists a homomorphism hnew :Q → I − {t}.
Condition (A.1) says that t is necessary for every instance (I, h). We will only consider in the sequel only instances
(I, h) where I contains the tuple t : if I does not contain t , then t is trivially necessary for I (take hnew = h).

A.2. Restricting the search

We show here that it suffices to check (A.1) on specific instances (I, h): minimal and fine. Moreover, for Π
p

2
completeness it suffices to consider certain multigoal queries Q.

Minimal instances. In (A.1) is suffices to range (I, h) only over surjective homomorphisms h. We say that (I, h) is
minimal.
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Fine instances. It suffices to restrict the range to fine (I, h)’s only, defined as follows. Given (I, h), denote G =
{g1, . . . , gk} = h−1(t) (the set of subgoals mapped to t), V = Var(G), and W = Var(Q)−V . Then (I, h) is called fine
if ∀x, y ∈ W , x �= y ⇒ h(x) �= h(y). In other words, in a fine database each variable x in Q is mapped to a distinct
constant, unless x is part of a subgoal mapped to t . We denote cx the constant corresponding to the variable x.

Proposition A.1. If t is necessary for any instance, then t it is necessary for some fine instance. In other words,
in (A.1) it suffices to restrict (I, h) to fine instances.

Proof. We prove the counterpositive: if it is not necessary for fine instances then it is not necessary. Let (I, h) be
an instance, G,V , and W defined as above. Define the following instance I ′: dom(I ′) = dom(t) ∪ W , h′ : Var(Q) →
dom(I ′) is h′(x) = h(x) for x ∈ V and h′(x) = x for x ∈ W , and the tuples in I ′ are precisely h′(Q). Clearly I ′ is fine,
hence t is not necessary for I ′: there exists a homomorphisms h′

new :Q → I ′ − {t}. Define the function f : dom(I ′) →
dom(I ) by f (c) = c if x ∈ dom(t) and f (x) = h(x) if x ∈ W . Clearly f is a homomorphism and f ◦h′ = h. To prove
that t is not necessary for I , we use f ◦ h′

new, which is a homomorphism from Q to f (I ′ − {t}). It remains to show
that f (I ′ − {t}) = f (I ′) − {t}, because this implies that f ◦ h′

new is a homomorphism from Q to I − {t}. For that we
need to prove that f (t ′) = t ⇒ t ′ = t . Suppose f (t ′) = t , and t ′ �= t . The t is (the image under h′ of) a subgoal g in Q,
and t = f (t ′) = h(g). But then g ∈ G, hence t ′ = h′(g) = h(g) = t , contradiction; hence f −1(t) = {t}. �

If (I, h) is a fine instance then for each variable x, h(x) is either some constant in t (and this happens only if x

occurs in a subgoal g that is mapped to t), or h(x) is some unique constant cx .

Multigoal queries. Let k be a fixed number. Consider a query Q and tuple t s.t. the number of subgoals in Q that
unify with t is at most k. Then the problem whether t is not necessary for Q is in NP. Indeed, it suffices to do the
following, for every non-empty set of goals G that unify with t : define h to map all subgoals in G to t (h is unique,
when it exists); extend h to the other variables x by defining h(x) = cx , where each cx is a distinct constant; check
that h−1(t) is indeed G (it might be larger); if so, then check that there exists hnew :Q → I −{t} (this test is in NP). If
all answers are ‘yes,’ then t is not necessary for Q. This procedure is in NP because there are only a constant number
(2k − 1) sets G.

It follows that in the proof of Theorem 4.10 we need to ensure that many subgoals in Q may be mapped to t .

A.3. The reduction

To prove Theorem 4.10 we reduce the ∀∃-3CNF problem to (A.1). Recall that this problem consists of checking
whether a formula of the following form is true:

Φ = ∀X1 . . .∀Xm∃Y1 . . .∃Yn.C

where:

C = C1 ∧ · · · ∧ Cp.

Here X1, . . . ,Xm,Y1, . . . , Yn are propositional variables, and C1, . . . ,Cp are disjunctive clauses involving at most
three variables. Examples of clauses are X3 ∨ ¬X7 ∨ Y2, and ¬X1 ∨ Y8 ∨ ¬Y9.

Formally, denote truth assignments with θX : {X1, . . . ,Xm} → {0,1} and θY : {Y1, . . . , Yn} → {0,1}. Then the va-
lidity problem is expressed by:

∀θX.∃θY .
(
(θX ∪ θY )(C) is true

)
. (A.2)

Notice that when m = 0 then this is the 3CNF satisfiability problem.
An inspection of (A.1) and (A.2) imposes the following correspondences.

• Truth assignments θX correspond to instances (I, h).
• Truth assignments θY correspond to hnew.
• The fact that (θX ∪ θY )(C) is true corresponds to hnew being a homomorphism.

In the sequel we assume Φ to be given and construct Q, t s.t. (A.2) ⇔ (A.1).
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A.4. The tuple

The tuple is:

t = R(0,1,2,3,3).

Here 0, 1, 2, 3 are four arbitrary, distinct constants; 3 occurs twice.

A.5. The query

The query is:

Q:−XSubgoals,BackupSubgoals,YSubgoals,CSubgoals.

All four subqueries have many subgoals, and share several variables, but they have disjoint sets of relation names,
which allows us to reason about them independently. They will be described in the following sections. Recall that for
any instance (I, h) and any variable x ∈ Var(Q), either h(x) ∈ {0,1,2,3} or h(x) = cx , where cx is a unique constant
(i.e. distinct from 0, 1, 2, 3 and from all other constants cy ).

We call some of the variables in Q backup variables, and denote them vb . In general there is a 1-to-1 correspon-
dence between a normal variable v and a backup variable vb , but there are exceptions.

A.6. XSubgoals

There is a variable z (‘zero’) and m variables x1, . . . , xm, plus many anonymous variables, denoted −: each anony-
mous variable occurs exactly once. The preamble is (we also include the tuple t for readability):

XSubgoals:−R(z,u, v, e1, e2),R(x1,−,−,−,−), . . . ,R(xm,−,−,−,−),

R
(
zb,wb,wb, eb

1, eb
2

)
,R

(
xb

1 ,wb
1,wb

1,−,−)
, . . . ,R

(
xb
m,wb

m,wb
m,−,−)

,

t = R(0,1,2,3,3).

Every variable in the second row is the backup variable of the corresponding variable in the first row. This defines
a 1-to-1 correspondence except for u ↔ wb and v ↔ wb.

We classify an instance (I, h) for Q as follows. Recall that we restrict our discussion to instances that are minimal
and fine.

Good instances. We call (I, h) good if h(z) = 0.
Bad instances. We call (I, h) bad if h(z) �= 0.

The relation R only occurs in XSubgoals, and not in any of the other parts of the query. The purpose of XSubgoals
is to establish a correspondence between good instances (I, h) and truth assignments to the variables X1, . . . ,Xm.
The correspondence is as follows

• Xi = false iff h(xi) = 0,
• Xi = true iff h(xi) �= 0.

Moreover, the truth assignment to X1, . . . ,Xm determines a good instance (I, h) up to isomorphism. To see that,
let us examine all tuples in RI , i.e. the relation R in the instance I . Since h is surjective, all these tuples are images
of subgoals in XSubgoals, i.e. RI has at most as many tuples as subgoals there are in XSubgoals, the question is
which subgoals are mapped to the same tuple(s). Start by examining the second row in the definition of XSubgoals.
R(zb,wb,wb, eb

1, eb
2) cannot be mapped to the tuple t = R(0,1,2,3,3) because it has the same variable wb on posi-

tions 2 and 3. It follows that its variables are mapped to distinct constants, i.e. h(zb) = czb etc., because (I, h) is fine.
Similarly, all the other subgoals in the second row are mapped to distinct tuples in RI . This results in m + 1 tuples
in RI , independently of the truth assignment for X1, . . . ,Xm. Now consider the first row. We have h(z) = 0 (because
(I, h) is good), and this can only be allowed if h maps R(z,u, v, e1, e2) to R(0,1,2,3,3) (since (I, h) is fine); again,
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this still does not depend on the truth assignment. Finally, each subgoal R(xi,−,−,−,−) is mapped as follows: if
Xi = false, i.e. h(xi) = 0, then the subgoal must be mapped to R(0,1,2,3,3), otherwise, it is mapped into a fresh
tuple, distinct from all others. Thus, if the instance is good (h(z) = 0), then it is determined up to isomorphism by the
set of variables xi s.t. h(xi) = 0, i.e. it is determined up to isomorphism by the truth assignment to X1, . . . ,Xm.

Notice that, except for the tuple t = R(0,1,2,3,3), all the tuples in RI have distinct constants on the last two
positions, i.e. are of the form R(−,−,−, a, b) with a, b distinct constants. Examine now the variables e1, e2, in the
first subgoal. For a good instance we have h(e1) = h(e2) = 3, and, whenever hnew exists, then hnew(e1) �= hnew(e2),
since now the tuple t is removed.

Before proving any formal properties for XSubgoals we define BackupSubgoals.

A.7. BackupSubgoals

BackupSubgoals contains three kinds of subgoals.
First, there is one subgoal for each backup variable vb:

BackupSubgoals:− . . . ,Rvb

(
vb

)
, . . . .

The relation name Rvb is unique for the variable vb and not used anywhere else. It follows that for every instance
(I, h) and homomorphism hnew :Q → I − {t} the following holds (since (I, h) is minimal, i.e. h is surjective):

hnew
(
vb

) = h
(
vb

)
.

That is, backup variables remain unchanged.
Second, there are two subgoals for every variable v that has a unique backup variable vb:

BackupSubgoals:− . . . ,Rv(v),Rv

(
vb

)
, . . . .

Again, the relation name Rv is unique. If two variables v, v′ have the same backup variable vb then we have two
subgoals for each of the pairs (v, vb) and (v′, vb). But we do not include the y variables (to be introduced later), which
have two backup variables yf , yt .

It follows that for every instance (I, h) and homomorphism hnew :Q → I − {t} the following holds:

hnew(v) = h(v) ∨ hnew(v) = h
(
vb

)
.

Third, we treat the variables y1, . . . , yn special, since each variable yi that has two backup variables y
f
i , yt

i , i =
1, . . . , n. Namely, for each yi we introduce the following subgoals:

BackupSubgoals:− . . . ,Ryi
(yi),Ryi

(
yt
i

)
,Ryi

(
y

f
i

)
, . . . .

It follows:

hnew(yi) = h(yi) ∨ hnew(yi) = h
(
y

f
i

) ∨ h(yi) = h
(
yt
i

)
.

We will show, however, that for any good instance (I, h) we have hnew(yi) �= h(yi), hence one of the latter two
cases must hold.

The following two lemmas state the main property about XSubgoals.

Lemma A.2. Let (I, h) be a good instance. Then:

• There exists a homomorphism hnew : XSubgoals ∪ BackupSubgoals → I − {t} s.t.:
◦ If h(xi) = 0 then hnew(xi) = h(xb

i ).
◦ If h(xi) �= 0 then hnew(xi) = h(xi).

• Any homomorphism hnew : XSubgoals ∪ BackupSubgoals → I − {t} satisfies the following:
◦ hnew(z) = h(zb) �= h(z).
◦ hnew(e1) �= hnew(e2).
◦ If h(xi) = 0 then hnew(xi) = h(xb

i ).
◦ If h(xi) �= 0 then hnew(xi) = h(xi) or hnew(xi) = h(xb

i ).
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Notice that we cannot prevent hnew(xi) to be h(xb
i ) in the last case. Finally, we have:

Lemma A.3. If (I, h) is a bad instance, then there exists a homomorphism hnew : XSubgoals ∪ BackupSubgoals →
I − {t} s.t.

• If h(xi) = 0 then hnew maps the subgoal R(xi,−,−,−,−) to h(R(xb
i ,−,−,−,−)). In particular, hnew(xi) =

h(xb
i ).

• If h(xi) �= 0 then hnew maps the subgoal R(xi,−,−,−,−) to h(R(xi,−,−,−,−)). In particular, hnew(xi) =
h(xi).

• If g is any other subgoal than the two above, then hnew(g) = h(g).

A.8. YSubgoals

For each i = 1, . . . , n there are 3 variables corresponding to Yi : yi and two backup variables y
f
i , yt

i . YSubgoals is:

YSubgoals:−Ry1(z, y1), . . . ,Ryn(z, yn),

Ry1

(
zb, y

f

1

)
, . . . ,Ryn

(
zb, y

f
n

)
,

Ry1

(
zb, yt

1

)
, . . . ,Ryn

(
zb, yt

n

)
.

Here z is the “zero” variable from the XSubgoals. This piece of the query ensures the correspondence between hnew

and truth assignments θY for Y1, . . . , Yn, as follows. Consider a good instance (I, h). Then none of h(y1), . . . , h(yn)

can be any of the constants 0, 1, 2, or 3 (since we assume that I is a fine instance), hence they are fresh, distinguished
constants. Consider now a homomorphism hnew :Q → I − {t}. The first subgoal Ry1(z, y1): hnew cannot map it to

the same tuple as h, because hnew(z) �= h(z), hence it has to map it to (the image under h of) either Ry1(z
b, y

f

1 ) or

Ry1(z
b, yt

1). Hence, we have either hnew(y1) = h(y
f

1 ) or hnew(y1) = h(yt
1). In the first case we set θY (Y1) = 0; in the

second, θY (Y1) = 1. Similarly for y2, . . . , yn. Conversely, to any truth assignment θY we associate an hnew defined on
y1 to be hnew(y1) = h(y

f

1 ) if θY (Y1) = 0 and hnew(y1) = h(yt
1) if θY (Y1) = 1.

Consider now a bad instance (I, h), i.e. h(z) = cz. Then we may define hnew(z) = h(z), and also hnew(yi) = h(yi)

for every i = 1, . . . , n.

A.9. CSubgoals

Recall that C = C1 ∧ · · · ∧ Cp is a 3CNF formula. Then:

CSubgoals:−G1, . . . ,Gp.

Each subquery Gi corresponds to a clause Ci , for i = 1, . . . , p. We describe them next. To reduce notation clutter,
we illustrate G1 for C1, and will do this on several examples: the general case follows then easily. We write C1 as an
implication, with the X̄ variables on the right and the Ȳ variables on the left, as in the example below:

C1 = ¬X2 ∧ ¬X4 ∧ X6 ∧ X8 �⇒ ¬Y3 ∨ Y5 ∨ ¬Y7.

Normally C1 must have at most 3 variables. We will use more than 3 variables for the examples in the sequel, for
illustration purposes only. The case with at most 3 variables follows easily.

Each clause must have at least one Y variable: otherwise Φ is false. It follows that each clause has at most 2 X

variables.

A.10. Clauses without X’s

Here:

C1 = ¬Y3 ∨ Y5 ∨ ¬Y7

and the corresponding subgoal is:
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G1:−S1(z, y3, y5, y7),

S1
(
zb, y

f

3 , y
f

5 , y
f
7

)

. . . only the subgoal S1
(
zb, yt

3, y
f

5 , yt
7

)
is missing

S1
(
zb, yt

3, y
t
5, y

t
7

)
.

Let (I, h) be a good instance. Consider a truth assignment θY for Y1, . . . , Yn and the corresponding hnew :Q →
I − {t}. Then hnew is a homomorphism iff θY (C1) is true. This is because hnew cannot map the first subgoal to the
same tuple as h, since hnew(z) �= h(z). Instead it has to map it to one of the seven tuples corresponding to the other
seven subgoals, under h. This is possible if and only if θY (C1) is true. In addition it is easy to see that hnew can map
the other seven subgoals to the same tuples as h.

Let (I, h) be a bad instance. Then hnew can be constructed to be identical to h on G1.

A.11. Clauses with X variables

In this case we write C1 like this:

C1 = (A �⇒ ¬Y3 ∨ Y5 ∨ ¬Y7)

and define:

C1Y = ¬Y3 ∨ Y5 ∨ ¬Y7.

Then the subquery has the following form:

G1:−H1,K1.

Here H1 depends on C1Y and is somewhat similar to the subquery G1 for the case without X̄ variables, while
K1 depends on A. Both will be explained below. The role of K1 is to define a certain variable, a, and its backup,
ab , with the following two properties. Denote S the following set of subgoals: S = XSubgoals ∪ BackupSubgoals ∪
YSubgoals∪K . Below, an instance (I, h) refers to a homomorphism h :S → I . Then K will be such that the following
holds:

• If (I, h) is good and corresponds to a truth assignment θX then:
◦ If θX(A) = false, then there exists a homomorphism hnew :S → I − {t} s.t. hnew(a) = h(a).
◦ If θX(A) = true, then there exists a homomorphism hnew :S → I −{t} s.t. hnew(a) = h(ab); conversely, for any

homomorphism hnew :S → I − {t}, we have hnew(a) = h(ab) �= h(a). That is, h(ab) is in fact the only option
for hnew(a).

• If (I, h) is bad, then there exists a homomorphism hnew :S → I − {t} s.t. hnew(a) = h(a).

We call a variable a with these properties a trigger for A. The subquery K will introduce a variable a that is a
trigger. The subquery H will use the trigger variable a. We define H and K next.

A.12. H

A subgoal H is associated to a clause CY of Y variables such that the following property holds. Recall that a is a
query variable, which we later will ensure is a trigger.

Lemma A.4. Denote S = XSubgoals ∪ BackupSubgoals ∪ YSubgoals. We will assume that S includes the trigger
variable a; H has one additional variable t1 (not to be confused with the tuple t).

• Let (I, h) be a good instance, where h is a homomorphism S → I .
◦ Any homomorphism hnew :S → I −{t} s.t. hnew(a) = h(a) can be extended to a homomorphism hnew :S ∪H →

I − {t}.
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◦ Let hnew :S → I − {t} be a homomorphism s.t. hnew(a) = h(ab), and let θY be the corresponding truth assign-
ment to the variables Y1, . . . , Yn. Then hnew can be extended to a homomorphism hnew :S ∪ H → I − {t} iff
θY (CY ) is true.

• Let (I, h) be a bad instance, where h :S → I . Then any homomorphism hnew :S → I − {t} s.t. hnew(a) = h(a),
and hnew(yi) = h(yi), for i = 1, n, can be extended to a homomorphism hnew :S ∪ H → I − {t}.

The lemma establishes the desired connection between the boolean formula and the query. If θX(A) = false then
the implication A ⇒ C holds vacuously: in this case there exists a homomorphism hnew s.t. hnew(a) = h(a) (the
first trigger property), hence, by the lemma, it can be extended to H regardless of whether C is satisfiable or not. If
θX(A) = true, then the implication A ⇒ C is logically equivalent to C; in this case the only possible homomorphism
hnew is such that hnew(a) = h(ab), and it can be extended to H if and only if C is satisfiable (and the extension
corresponds to a truth assignment making C true).

Instead of a general construction, we illustrate H1 for our example clause C1Y :

H1:−S1(a, y3, y5, y7, t1, t1),

S1
(
ab, y

f

3 , y
f

5 , y
f
7 , e1, e2

)

. . . Group 1: seven subgoals, corresponding to truth assignments making C1Y true

S1
(
ab, yt

3, y
t
5, y

t
7, e1, e2

)
,

S1
(
a, y

f

3 , y
f

5 , y
f
7 , e1, e2

)

. . . Group 2: eight subgoals, corresponding to all truth assignments

S1
(
a, yt

3, y
t
5, y

t
7, e1, e2

)
,

S1
(
a, y

f

3 , y
f

5 , y
f
7 , eb

1, eb
2

)

. . . Group 3: eight subgoals, corresponding to all truth assignments

S1
(
a, yt

3, y
t
5, y

t
7, e

b
1, eb

2

)
,

S1
(
ab, y

f

3 , y
f

5 , y
f
7 , eb

1, eb
2

)

. . .Group 4: eight subgoals, corresponding to all truth assignments

S1
(
ab, yt

3, y
t
5, y

t
7, e

b
1, eb

2

)
.

Recall the variables e1, e2 from XSubgoals. They have the property that in any good instance (I, h) h(e1) =
h(e2) = 3, but for any hnew, hnew(e1) �= hnew(e2). t1 is a fresh variable, used only in the first subgoal of H1 (where it
occurs twice). Denote the first subgoal with g = S1(a, y3, y5, y7, t1, t1).

To check the lemma, let (I, h) be a good instance, and let h :S → I −{t} be a homomorphism. If we have hnew(a) =
h(a), then simply define hnew to map the goal g to (the image under h of) one of the eight subgoals in Group 2. This
is possible because these eight images have all h(e1) = h(e2) on the last two positions allowing hnew to map the two
occurrences of t1 to the same constant. All the other subgoals in H1 are mapped by hnew as follows: Group 1 goes to
(the image under h of) Group 4, Group 2 goes to Group 3, while Groups 3 and 4 remain unchanged (i.e. hnew is equal
to h here).

Suppose now that we have hnew(a) = h(ab). Then we cannot map g anywhere to (the image under h of) Group 2,
because these eight tuples have on the first position h(a), while we need h(ab). Group 3 is excluded for the same
reason. Group 4 is excluded for a different reason: the image under h of this group forms eight tuples that have
h(eb

1) �= h(eb
2) on the last two positions, while we need the same constant (because of t1, t1). Hence, our only choice

is to map g to one of the seven tuples that form the image of Group 1 under h. This is possible iff h corresponds to
one of the seven satisfying assignments θY for C1Y .

Now let (I, h) be a bad instance and consider a hnew :S → I − {t} s.t. hnew(a) = h(a) and hnew(yi) = h(yi),
i = 1,2, . . . . Then we simply extend hnew by defining hnew(t1) = h(t1): thus, hnew maps the first subgoal to the same
tuple as h. For all other subgoals, hnew either maps the to the same tuple as h, or to the corresponding backup tuple,
depending on whether hnew(e1), hnew(e2) are the same as h(e1), h(e2), or the same as h(eb

1), h(eb
2).

This completes the construction of H1. It remains to show how to enforce the semantics of the trigger a.
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A.13. K

We consider three cases, depending on A.
A = ¬X2. Before giving the definition of K , we note that the variable x2 almost plays the role of a trigger variable

in this case. More precisely, denote S = XSubgoals∪BackupSubgoals. Then let (I, h) be good, h :S → I , and θX(X2)

the corresponding truth assignment. Then the following two trigger conditions are satisfied:

• If θX(X2) = false, then h(x2) �= 0. Then we know that there exists a homomorphism hnew :S → I − {t} s.t.
hnew(x2) = h(x2).

• If θX(X2) = true, then h(x2) = 0. Then we know that there exists a homomorphism hnew :S → I − {t} s.t.
hnew(x2) = h(xb

2 ).

Unfortunately, x2 does not satisfy the third condition: when (I, h) is bad, it is not always possible to define a
homomorphism hnew :S → I − {t} s.t. hnew(x2) = h(x2). Namely when h(x2) = 0 then we cannot set hnew(x2) = 0,
since the only tuple having the value 0 is t .

To define the trigger variable a, we need to construct a much more complex set K of subgoals, where we use the
variable x2 and the properties above.

K:− N(a, x2, z, s, s) = g

N(a, x2 | xb
2 , z, e1, e2) = gbad

N(a, x2, zb, e1, e2) = gX2=true

N(ab, xb
2 , zb, e1, e2) = gX2=false

closure of all rows containing e1, e2, with eb
1, eb

2 instead.

The notation x2 | xb
2 in the second “subgoal” is an abbreviation and, in fact, denotes two subgoals one with x2, the

other with xb
2 . Consider a bad instance: then hnew must send g to h(g) (all other subgoals have e1, e2 on the last two

positions, and they are mapped by h to distinct constants), hence hnew(a) = h(a). For a good database where X2 is
true, map g to h(gX2=true): this is possible since hnew(x2) can be defined to be h(x2). So hnew(a) = h(a) in this case. In
this case we cannot prevent g to be mapped to some other subgoal, hence it is possible that hnew(a) = h(ab) �= h(a),
but we do not care. If X2 is false then map g to h(gX2=false): this is possible since now hnew(x2) = h(x2). In this
case it is not possible to map g anywhere else: gbad is excluded because hnew(z) �= h(z), gtrue is excluded because
hnew(x2) �= h(x2), and the closure subgoals are excluded because they all end in eb

1, eb
2 and h(eb

1) �= h(eb
2), so we do

not have a destination for s.
Finally, in each case we can extend the homomorphism hnew to the other subgoals, because they are closed under

variables/backup-variables combinations (see below more detailed examples of closures).
A = X2. Define:

K:− N(a, z, s, s, t, t) = g

N(a, zb, x2, z, e1, e2) = gX2=false

N(ab, zb, sb, sb, e1, e2) = gX2=true

N(a | ab, zb, x2 | xb
2 , z | zb, eb

1, eb
2) = closure(gX2=false)

N(ab, zb, sb, sb, eb
1, eb

2) = closure(gX2=true).

Here N is a fresh relation symbol, s, t are fresh variables with their backups, and e1, e2 are the variables introduced
by XSubgoals. The main subgoal is g, and the next two are denoted gX2=false and gX2=true, respectively. The fourth row
denotes eight subgoals, obtained by considering all possible combinations: we call this the “closure” of the subgoal
in row two. Similarly the last subgoal is the closure of the subgoal gX2=true. Notice that the closure subgoals end in
eb

1, eb
2 rather than e1, e2.

We check the conditions for a to be a trigger. When (I, h) is a bad instance then we can define hnew to send g

to itself: this is possible because we can take hnew(z) = h(z). In this case hnew(a) = h(a). Other mappings may be
possible, but we do not care.
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Let (I, h) be a good instance corresponding to a truth assignment making X2 false. Then define hnew to send g to
gX2=false. This is possible because h(x2) = 0 = h(z), so it suffices to define hnew(a) = h(a), hnew(s) = 0, hnew(t) = 3
(= h(e1) = h(e3)). Notice that here we cannot prevent hnew(a) to have some other value (namely h(ab)).

Finally, let (I, h) be a good instance corresponding to a truth assignment making X2 true. Here define hnew to map
g to gX2=true. This means hnew(a) = h(ab) and hnew(s) = h(sb). In this case we must also prove that for any hnew

we have hnew(a)! = h(a). This can be seen by examining other possible targets for hnew(g). It cannot be gX2=false

because we cannot map s (since h(x2)! = h(z)). It cannot be any of the closure subgoals, because we cannot map t

(since h(eb
1)! = h(eb

2)).
It remains to show that in each case hnew can also map all the other subgoals, except g. This is trivial because these

sets of subgoals are closed under all combinations of variable/backup-variable.
A = A1 ∧ A2. Here we show how to construct a trigger variable a from a1, a2:

K:−N(a,a1, a2),

N
(
a, ab

1 , a2
)
,

N
(
a, a1, a

b
2

)
,

N
(
ab, ab

1 , ab
2

)
.

If hnew(a1) �= h(a1) and hnew(a2) �= h(a2) then we must define hnew(a) = h(ab), hence hnew(a) �= h(a). In all other
cases we can define hnew(a) = h(a).
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