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Abstract-—The surjectivity of operators from a Banach space into its topological conjugate space
is important to the study of solutions of integral equations. In this paper, we derive some conditions
under which operators will be surjective. In Hilbert space case, weaker conditions are also derived.
An application to the coincidence theorem is considered.

1. INTRODUCTION

Let B be a real Banach space, B* be its topological conjugate space and (u,v) be the paring
between u € B and v € B*. Let T be an operator from B into B*. The surjectivity of T plays
an important role in the study of some subjects in nonlinear analysis such as weak solutions of
differential equations, integral equations, etc. For example, if one is interested in looking for
solutions of the Hammerstein integral equation

z(t) = /Ooo k(t,s) f(s,z(s))ds = (K Fz)(t),

it may be useful to consider F' : B = LF([0,00)) — B* = LI([0,00)) and K : B* — B** = B
for some p > 1 and ¢ such that p~' 4+ ¢~! = 1 depending on the properties of f and k. The
aim of this paper is to derive some conditions under which the operator T will be surjective, i.e.,
T'B = B*. Standard results in this direction are, for example, [1, Theorem 4.3}, {2, Theorem 12.1
and Corollary 12.1] and [3, Corollary 2]. For related results of accretive operators in Banach
spaces, we refer readers to [4] and the references therein.

In Section 2, we state and prove some surjectivity results and an application to the coincidence
theorem is considered. In Section 3, we consider the case that B is a Hilbert space. It will be
shown that the conditions imposed in Section 2 can be weakened substantially.

2. SURJECTIVITY RESULTS

The operator T : B — B* is said to be continuous on finite-dimensional subspaces if it is
continuous on every finite-dimensional subspace of B. The operator T is said to be demicon-
tinuous if it is continuous from the norm topology of B into the weak-star topology of B*. For
any subspace M of B, ju denotes the injection of M into B and j},; be the dual of jy. We use
B, (z) to denote the closed ball with center z and radius r. For any subset D of B, D denote the
closure of D.
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We now state and prove the main result of this paper.
THEOREM 2.1. Let B be a real reflexive Banach space and T : B — B* be demicontinuous.
Suppose that

(i) there exists a function a : [0,00) — [0,00) with a(0) = 0, a(r) > 0 for r > 0 and
liminf a(r) > ||Tzo|| for some zo € B such that

(2 -y Tz—Ty)l 2 flz - ylla(llz —yll)  forallz,y € B;

(if) for any finite-dimensional subspace M, ||Tz|p|| — o0 as ||z]| — o0 and z € M.
Then T is onto B*.
Proor. It suffices to show that 0 € TB. Let T' be the family of all finite-dimensional subspaces

P - R S kTN Y1 Lt ot TN L AL o~ T Lb i TV k2 .
O1 D convalilllg rg partially oraerea vy HICIUSIONn. ror €acilt i € 1, e operator 1 pf . JM 4 JM -
M — M* is continuous. Since M is finite-dimensional we may, without loss of generality, assume
that M is an Euclidean space R" for some n and we can identify M* with M. For any ¢,y € M,

we have
l(z -y, Tz — Ty y)| = |(z —y, Tz — Ty)|
> ll2 =yl a(lle - ol).
Hence, T is one-to-one and therefore open by [2, Theorem 4.3]. But the set T M is also closed
by condition (ii). Consequently, Ty is onto M* and hence, there is a unique zpr € M such that
TM TN = 0.

Let By = {xv : M C V € T'} and let wel By denote the weak ciosure of Bys. Then the family
of sets {wcl Byy : M € T'} has the finite intersection property. Indeed, for U,V € ', we can let
M €T be such that YUV C M. Then 8§ # wcl By C wel By Nwel By, For each M € T, since
Ty zp = 0, we have

lleas — zoll aleas — zoll) < I(zar — 20, Taar — Tao)|
= |(1’M - IQ,TM TrAr — TM l‘o)l
= |(zm — 20, T o)
= |(zpm — zo, Tzo)|
<Mlzar = 2ol [|Tzol|-

Mhanafare  ginee Frainf alm)y s BTa Il 4hane awicis » ~ 0 aneh that el < o for all M € T
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r—o0

Consequently, wcl Byy C B,(0) for all M € T. Since B is reflexive, B,(0) is weakly compact. It

Fallawea that M 1D LA

AULIVUYYD ullau l I ¥Ywul UM f— v

Alaoglu’s Theorem there is a sequence {z,} in By converging to z weakly. Let M,, € ' be such
that z, € M,,. Since Ty, z, = 0 for all n, we have

(zn — 2, T2)| = |(20 — 2, Th, 2)|
= |(zn — =, Tn, Tn — T, @)
= |(z, — 2, Tz, — Ta)}]
2 liza — 2l adilzn — =i,
from which it follows that z,, — z since (z,~z,Tz) — 0 as n — co. Now, from the demicontinuity
of T and the facts that Ty, z, =0 and z,y € M,, we have

O=y—z,Tu, zn)=(y—2,T2,) — (y—2,T2) as n — oo.

m

Consequently, (y — z,Tz) = 0 for all y € B. Hence, Tz = 0 and the result follows.
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Recall that an operator T': B — B* is monotone if (x — y, Tz —Ty) > 0 for all z,y € B. The
operator T is a-monotone if there exists a : [0,00) — [0, 00) with a(0) =0, a(r) > O for r > 0
and lim a(r) = oo such that

r—o00

(z—y,Tz-Ty) > |lz—ylla(lz—yl|]) forall z,y € B.

The operator T is dissipative if —T' is monotone. The operator T is said to be hemicontinuous if
for any z,y € B the following function is continuous

t—(z—y, Tz + (1 -1)y)), 0<t<1.

Since any hemicontinuous and monotone operator is demicontinuous [2}, the following result is

a direct consequence of Theorem 2.1.
COROLLARY 2.2. Let B be a real reflexive Banach space and T' : B — B* be hemicontinuous
and a-monotone. Then T is onto B*.
By Corollary 2.2, we have the following coincidence theorem.
COROLLARY 2.3. Let B be a real reflexive Banach space and T, F : B — B*. Suppose that T

is hemicontinuous and a-monotone and F is hemicontinuous and dissipative. Then there exists
z € B such that Tz = Fz.

ProoF. Let G: B — B* be defined by Gz = Tz — Fz for all £ € B. Then G is hemicontinuous
and a-monotone. By Corollary 2.2, there exists ¢ € B such that Gz = 0. Therefore, Tz = Fz
and the resuit follows.

By inspecting the proof of Theorem 2.1, it is not difficult to see that the following result is also
true.

THEOREM 2.4. Let B be a real reflexive Banach space and T : B — B*. Suppose that the
following conditions are satisfied:

(i) T is continuous on finite-dimensional subspaces;
(1) for each {z,} converging weakly to x,

liminf(y, Tz,) < (y,Tz) for each y € B;
n-—+00

(iii) there exists o : [0, 00) — [0,00) with a(0) =0, a(r) > 0 for r > 0 and lingo a(r) > ||Txzol|
for some zy € B such that

l(z— 9Tz —Ty)| 2 |lz - slla(llz - yll)  forallz,y € B;

(iv) for any finite-dimensional subspace M, ||Tz|y|| — o0 as ||z|| — co and z € M.
Then T is onto B*.

PROOF. Again, it suffices to show that 0 € TB. By employing the same argument as that of
Theorem 2.1, it can be shown that there exists * € B with the property that for each y € B
there exists a sequence {z,} weakly convergent to z such that (y — z,Tz,) = 0 for all n. Then
by condition (ii), we have

0 = liminf(y — z,Tz,)
n—oQ

<(y—=z,Tx).

Consequently, (y — z,Tz) > 0 for all y € B. Therefore, T« = 0 and the result follows.

COROLLARY 2.5. Let B be a real reflexive Banach space and T : B — B*. Suppose that the
following conditions are satisfied:

(i) the function ¢ — (z,Tz) is sequentially weakly lower semi-continuous on B;
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(ii) for each {x,} converging weakly to z,

liminf(y, Tz,) < (y,Tz) for each y € B;
n-— 00

(iii) there exists a : [0, 00) — [0,00) with a(0) = 0, a(r) > 0 for r > 0 and rlirEo a(r) > ||Tzo|
for some zy, € B such that

(2 — y, Tz — Ty)| 2 ||z — yll a(||z — y]) for all z,y € B;

(iv) for any finite-dimensional subspace M, ||Tz|x|| — oo as ||z|| — oo and ¢ € M.
Then T is onto B*.

PROOF. As the proof of [5, Theorem 2] shows, any operator satisfying conditions (i) and (ii) must
be necessarily continuous on finite-dimensional subspaces. The result then is a direct consequence
of Theorem 2.4.

3. HILBERT SPACE CASE

When B is real Hilbert space, assumptions of Theorems 2.1 and 2.4 can be weakened substan-
tially. As the following result shows, the demicontinuity condition of Theorem 2.1 can be replaced
by the condition that T is continuous on finite-dimensional subspaces and the condition (ii) of
Theorem 2.4 is unnecessary.

THEOREM 3.1. Let H be a real Hilbert space whose inner product is also denoted as (-,-) and
let T : H — H be continuous on finite-dimensional subspaces. Suppose that
(i) there exists « : [0,00) — [0,00) with a(0) = 0, a(r) > 0 for r > 0 and Jim a(r) > ||Tzol|
for some o € H such that

|(x —y, Tz — Ty)| > ||z — yll a(||z — yl|) for allz,y € H;

(ii) for any finite-dimensional subspace M, ||Tz|m|| — oo as ||z|| — co and z € M.
Then T is onto H.

Proor. Essentially, we follow the proof of [2, Theorem 11.6]. It is again enough to show that
0 € TH. Let I' be the family of all finite-dimensional subspaces of H containing xzg partially
ordered by inclusion. For each M € T, let Py be the orthogonal projection of H onto M. Since
Pyy = Py, for any z,y € M we have

(g —y, Py Ter— PuTy)|=|(z—y,Te — Ty)|
2 |lz ~ yll (|l — yl)-

Hence, PyT|pr is one-to-one and therefore open by [2, Theorem 4.3]. But PpT'M is also closed
by condition (ii). Consequently, PyT is onto M and hence there is a unique zps € M such that
Py Txpr = 0.

Let Byr = {zv : M C V € T'} and let wcl By denote the weak closure of Bas. Then the family
of sets {wcl Bys : M € T'} has the finite intersection property. Since ||Py|| = 1, we have

llzar — zol| a(llzar — zoll) < Wzar — 20, Tzar — Tzo)l
= [(zpm — xo, Pu Txar — Pry Txo)|
= |(:BM - IQ,PM T.’L‘())I
< llear = @ol[ [ITof|-

Therefore, since limior.}fa(r) > ||Txo||, there exists r > 0 such that |jzy|| < r for all M € T.
r-—

Consequently, wel Byy C B.(0) for all M € T'. Since H is a Hilbert space, B,.(0) is weakly

compact. It follows that {7} wcl By # 0.
Mer
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Let z € () wcl By and fix M € T such that z,Tz € M. Since z € wel By, by Alaoglu’s
Mer
Theorem there is a sequence {z,} in Bjs converging to z weakly. Let M, € T be such that

Zn € M,,. Since Py, Tz, = 0 for all n, we have

(zn — z,Tz)| = |(zn — 2, Py, Tz)|
= |(zn — z, Pu, Tz — Py, Tx)|
= {(zn — z,Tzs — Tx)|
> ||lzn — =zl a(lza — =),

from which it follows that x, — z. Now, as (zpr,Tepm) = (¢m, Py Tepr) = 0, we have

0=(xn —zpm, Py, Tz,)
= (zpn — zm, Pu, Txpn — Py, Tem) + (2n — @a1, Py, Tem)
=(zn — 2pm, Ty — Txpr) + (xn, Terr) — (2rr, Txar)
=(2n — 2p, T2, — Tpg) + (2, Txpr).
Therefore,
'(1?" —IM;Txn —TzM)lz |(xn:T$M)|' (1)
Hence, it follows from (1) and (i) that

0= (I,PM T:L'M)
= |(.’C,T1‘M)|
= lingo|(m,,,T:cM)|

= lim |[(z, —zp,T2n — Tz )|
17—+ 00

v

lim ||z, — zpm|| a(l|zn — 2ml)
n—oo

Iz — zm|la(llz — zal]).

Consequently, £ = zps. Since Tz € M, we finally have
ITz||? = (Tz,Tz) = (Tz, Ps Tzar) = 0.

Hence, Tz = 0 and the result follows.
We note that Theorem 3.1 generalizes [2, Theorem 11.6].
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