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Abstract We synthesized and evaluated by surface plasmon res-
onance 64 LNA/2 0-O-methyl sequences corresponding to all pos-
sible combinations of such residues in a kissing aptamer loop
complementary to the 6-nt loop of the TAR element of HIV-1.
Three combinations of LNA/2 0-O-methyl nucleoside analogues
where one or two LNA units are located on the 3 0 side of the apt-
amer loop display an affinity for TAR below 1 nM, i.e. one order
of magnitude higher than the parent RNA aptamer. One of these
combinations inhibits the TAR-dependent luciferase expression
in a cell assay.
� 2007 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Locked nucleic acid (LNA) nucleotides are ribonucleotide

analogues that contain a methylene bridge between the 2 0 oxy-

gen and the 4 0 carbon of the ribose moiety (Fig. 1A). Struc-

tural studies on LNA:DNA and LNA:RNA duplexes [1–3]

have shown that this modification locks the furanose ring in

the C 03-endo conformation, similar to that of A-type RNA

and 2 0-O-methyl nucleotides, and perturbs neighbouring sug-

ars towards the A-type conformation even in a quadruplex

context [4]. This results in a very high affinity of LNA oligo-

mers for DNA and RNA complementary sequences [2]. In

addition an oligonucleotide including such a modification is

more resistant to nuclease digestion [5–7].

In the past few years the use of LNA nucleotides has signif-

icantly increased. Studies were devoted to the understanding of

the thermodynamics of heteroduplexes [8,9]. New structural

insights were obtained with LNA modified quadruplexes [4]

and dsDNA:LNA triplexes [10]. LNA probes were shown to
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improve mismatch discrimination [11], to mediate improve-

ments in siRNA stability and functionality [7] and potentially

to rival siRNA for gene silencing [12].

In a recent work [5], we used LNA to generate a modified

version of an RNA kissing aptamer, R06, previously identified

against the TAR RNA element of HIV-1 [13]. On the basis of

structural studies on heteroduplexes containing LNA nucleo-

tides, we reasoned that derivatives in which DNA and LNA

monomers would be interspersed might generate interesting

analogues of the parent RNA aptamer. Indeed the LNA–

DNA derivative, resistant to nuclease digestion, containing

LNA units at positions 2, 4, 6 and 7 Fig. 1B and DNA at posi-

tions 3 and 5 of the aptamer loop was shown to bind to TAR

with a dissociation constant in the low nanomolar range, sim-

ilar to that of the parent RNA aptamer. In this previous study,

16 sequences were synthesized and assayed for binding [5].

In an attempt to identify new anti-TAR aptamers with im-

proved properties, we systematically explored the 26 combina-

tions, that is 64 sequences, involving LNA residues in the loop,

with the exception of the G, A residues that close the aptamer

loop, which were shown to be crucial for stable complexes [5].

In order to get fully nuclease resistant oligomers, these chime-

ras were synthesized in a 2 0-O-methyl ribonucleotide back-

ground. Indeed, we previously showed that a fully modified

2 0-O-methyl R06 analogue displayed affinity for TAR close

to that of the parent RNA aptamer and inhibited HIV-1 pro-

tein Tat-mediated transcription in an in vitro assay [14].

We report here that three combinations out of 64 displayed

an affinity for TAR below 1 nM, i.e. one order and two orders

of magnitude higher than the parent RNA aptamer and the

LNA–DNA derivative previously identified, respectively

[5,13]. In addition, one combination inhibits the TAR-depen-

dent luciferase expression in a cell assay.
2. Materials and methods

LNA/2 0-O-methyl derivatives were synthesized on an ABI 394 auto-
mated DNA/RNA synthesiser and purified by HPLC. The biotinylated
miniTAR (Fig. 1B), corresponding to the top part of the retroviral
TAR element, was synthesized on an Expedite 8908 synthesizer (Ap-
plied Biosystems) and purified as described previously [15].

Surface plasmon resonance experiments were performed on a BIA-
core� 3000 apparatus (Biacore AB, Sweden) as described previously
[15]. Binding kinetics were performed at 23 �C in 20 mM HEPES buf-
fer, pH 7.4, containing 20 mM sodium chloride, 140 mM potassium
ation of European Biochemical Societies.



Fig. 1. LNA and 2 0-O-methyl monomers and secondary structure of
miniTAR and the LNA/2 0-O-methyl aptamer. (A) Conformations of
LNA and 2 0-O-methyl monomers. (B) Sequence and secondary
structure of miniTAR. The loop bases susceptible to base pairing are
underlined. LM06 refers to derivatives containing LNA and 2 0-
O-methyl monomers in the loop (underlined nucleotides in bold).
Capital letters in bold and lower case letters represent LNA and 2 0-O-
methyl bases, respectively.
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chloride and 3 mM magnesium chloride. Samples (500 nM) were
injected at 20 ll/min. Complexes were dissociated with one minute
pulse of 20 mM EDTA. The kinetic parameters, kon and koff, were
determined assuming a pseudo-first order model by direct curve fitting
of the sensorgrams using the Bia-evaluation 4.1 software (Biacore AB).
The dissociation equilibrium constant, Kd, was calculated as koff/kon.
2.1. Tet-off/Tat/luc-f/luc-R HeLa cell line
HeLa cells containing stably integrated HIV-1 Tat gene under Tet-

off promoter control, firefly luciferase gene under HIV-1 long terminal
repeat and Renilla luciferase gene under cytomegalovirus promoter
control [16], were grown in DMEM medium supplemented with 10%
Tet System Approved fetal bovine serum (FBS) (Clontech, Palo Alto,
CA), penicillin and streptomycin at 37 �C under 5% CO2/95% air.
2.2. Tat-dependent trans-activation in HeLa cells
Tat-dependent trans-activation experiments in the presence of LNA/

2 0-O-methyl derivatives were carried out as described previously [17].
Briefly, oligonucleotides were prepared at a concentration of 1 lM in
serum-free Opti-MEM (Invitrogen, San Diego, CA). An equal volume
of cationic lipid Lipofectamine 2000 in Opti-MEM (10 ll lipid per 1 ml
medium) was added to each solution. Complexes were formed at room
temperature for 20 min and subsequent dilutions were made from this
oligonucleotide/lipid mixture. After 3 h transfection the medium was
replaced with 100 ll DMEM/10% fetal bovine serum (FBS) and cells
were incubated for 18 h at 37 �C. The luciferase and cell toxicity levels
were then measured as described previously [17].
Table 1
Dissociation equilibrium constants for LNA/20-O-methyl derivative-miniTA

Number of
LNA residues
in the loop

Kd (nM)

Kd < 1 1 < Kd < 5 5 < Kd < 25

1 5 6; 7 2; 3; 4
2 56; 57 25; 26; 36; 46; 47; 67 24; 27; 35; 45; 37
3 236; 247; 356; 567 235; 246; 457; 357; 346; 456

4 2367; 2467; 4567 3467; 2567
5
6

Positions with LNA residues are indicated and numbered according to Fig.
3. Results and discussion

The TAR RNA imperfect hairpin is specifically recognized

by an RNA aptamer termed R06 that adopts a hairpin struc-

ture with a loop framed by crucial G, A residues [13,18]. The

R06–TAR interaction is mediated by a loop–loop interaction,

resulting in the formation of a 6-bp helix.

The LNA/2 0-O-methyl oligonucleotides studied in the pres-

ent work were synthesized on the basis of a 16-nt long

LNA–DNA sequence identified previously [5]. The 4-bp stem

ends with two LNA pairs that increase its thermodynamic sta-

bility and lock the aptamer into its hairpin conformation, a

prerequisite for kissing complex formation (Fig. 1B). We ana-

lyzed the binding properties of the 64 LNA/2 0-O-methyl com-

binations of the R06 loop sequence complementary to the

TAR one (positions 2–7, Fig. 1B). The loop closing G, A res-

idues were not subject to LNA modification, since our previ-

ous study showed that this was detrimental to the kissing

interaction. The oligonucleotides were named according to

their loop chemistry: LM06 stands for derivatives containing

LNA (L) and 2 0-O-methyl (M) monomers in the loop, LNA

positions being indicated by a subscript.

The equilibrium dissociation constant of each aptamer

derivative was determined by surface plasmon resonance.

The results (Table 1) are discussed with respect to (i) the num-

ber of LNA residues and (ii) their locations (5 0 versus 3 0) in the

loop sequence. These two parameters correlate reasonably well

with the ranking from strong (Kd < 1 nM) to poor binders

(Kd > 500 nM).

The derivative containing six LNA units in the loop, namely

LMO6234567, did not bind to miniTAR, in agreement with our

previous work that showed that chimeric LNA–DNA hairpins

with LNA loops were not good TAR ligands [5]. LNA mono-

mers are locked because of the 2 0-O-4 0C methylene bridge.

This brings stability to DNA/LNA or RNA/LNA linear het-

eroduplexes but clearly not to a loop–loop helix, demonstrat-

ing that it is probably not a canonical A-type helix, in

agreement with results that showed that the minor groove of

the loop–loop helix of a related system was narrower com-

pared with a linear RNA helix [19]. This conclusion is sup-

ported by previous studies in which we used fully modified

2 0-O-methyl [14] and N3 0 fi P5 0 deoxyphosphoramidated [15]

versions of the R06 aptamer. In contrast to the results ob-

tained for linear duplexes, none of these modifications gener-

ated an aptamer analogue of increased affinity for the TAR

RNA. Except for one sequence, LMO624567, that displayed a

Kd between 25 and 100 nM (Table 1), all other combinations
R complexes

25 < Kd < 100 100 < Kd < 500 Kd > 500

23; 34
245; 347 267 237; 256; 257; 467; 367;

234; 345
2347; 2456; 3567 2457; 2346; 3456 2356; 2357; 2345; 2347; 3457
24567 23467; 34567 23456; 23457; 23567

234567

1B.



Fig. 2. Inhibitory effect of LNA/2 0-O-methyl derivatives on TAR-dependent luciferase expression in HeLa cells. Inhibition is reported as the ratio of
Firefly luciferase to Renilla luciferase expression, normalized to cell viability count, after cell incubation with LNA/2 0-O-methyl derivatives. Left to
right, oligonucleotide concentrations are 0, 62.5,125, and 250 nM.
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with five LNA units were poor TAR ligands, suggesting that

the loop conformation was too constrained for stable loop–

loop interaction.

Derivatives that contained four LNA monomers showed

more interesting properties: 5 of the 16 combinations displayed

a Kd between 1 and 25 nM (Table 1). In a 2 0-O-methyl context,

the ligand with LNA substitutions at positions 2, 4, 6 and 7,

LMO62467, displayed an affinity for TAR higher (Kd = 1.8 ±

1.0 nM) than its counterpart in a DNA context (Kd =

21.1 ± 2.1 nM, [5]). This may be related to a more favourable

A-type geometry of the loop in LNA/2 0-O-methyl derivatives

compared to LNA/DNA sequences, where the N-type confor-

mation adopted by the DNA sugars is induced by the neigh-

bouring LNA monomers. When positions 6 and 7 were

modified, low Kd’s are generally observed. In contrast, LNA

residues incorporated into positions 2 and 3, on the 5 0 side

of the loop, resulted in weak binding: five combinations

yielded a Kd above 100 nM (Table 1). The only noticeable

exception was compound 2367, thanks to the effect of the 2

LNA residues on the 3 0 side of the loop. Thus, structural deter-

minants for stable loop–loop interaction are different on the

two sides of the aptamer loop, suggesting that in addition to

loop–loop complementarity non-canonical interactions, such

as base-stacking, are crucial for stability. This result agrees

well with a previous study on a natural kissing complex from

E. coli, RNAI-RNAII, which showed that inversion of the

loop sequences of wild-type hairpins 5 0–3 0 resulted in a com-

plex 350-fold more stable [20,21] than the original wild-type.

Further analysis of chimeric analogues with three, two or

even one LNA substitution emphasizes this trend. Derivatives

with three contiguous LNA units on the 3 0 side of the loop

(LMO6456 and LMO6567) are good TAR ligands (Kd between

1 and 5 nM), while those with LNA units of the 5 0 side are

poor ones (LMO6234 and LMO6345, Kd > 500 nM). In contrast

to the observations made with four LNA substitutions, when

positions 6 and 7 are LNAs, one additional LNA on the 5 0 side

of the loop is rather detrimental (see LMO6267, LMO6467 and

LM06367).

Analogues with two LNAs on the 3 0 side of the aptamer

loop are stronger ligands than those with two incorporations

on the 5 0 side. Two oligomers, LMO656 and LMO657, display

a Kd below 1 nM, (0.27 nM ± 0.18 and 0.27 ± 0.12 nM, respec-

tively), compared to the LM062467 derivative (Kd = 1.8 ±
1.0 nM) or the RNA aptamer (Kd = 1.31 ± 0.15 nM). Overall,

the insertion of two LNA units is rather well tolerated, since

most of the dissociation constants (13 out of 15) are below

25 nM. Chimeric analogues with a single LNA substitution be-

have similarly and confirm the trend. Substitutions at positions

2, 3 or 4 generate ligands displaying lower affinity for the RNA

target compared with those modified at positions 5, 6 or 7. The

best ligand, LM065, shows a Kd of 0.72 ± 0.27 nM.

The inhibitory effect of LNA/2 0-O-methyl derivatives was

tested in a TAR-dependent double-luciferase HeLa cell repor-

ter system as described previously [16,17]. No effect was

observed with LM062467 (Fig. 2) or with LM0624(C fi A)67,

where LNA monomers are at similar positions but with a

C fi A mismatch at position 4 in the loop. A clear dose-depen-

dent reduction in the firefly luciferase/Renilla luciferase ratio

was observed with LM00656, one of the best ligands of mini-

TAR, where the Kd (0.27 ± 0.18 nM) is almost 10-fold lower

than for LM062467 (Kd = 1.8 ± 1.0 nM).

A recent study where LNA monomers were included in 2 0-O-

methyl RNA–RNA heteroduplexes [8] was aimed at ratio-

nalizing the influence of LNA on heteroduplex stability: (i)

3 0 terminal U LNA and 5 0 terminal LNAs were less stabilizing

than interior and other 3 0 terminal LNAs, (ii) most of the sta-

bility enhancement was observed when LNA nucleotides are

separated by at least one 2 0-O-methyl nucleotide, (iii) the ef-

fects of LNA modifications were more or less additive when

LNA units were separated by at least one 2 0-O-methyl mono-

mer. These conclusions do not fit with our results and thus one

cannot extrapolate trends observed for unconstrained linear

duplexes to kissing complexes. The benefit to stability brought

by LNA residues on the 3 0 side of the aptamer loop might be

related to the known stacking of the loop on the 3 0 strand of

the hairpin stem.

In conclusion, three LNA/2 0-O-Me derivatives that dis-

played a higher binding affinity for the HIV-1 TAR element

than the parent RNA aptamer were identified by a systematic

screening of all combinations within the aptamer loop se-

quence. One of these winning chimeras inhibits the TAR-

dependent transcription.
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