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Abstract

We consider a twisted version of the Hurewicz map on the complement of a hyperplane arrangement. The purpose of this paper
is to prove surjectivity of the twisted Hurewicz map under some genericity conditions. As a corollary, we also prove that a generic
section of the complement of a hyperplane arrangement has nontrivial homotopy groups.
© 2008 Elsevier B.V. All rights reserved.
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1. Twisted Hurewicz map

Let X be a topological space with a base point x0 ∈ X and L a local system of Z-modules on X. Let f : (Sn,∗) →
(X,x0) be a continuous map from the sphere Sn with n � 2. Since Sn is simply connected, the pullback f ∗L turns
out to be a trivial local system. Thus given a local section t ∈ Lx0 , f ⊗ t determines a twisted cycle with coefficients
in L. This induces a twisted version of the Hurewicz map:

h :πn(X,x0) ⊗Z Lx0 → Hn(X,L).

The classical Hurewicz map is corresponding to the case of trivial local system L= Z with t = 1.

2. Main result

Let A be an essential affine hyperplane arrangement in an affine space V = C
�, with � � 3. Let M(A) denote the

complement V − ⋃
H∈A H . A hyperplane U ⊂ V is said to be generic to A if U is transversal to the stratification

induced from A. Let i :U ∩ M(A) ↪→ M(A) denote the inclusion.
In this notation, the main result of this paper is the following:
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Theorem 1. Let L′ := i∗L be the restriction of a nonresonant local system L of arbitrary rank on M(A). Then the
twisted Hurewicz map

h :π�−1
(
U ∩ M(A), x0

) ⊗Z Lx0 → H�−1
(
U ∩ M(A),L′)

is surjective.

For the notion of “nonresonant local system,” see Theorem 7.
Theorem 1 should be compared with a result proved by Randell in [12]. He proved that the Hurewicz homomor-

phism πk(M(A)) → Hk(M(A),Z) is equal to the zero map when k � 2 for any A. However little is known about
twisted Hurewicz maps for other cases.

The key ingredient for our proof of Theorem 1 is an affine Lefschetz theorem of Hamm, which asserts that M(A)

has the homotopy type of a finite CW complex whose (�−1)-skeleton has the homotopy type of U ∩M(A). We obtain
(�−1)-dimensional spheres in U ∩M(A) as boundaries of the �-dimensional top cells. Applying a vanishing theorem
for local system homology groups, we show that these spheres generate the twisted homology group H�−1(U ∩
M(A),L). We should note that the essentially same arguments are used in [4] to compute the rank of π�−1(U ∩
M(A), x0) ⊗Z Lx0 under a certain asphericity condition on A.

3. Topology of complements

The cell decompositions of affine varieties or hypersurface complements are well studied subjects. Let f ∈
C[x1, . . . , x�] be a polynomial and D(f ) := {x ∈ C

� | f (x) 	= 0} be the hypersurface complement defined by f .

Theorem 2 (Affine Lefschetz Theorem). (See [5].) Let U be a sufficiently generic hyperplane in C
�. Then,

(a) The space D(f ) has the homotopy type of a space obtained from D(f ) ∩ U by attaching �-dimensional cells.
(b) Let ip :Hp(D(f )∩U,Z) → Hp(D(f ),Z) denote the homomorphism induced by the natural inclusion i :D(f )∩

U ↪→ D(f ). Then

ip is

{
isomorphic for p = 0,1, . . . , � − 2,

surjective for p = � − 1.

Suppose i�−1 is also isomorphic. Then as noted by Dimca and Papadima [3] (see also Randell [13]), the num-
ber of �-dimensional cells attached would be equal to the Betti number b�(D(f )) and the chain boundary map
∂ : C�(D(f ),Z) → C�−1(D(f ),Z) of the cellular chain complex associated to the cell decomposition is equal to
zero. Otherwise i�−1 :H�−1(D(f ) ∩ U,Z) → H�−1(D(f ),Z) has a nontrivial kernel ∂(C�(D(f ),Z)).

In the case of hyperplane arrangements, homology groups and homomorphisms ip are described combinatorially
in terms of the intersection poset [9]. Let us recall some notation. Let A be a finite set of affine hyperplanes in C

�,

L(A) =
{
X =

⋂
H∈I

H

∣∣∣ I ⊂ A
}

be the set of nonempty intersections of elements of A with reverse inclusion X < Y ⇔ X ⊃ Y , for X,Y ∈ L(A).
Define a rank function on L(A) by

r :L(A) → Z�0, X �→ codimX,

the Möbius function μ : L(A) → Z by

μ(X) =
{

1 for X = V,

−∑
Y<X μ(Y ) for X > V,

and the characteristic polynomial χ(A, t) by

χ(A, t) =
∑

μ(X)tdimX.
X∈L(A)
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Let E1 = ⊕
H∈A CeH and E = ∧

E1 be the exterior algebra of E1, with pth graded term Ep = ∧p
E1. Define a

C-linear map ∂ :E → E by ∂1 = 0, ∂eH = 1 and for p � 2

∂(eH1 · · · eHp) =
p∑

k=1

(−1)k−1eH1 · · · êHk
· · · eHp

for all H1, . . . ,Hp ∈ A. A subset S ⊂ A is said to be dependent if r(
⋂

S) < |S|, where
⋂

S = ⋂
H∈S H . For S =

{H1, . . . ,Hp}, we write eS := eH1 · · · eHp .

Definition 3. Let I (A) be the ideal of E(A) generated by{
eS

∣∣∣ ⋂
S = φ

}
∪ {∂eS | S is dependent}.

The Orlik–Solomon algebra A(A) is defined by A(A) = E(A)/I (A).

Theorem 4. (See Orlik–Solomon [8].) Fix a defining linear form αH for each H ∈ A. Then the correspondence
eH �→ d logαH induces an isomorphism of graded algebras:

A(A)
∼=→ H ∗(M(A),C

)
.

The Betti numbers of M(A) are given by

χ(A, t) =
�∑

k=0

(−1)kbk

(
M(A)

)
t�−k.

From the above description of cohomology ring of M(A), we have:

Theorem 5. Let A be a hyperplane arrangement in C
� and U be a hyperplane generic to A. Then i :U ∩ M(A) ↪→

M(A) induces isomorphisms ip :Hp(M(A) ∩ U,Z)
∼=→ Hp(M(A),Z) for p = 0, . . . , � − 1.

Proof. It is easily seen from the genericity that

L(A∩ U) ∼= L��−1(A) := {
X ∈ L(A)

∣∣ r(X) � � − 1
}
. (1)

In particular a generic intersection preserves the part of rank � � − 1. Hence A(A ∩ U) ∼= A��−1(A). This induces
isomorphisms H��−1(M(A)) ∼= H��−1(M(A) ∩ U). Since homology groups H∗(M(A),Z) are torsion free, the
theorem is the dual of these isomorphisms. �

Using these results inductively, the complement M(A) of the hyperplane arrangement A has a minimal cell de-
composition.

Theorem 6. (See [13,3,11].) The complement M(A) is homotopic to a minimal CW cell complex, i.e., the number of
k-dimensional cells is equal to the Betti number bk(M(A)) for each k = 0, . . . , �.

4. Proof of the main theorem

First we recall the vanishing theorem of homology groups for a “generic” or nonresonant local system L of complex
rank r .

Let A be a hyperplane arrangement in C
�, let U be a hyperplane generic to A and let i :M(A)∩U ↪→ M(A) be the

inclusion. Now we assume that A is essential, i.e., A contains � linearly independent hyperplanes H1, . . . ,H� ∈A. Let
P

� be the projective space, which is a compactification of our vector space V . The projective closure of A is defined as
A∞ := {H̄ | H ∈ A}∪ {H∞}, where P

� = V ∪H∞. A nonempty intersection X ∈ L(A∞) defines the subarrangement
(A∞)X = {H ∈ A∞ | X ⊂ H } of A∞. A subspace X ∈ A∞ is called dense if (A∞)X is indecomposable, that is,
not the product of two nonempty arrangements. Let ρ :π1(M(A), x0) → GLr (C) be the monodromy representation
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associated to L. Choose a point p ∈ X \ ⋃
H∈A∞\(A∞)X

H and a generic line L passing through p. Then a small loop
γ in L around p ∈ L determines a total turn monodromy ρ(γ ) ∈ GLr (C). The conjugacy class of ρ(γ ) in GLr (C)

depends only on X ∈ L(A∞), and is denoted by TX .
The following vanishing theorem of local system cohomology groups is obtained in [2]. (See also [1,7,10].)

Theorem 7. Let L be a nonresonant local system on M(A) of rank r , that is, for each dense subspace X ⊂ H∞ the
corresponding monodromy operator TX does not admit 1 as an eigenvalue. Then

dimHk
(
M(A),L

) =
{

(−1)�r · χ(M(A)) for k = �,

0 for k 	= �,

where χ(M(A)) is the Euler characteristic of the space M(A).

Note that L is nonresonant if and only if the dual local system L∨ is nonresonant. From the universal coefficient
theorem

Hk
(
M(A),L

) ∼= HomC

(
Hk

(
M(A),L∨)

,C
)
,

we also have the similar vanishing theorem for local system homology groups Hk(M(A),L).
From Theorem 2(a) we may identify, up to homotopy equivalence, M(A) with a finite �-dimensional CW complex

for which the

(� − 1)-skeleton has the homotopy type of M(A) ∩ U. (2)

We denote the attaching maps of �-cells by φk : ∂ck
∼= S�−1 → M(A)∩U (k = 1, . . . , b = b�(M(A))), where ck

∼= D�

is the �-dimensional unit disk. Hence φ = {φk}k=1,...,b satisfies((
M(A) ∩ U

) ∪φ

⋃
k

ck

)
is homotopic to M(A).

Let L be a rank r local system over M = M(A). For our purposes, it suffices to prove that h(φk) (k = 1, . . . , b)
generate H�−1(M(A) ∩ U, i∗L). Let

0 → C�
∂L−−→ C�−1

∂L−−→ · · · ∂L−−→ C0 → 0 (3)

be the twisted cellular chain complex associated with the CW decomposition for M(A). Then from (2), the twisted
chain complex for M(A) ∩ U is obtained by truncating (3) as

0 → C�−1
∂L−−→ · · · ∂L−−→ C0 → 0. (4)

It is easily seen that if L is generic in the sense of Theorem 7, then the restriction i∗L is also generic. Applying
Theorem 7 to (3), only the �th homology survives. Similarly, only the (� − 1)st homology survives in (4). Note that
H�−1(M(A) ∩ U, i∗L) = Ker(∂L :C�−1 → C�−2). Thus we conclude that

∂L :C� → H�−1
(
M(A) ∩ U, i∗L

)
(5)

is surjective. Since the map (5) is determined by

C� � [ck] �→ [∂ck] = h(φk),

{h(φk)}k=1,...,b generate H�−1(M(A) ∩ U, i∗L). This completes the proof of Theorem 1.

Lemma 8. The Euler characteristic of M(A) ∩ U is not equal to zero, more precisely,

(−1)�−1χ
(
M(A) ∩ U

)
> 0.

Given a hyperplane H ∈ A, we define A′ = A \ {H } and A′′ = A′ ∩ H . Then characteristic polynomials for these
arrangements satisfy an inductive formula:

χ(A, t) = χ(A′, t) − χ(A′′, t).
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By Theorem 4, the Euler characteristic χ(M(A)) of the complement is equal to χ(A,1).

Proof of Lemma 8. From (1) and definition of the characteristic polynomial, we have

χ(A∩ U, t) = χ(A, t) − χ(A,0)

t
.

The proof of the lemma is by induction on the number of hyperplanes. If |A| = �, A is linearly isomorphic to the
Boolean arrangement, i.e. one defined by {x1 · x2 · · ·x� = 0}, for a certain coordinate system (x1, . . . , x�). In this case,
χ(A, t) = (t −1)�, and we have (−1)�−1χ(M(A)∩U) = 1. Assume that A contains more than � hyperplanes. We can
choose a hyperplane H ∈ A such that A′ = A \ {H } is essential. Then A′′ = A′ ∩ H is also essential, and obviously
U is generic to A′ and A′′. Thus we have

(−1)�−1χ(A∩ U) = (−1)�−1χ(A∩ U,1) = (−1)�−1(χ(A′ ∩ U,1) − χ(A′′ ∩ U,1)
)

= (−1)�−1χ(A′ ∩ U,1) + (−1)�−2χ(A′′ ∩ U,1) > 0. �
Using Lemma 8, we have the following nonvanishing of the homotopy group, which generalizes a classical result

of Hattori [6].

Corollary 9. Let 2 � k � � − 1 and Fk ⊂ V be a k-dimensional subspace generic to A. Then πk(M(A) ∩ Fk) 	= 0.

Remark 10. We can also prove Corollary 9 directly in the following way. Suppose π�−1(M(A) ∩ U) = 0. Then the
attaching maps {φk : ∂ck = S�−1 → M(A) ∩ U} of the top cells are homotopic to the constant map. Hence we have a
homotopy equivalence

M(A) is homotopic to
(
M(A) ∩ U

) ∨
∨
k

S�.

However this contradicts to the fact that cohomology ring H ∗(M(A),Z) is generated by degree one elements (Theo-
rem 4). Hence we have π�−1(M(A) ∩ U) 	= 0.

Remark 11. We should also note that other results on the nonvanishing of higher homotopy groups of generic sections
are found in Randell [12] (for generic sections of aspherical arrangements), in Papadima–Suciu [11] (for hypersolvable
arrangements) and in Dimca–Papadima [3] (for iterated generic hyperplane sections).
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