PO-0944
An assessment of patient intrafraction motion for lung SABR using VMAT
K. Moore1
Beatson West of Scotland Cancer Centre, Radiotherapy, Glasgow, United Kingdom

Purpose/Objective: At the Beatson Centre, we have developed a novel treatment delivery technique for our SABR lung patients. This involves an './arms down' patient set-up, utilising thoracic immobilisation, 4DCT-based planning, and online CBCT verification prior to each fraction and VMAT delivered IMRT to assess the effectiveness of patient set-up using our immobilisation, and quantify associated patient intrafraction motion, on-treatment verification using CBCT pre and post treatment delivery was carried out. Here, we report the results of our first 28 SABR patients.

Materials and Methods: Patients are placed in a supine position with their arms by their sides, on a BDS board (Sinmed, Iowa, USA). Head and neck support is individualised to ensure comfort, support and to minimise gaps at the base of the neck. Thoracic immobilisation is provided by a thermoplastic (Klarity, Ohio, USA) mould with 4 point fixation, which supports the patient from the inferior edge of the lower lip to the mid thorax or lower where possible. Each patient receiving SABR with VMAT (55 Gy/5F) undergoes a CBCT prior to treatment and then further CBCT on completion of each fraction. A region of interest was used to perform an automatic bony match between the pre and post treatment CBCTs. The patient intrafraction motion is represented by the difference between pre and post treatment bony matches. differences were measured for each CBCT.

Results: Analysis was based on the first 28 patients, which produced 138 CBCT image sets. For each direction, the frequency distribution of set-up shifts and a confidence interval was calculated. Analysis was based on the first 28 patients, which produced 138 CBCT image sets. For each direction, the frequency distribution of set-up shifts and a confidence interval was calculated.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Range</th>
<th>% of 1CBCTs within range</th>
<th>95% confidence interval (lower bound)</th>
<th>95% confidence interval (upper bound)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior-posterior</td>
<td>a mm</td>
<td>86.2</td>
<td>0.80</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>a mm</td>
<td>299.3</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>a mm</td>
<td>182.6</td>
<td>0.76</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>a mm</td>
<td>294.9</td>
<td>0.91</td>
<td>0.98</td>
</tr>
<tr>
<td>Lateral</td>
<td>a mm</td>
<td>183.3</td>
<td>0.77</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>a mm</td>
<td>291.3</td>
<td>0.87</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Conclusions: These results demonstrate that this novel immobilisation and VMAT delivery technique is successful in minimising intrafraction motion for lung SABR patients.

PO-0945
Target volume margins calculations in daily image-guided radiotherapy of locally advanced prostate cancer
E.H. Thøgersen1, A. Vestergaard2, J.B. Pedersen1, L. Bentzen3, L.P. Muret1
1Aarhus University Hospital (Herning), Department of Medicine, Herning, Denmark
2Aarhus University Hospital, Department of Medical Physics, Aarhus, Denmark
3Aarhus University Hospital, Department of Oncology, Aarhus, Denmark

Purpose/Objective: We have investigated the margins required at various anatomical levels according to RTOG guidelines. Using the Eclipse registration module (version 10.0), a rigid 6D bone match between the planning CT and each of the CBCTs was performed. Subsequently, a rigid 3D match on the prostate fiducials between the CBCT and the planning CT was performed to mimic the treatment geometry/position. The centre of gravity for the planned and the registered lymph node structures were found and margins (for rigid motion) of the three lymph node levels was calculated using the widely accepted van Herk margin recipe (2.5Z + 0.7σ). A total of 15 patients was included in the study, but here we report the results of the analysis of the first five patients who had a total number of 32 CBCTs acquired during treatment.

Results: The calculated margins for lateral (LR), anterior/posterior (AP) and superior/inferior (SI) are shown in the table for each level of the lymph nodes, ranging from 9 to 16 mm LR, from 3 to 11 mm AP and from 5-6 mm in the SI direction. The margins are clearly lower in the caudal part of the target (in particular for the LR and SI directions), possibly related to the distance to the prostate.

<table>
<thead>
<tr>
<th>Margins (mm)</th>
<th>LR</th>
<th>AP</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranial part</td>
<td>16,3</td>
<td>3,4</td>
<td>4,7</td>
</tr>
<tr>
<td>Middle part</td>
<td>15,5</td>
<td>11,6</td>
<td>6,2</td>
</tr>
<tr>
<td>Caudal part</td>
<td>8,5</td>
<td>4,1</td>
<td>4,8</td>
</tr>
</tbody>
</table>

Conclusions: In this study we have investigated the margins required to cover the pelvic lymph nodes when these are treated simultaneously with the prostate, using prostate fiducials. It was found that the margins differ according to the anatomical level, being smallest in the caudal part of the target, closest to the prostate (and the fiducials). Analysis of further patients is required for a more accurate determination of the margins for this population.

PO-0946
Methods for assessing atlas-based contouring in head and neck cancer
M.J. Gooding1, L. Durrant2, K.Y. Chu2, C.L. Eccles2, F. Kaster1, T. Kadir1
1Mirada Medical Ltd, Science and Medical Technology, Oxford, United Kingdom
2Gray Institute for Radiation Oncology and Biology, Department of Oncology, Oxford, United Kingdom

Purpose/Objective: Many measures have been used in the literature to assess the accuracy of atlas-based contouring. The objective of this study was to investigate whether there is a strong clinical basis for them, and which is the most appropriate for this purpose.

Materials and Methods: 33 structures were contoured to atlas standard according to RTOG guidelines for 10 Head and Neck subjects. A leave-one-out approach was used to auto-contour each case using an atlas-based contouring system (RTx, Mirada Medical, Oxford, UK). This was compared to manual ground truth results available for assessment. Three clinical experts independently rated the performance of the auto-contouring result quantitatively based on a visual assessment, determining the approximate percentage of the contours requiring negligible editing. Rating was performed individually for left and right parotids (LP, RP), brain stem (BS), spinal cord (SC) and mandible (MD), for the case as a whole (WC). The Dice coefficient, mean, median and Hausdorff distances in both 2D and 3D were calculated between the automatic and the ground truth contours for each structure. Dice coefficients were also calculated for the case as a whole. Pearson correlation coefficients were calculated between the experts’ average score and each measure.

Results: The Pearson correlation coefficients and average measures are shown in the table for each structure and for the case as a whole. The average percentage utility according to the experts was 79%, 76%, 77%, 86%, 82% and 91% for WC, LP,RP, BS, SC and MD respectively.
Conclusions: The highest correlating measure with respect to clinical assessment was found to vary according to the structure under consideration. Clinical assessment of the accuracy may be influenced by the complexity of the structure to draw and its relative importance in planning. In contrast the quantitative measures may reflect the variation of the structure within the population and the errors that could occur when using atlas-based contouring - i.e. the cord may have a 2D displacement, whereas the parotids may vary in shape more. The Hausdorff measure was found to be poorly correlated with experts’ assessment reflecting the Hausdorff measure’s sensitivity to outliers. Therefore, multiple quantitative measures should be reported when assessing atlas-based contouring.

POSTER: RTT TRACK: PATIENT CARE AND PATIENT INFORMATION

PO-0947

Breast cancer patients’ knowledge of RT at the beginning of their RT period

M. Siekkinen1, S. Pyrhönen2, H. Leino-Kilpi1

1University of Turku, Department of Nursing Science, Turku, Finland
2Turku University Hospital, Department of Oncology and Radiotherapy, Turku, Finland

Purpose/Objective: The aim of patient education is to provide patients the necessary knowledge and skills about health problems and treatment. With knowledge patients can be empowered to make informed choices and take care of themselves. Patient education is an essential part of a RT period, because of treatments psychosocial and physical side effects. For this patient education to be as most effective, it should be based on an evaluation that is able to describe patients’ knowledge. The purpose of this study is to report the results of descriptive study that evaluated the breast cancer patients’ knowledge of RT at the beginning of their RT period.

Materials and Methods: 133 breast cancer patients in one university hospital of Finland were surveyed with ‘Knowledge Test of RT for Breast Cancer patients’ (KTRT-BC) tool, which is a 28 item ‘yes/no’ questionnaire. The content of the tool was the bio-physiological knowledge consisted of ‘RT process’ (7 item) and ‘Possible side-effects’ (7 items) themes and the functional knowledge consisted of ‘Side-effects and self-care’ (7 items) and Lifestyle and RT (7 items) themes. The data was collected at the beginning of RT period before first RT session. It was possible to have 7 points from each theme.

Results: Patients received test average 21.65 point knowledge of the breast cancer patients’ knowledge of RT at the beginning of their RT period. Patients knew best how the RT was carried out but they could not determine outcomes of RT treatment. Statistical analysis showed that patients’ age ($p = 0.013$), employment status ($p = 0.0085$), educational qualification ($p = 0.0103$) and computer using skill ($p = 0.0139$) had significant associations with knowledge level.

Conclusions: Patients knew best how the RT was carried out but they had mediocre knowledge related to the self-care of side effects. There is need to provide patients more education of RT, particularly of the functional empowering knowledge. The empowering effect of patient education according to knowledge level diagnosis should also be studied.

PO-0948

Health care professionals’ evaluation of quality of life issues in patients with brain metastases

N. Lauzon1, G. Bedard1, L. Zhang1, A. Sahgal1, L. Zeng1, K. Koo1, E. Chow1

1Sunnybrook Health Sciences Centre, Radiation Therapy, Toronto, Canada

Purpose/Objective: This presentation will highlight the main findings from a New Zealand survey of Radiation Therapists (RTs) on Advanced Practice and discuss a potential way forward for the profession. The proposed career pathway allows flexibility with respect to the diversity of clinical areas of expertise and perceived need in departments nationally, and also in supporting academic structures within the New Zealand university framework. In 2008 the New Zealand Institute of Medical Radiation Technology (NZIMRT) determined that Advanced Practice roles for medical imaging and radiation therapy professionals would be investigated. Previous research conducted in New Zealand has indicated that the majority of MRTs, Radiation Therapists, Radiologists and Radiation Oncologists, support role extension and the establishment of advanced practitioner roles. Recent surveys aimed to clarify which criteria should be prioritised and developed for the profession. Contextual influences affecting the implementation of such roles were also investigated.

Materials and Methods: Electronic surveys were distributed to all radiation therapists in New Zealand, to gain feedback on potential advanced practice profiles and criteria. The perceived advantages and barriers of implementing advanced practice were also explored. Potential profiles were offered for comment, with respondents being asked what further activities could be included within these profiles and which could be removed. They were also asked whether there were any potential profiles missing.

Results: Results indicated that there is significant support within New Zealand radiation therapy departments for formalised Advanced Practice roles. A diverse range of perceived advantages for the profession were identified, however many in the profession expressed concerns around accountability, acknowledgment and support.

Conclusions: There was similar support for all profiles and criteria in radiation therapy. How Advanced Practitioner roles can be used will be dependent on the culture and needs of each clinical RT department. It was identified that ‘advanced skills’ may become ‘standard skills’, therefore it is important that an Advanced Practitioner role focuses on leadership that continually develops innovations and best practice within the role. Generic academic structures are needed to give flexibility to support RTs seeking these roles.

PO-0950

Quality assessment of transferring competences from one staff group to another

M.D. Lund1, M. Berg2, L.M. Nielsen1

1Vejle Hospital, Medical Physics. Dep. of Oncology, Vejle, Denmark
2University of Aarhus, Radiotherapy. Dep. of Oncology, Vejle, Denmark

Purpose/Objective: With increasing use of online pretreatment IGRT comes increased demand for reviewing resources. It is therefore desirable to shift the competence of reviewing these images to the treatment staff. The purpose of this study is to compare the quality of image matching for rectal and anal cancer patients done by two different groups of staff.

Materials and Methods: In our department physicists have the reviewing competence for IGRT. A few years ago this competence was transferred to radiation therapist nurses (RTNs) for prostate seed matching. This study describes the transferring of reviewing competence for rectal and anal treatments to RTNs. RTNs attended training sessions and had to take an exam before being allowed to review pretreatment cone beam computed tomography (CBCT) unassisted. The training sessions consisted of a lecture by an

TABLE:

<table>
<thead>
<tr>
<th>Structure</th>
<th>DICE</th>
<th>Mean 2D error</th>
<th>Mean 3D error</th>
<th>Mean SD error</th>
<th>Mean SD distance</th>
<th>Mean Hausdorff distance</th>
<th>Mean Hausdorff distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole case</td>
<td>0.88</td>
<td>0.39</td>
<td>0.88</td>
<td>0.99</td>
<td>1.07</td>
<td>1.11</td>
<td>0.79</td>
</tr>
<tr>
<td>Left Parotid</td>
<td>0.88</td>
<td>0.39</td>
<td>0.88</td>
<td>0.99</td>
<td>1.07</td>
<td>1.11</td>
<td>0.79</td>
</tr>
<tr>
<td>Right Parotid</td>
<td>0.88</td>
<td>0.39</td>
<td>0.88</td>
<td>0.99</td>
<td>1.07</td>
<td>1.11</td>
<td>0.79</td>
</tr>
<tr>
<td>Brainstem</td>
<td>0.88</td>
<td>0.39</td>
<td>0.88</td>
<td>0.99</td>
<td>1.07</td>
<td>1.11</td>
<td>0.79</td>
</tr>
<tr>
<td>Spinal Cord</td>
<td>0.88</td>
<td>0.39</td>
<td>0.88</td>
<td>0.99</td>
<td>1.07</td>
<td>1.11</td>
<td>0.79</td>
</tr>
<tr>
<td>Mandible</td>
<td>0.88</td>
<td>0.39</td>
<td>0.88</td>
<td>0.99</td>
<td>1.07</td>
<td>1.11</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Correlation against experts