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a b s t r a c t

The conventional precision-based decision analysis methodology is invalid for business
decision analysis when precise assessment data seldom exist. This paper considers the
Cournot game with fuzzy demand and fuzzy costs that are assumed to be triangular fuzzy
numbers. Our model utilizes the weighted center of gravity (WCoG) method to defuzzify
the fuzzy profit function into a crisp value. We derive the equilibrium Cournot quantity
of each firm by simultaneously solving the first-order condition of each firm. Our model
explicitly derives the necessary condition to avoid an unreasonable outcome of negative
equilibrium quantities and lack of flexibility for modification of the ranking method. In
addition,we examine the standard deviation of the fuzzy profit resulting from the fuzziness
of each firm’s cost and market demand functions. We conduct sensitivity analysis to
investigate the effect of parameter perturbations on firms’ outcomes. The results indicate
that the center of parameter plays an important role in sensitivity analysis and dominates
over variations in equilibrium quantity due to a perturbation of fuzzy parameters.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Game Theorymodels and analyzes situations inwhichmultiple agents have their ownprofit functions and independently
make their decisions. Often, the decisions ofmultiple agents affect the payoffs of the others. The classic Cournotmodel is one
of several models commonly applied to analyze such precise scenarios. Liang et al. [1] categorize them as precision-based
models since all data and required parameters are precise. However, in the real world, many uncertain factors that exist
in the decision environment (e.g., customer demand, production fluctuation, etc.) tend to restrict the usage of the classic
Cournot model to real problems. This motivates us to develop the Cournot model with fuzzy parameters instead of precise
information, which is usually difficult to obtain, even unavailable, in reality.
The literature has focused on the randomness aspect of uncertainty andmany stochastic models have been developed to

account for uncertainty in game-theoretical models [2,3] where uncertain parameters are typically modeled by probability
distributions. However, the probability distribution may not be available in practice or may be difficult to estimate from
limited data points. For instance, it is difficult to provide exact estimates of a manufacturer’s variable cost because
procurement costs may fluctuate. Under this scenario, the fuzzy set theory is an appropriate modeling tool when uncertain
parameters cannot be described in distributions. In addition, the fuzzy set theory provides a mathematical approach to
model the intrinsic vagueness and imprecision of human cognitive processes, e.g., the phrase ‘‘around x dollars’’ to describe
a cost that can be regarded as a fuzzy number x̃.
Since Zadeh [4] introduced the concept of fuzzy sets, applications to game theory have been proposed in the literature. In

general, there are two streams of fuzzy games: fuzzymatrix games and fuzzy non-cooperative games.Most of them consider
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Table 1
Relative papers of fuzzy games.

Fuzzy parameters Model type
Economic surplus Revenue Mutual price Non-cooperative game

Fuzzy demand Chang and Yao [11] Yao and Wu [12] Yao and Shih [14]
Yao and Chang [13] Xu and Zhai [15]

Fuzzy cost Liang et al. [1]
Wang et al. [16]

Fuzzy demand and fuzzy cost Yao and Wu [8]

only at zero-sum games. Campos [5] proposes the fuzzy matrix game which is based on the establishment of a fuzzy linear
programming for each player, but does not define explicit concepts of the equilibrium strategy. For bi-matrix games with
fuzzy payoffs, Maeda [6] defines two types of concepts of equilibrium strategies and investigates their relations. Liu and
Kao [7] apply the extension principle and a pair of two-level mathematical programming to construct the membership
function of matrix games.
Yao andWu [8] probably initiated the fuzzy non-cooperative games involving fuzzy data. They apply the rankingmethod

transforming fuzzy numbers into crisp numbers for comparison to defuzzify the demand and supply functions so that
consumer surplus and producer surplus can be calculated in a conventional manner. Their concept is also utilized to
construct the inventory models by Ouyang and Yao [9] and Wu and Yao [10]. Chang and Yao [11] optimize the revenue
of monopoly when the parameters of the demand function are fuzzy numbers. Yao and Wu [12] discuss the best price of
two mutual complementary merchandises in fuzzy sense. Yao and Chang [13] obtain the optimal quantity for maximizing
the profit function whose parameters are fuzzy numbers. Yao and Shih [14] derive the membership function of the profit
function when the optimal quantity occurs. Xu and Zhai [15] develop an optimal technique for dealing with the fuzziness
aspect of demand uncertainties for supply chains. Liang et al. [1] propose their duopoly model involving fuzzy cost to obtain
the optimal quantity of each firm. Recently, Wang et al. [16] introduce their fuzzy Bayesian game where the decision rules
for players are based on the creditability theory. Table 1 shows the classification of fuzzy parameters andmodel typeswhere
fuzzy parameters include the demand, cost or both, and the model types contain economic surplus, revenue, mutual price
and non-cooperative games. It should be noted that the approaches described in existing papersmay lead to an unreasonable
outcome where the model returns a negative optimal quantity in some circumstances due to fuzzy parameters. Further,
Liang et al. [1] only account for fuzzy costs without fuzzy demand.
In this paper, we propose the Cournot game with fuzzy demand and cost, which to our knowledge has not appeared in

the literature. We highlight two important drawbacks in previous studies: an unclear restriction of occurrence of a negative
equilibrium quantity, and limited flexibility for modification of the ranking method in fuzzy modeling. We propose a fuzzy
Cournotmodelwith rigorous definitions to ensure a positive equilibriumquantity andwith a flexible controllingmechanism
for decision-makers. This paper describes amethod solving for the equilibrium quantity of each competing firm in a duopoly
market with fuzzy parameters that give several important managerial insights by examining the variation of the profit
function in the fuzzy environment.
We utilize the weighted center of gravity (WCoG) which is proposed by Bender and Simonovic [17] to defuzzify the

profit function of each firm into a crisp value. Each firm desires to make decisions that optimize its particular objective
profit functions. In the equilibrium quantity, no firm can be better off by a unilateral change in its solution. Mathematically
the equilibrium quantity can be obtained by simultaneously solving the first-order condition of each firm’s objective profit
function. In addition, we utilize the variation index proposed by Lee and Li [18] to calculate the variation in the firms’ profit
functions. For simplicity, we assume that the demand function and cost function of the firms exist with the form of linearity
and fuzzy parameters. The linearity assumption is commonly used in the literature [11,13] and it assists in obtaining the
qualitative managerial insights with less analytical complexity. It also has the desirable properties for approaching the
equilibrium quantities.
The remainder of this paper is organized as follows. In Section 2, we introduce the concept and definitions. Section 3

addresses the fuzzy Cournot model followed by the proposed method to solve for the equilibrium quantity of each firm in
the fuzzy context. Section 4 conducts the sensitivity analysis to investigate the effect of parameter perturbation on firms’
outcomes. Section 5 presents the conclusions and suggestions for future research.

2. Definitions

Zadeh [4] introduced fuzzy set theory to analyze and solve problemswith sources of vagueness called fuzziness. Theword
‘‘fuzziness’’ captures the properties of parameters when in reality decision-makers rarely have sharp boundaries and/or
cannot precisely determine them. Below we briefly introduce the definitions and notations used in this paper.
Let X be a universal set. A fuzzy subset Ã of X is defined by its membership function µÃ : X → [0, 1]. We denote by

Ãα = {x : µÃ(x) ≥ α} the α-level set of Ã. The fuzzy number, Ã, is called a normal fuzzy set if there exists x such that
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µÃ(x) = 1. In addition, the fuzzy number, Ã, is called a convex fuzzy set if µÃ(λx + (1 − λ)y) ≥ min(µÃ(x), µÃ(y)) for
λ ∈ [0, 1]. This paper assumes the universal set X is a real number system, i.e., X = <. A fuzzy number, Ã, must satisfy:

(i) Ã is a normal and convex fuzzy set,
(ii) its membership function, µÃ, is upper semi-continuous, and
(iii) the α-level set, Ãα , is bounded for each α ∈ [0, 1].

The fuzzy number, Ã, is called a nonnegative fuzzy number if µÃ(x) = 0 for all x < 0, and a nonpositive fuzzy number
if µÃ(x) = 0 for all x > 0. It is obvious that Ã

L
α and Ã

U
α are nonnegative real numbers for all α ∈ [0, 1] if Ã is a nonnegative

fuzzy number, and ÃLα and Ã
U
α are nonpositive real numbers for all α ∈ [0, 1] if Ã is a nonpositive fuzzy number.

2.1. Fuzzy arithmetic operation

Let ‘‘�’’ be any binary operation ⊕ or ⊗ between two fuzzy numbers ã and b̃. The membership function of ã � b̃ is
defined by

µã�̃b (z) = sup
x◦y=z

min
{
µã(x), µb̃(y)

}
using the extension principle in [4], where the operations�,=,⊕, and⊗ correspond to the operations ◦,=,+, and×. Thus
we review the following definition for derivation purposes.

Definition 1 ([19]). Let ã and b̃ be two fuzzy numbers. Then ã⊕ b̃ and ã⊗ b̃ are also fuzzy numbers. Further, we have(̃
a⊕ b̃

)
α
=
[̃
aLα + b̃

L
α, ã

U
α + b̃

U
α

]
and (̃

a⊗ b̃
)
α
=
[
min

(̃
aLα · b̃

L
α, ã

U
α · b̃

U
α , ã

L
α · b̃

U
α , ã

U
α · b̃

L
α

)
,max

(̃
aLα · b̃

L
α, ã

U
α · b̃

U
α , ã

L
α · b̃

U
α , ã

U
α · b̃

L
α

)]
.

Definition 1 is useful when considering the linear model in this paper.

2.2. Triangular fuzzy number

In practice, the most commonly used fuzzy numbers are triangular fuzzy numbers because they are easy to handle
arithmetical operations and they have intuitive interpretations [20]. The triplet, (x, l, r), denotes a triangular fuzzy number
with the apex x, left-spread l, and right-spread r . In other words, the lower and upper bounds of x are x − l and x + r
respectively. For notational simplicity, we let xU (xL) denote the upper (lower) bound of x.

2.3. Weighted center of gravity measure

Many ranking methods have been proposed (see [21,22]). The center of gravity (COG) method, also called the centroid
method [23], is widely used because of its straightforward geometrical meaning. However, the COGmethod is inappropriate
to distinguish two fuzzy sets that may have the same centroid, but greatly differ in the degree of fuzziness. In this case, the
WCoG method is more useful [17]:

WCoG =

∫
g(x)µ(x)kdx∫
µ(x)kdx

, (1)

where g(x) is the horizontal component of the area under scrutiny andµ(x) is the membership function value. The value of
k is a control parameter ranging from k = 1 to k = ∞. In practice, decision-makers determine g(x) and the magnitude of k.
This paper applies the WCoG method to retrieve crisp values. In (1), there are two control parameters: g(x) and k; the final
selection of appropriate control parameters depends upon the decision-makers’ level of risk tolerance (see [17]).

2.4. Measurement of variation

Lee and Li [18] propose the use of generalized mean and the standard deviation, listed in (2) and (3), based on the
probability measure of fuzzy events to rank fuzzy numbers. This method ranks fuzzy numbers on the basis of the fuzzy
mean and the spread of fuzzy numbers, and assumes two kinds of the probability distributions of fuzzy numbers: uniform
distribution and proportional distribution. We adopt the uniform distribution for calculation simplicity in this paper. The
uniform distribution, U , with the spreads |̃A| of the fuzzy number has probability density function

f (̃A) = 1/|̃A| and Ã ∈ U .
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The mean, x̃(̃A), and standard deviation, σ̃ (̃A), of fuzzy number Ã are defined as

x̃(̃A) =
∫
S (̃A)
xµÃ(x)dx

/∫
S (̃A)

µÃ(x)dx, (2)

σ̃ (̃A) =
[(∫

S (̃A)
x2µÃ(x)dx

/∫
S (̃A)

µÃ(x)dx
)
−
(̃
x(̃A)

)2]1/2
(3)

where S (̃A) is the support of fuzzy number Ã.When fuzzy number Ã is a triangular fuzzy number, (2) and (3) can bewritten as

x̃(̃A) = 1/3
(
xL + x+ xU

)
, (4)

σ̃ (̃A) = 1/18
((
xL
)2
+ (x)2 +

(
xU
)2
− xLx− xxU − xLxU

)
. (5)

3. The fuzzy Cournot model

As we have noted it is almost impossible to find the exact economic assessment data for parameters’ estimation in the
real world. Therefore, we apply the fuzzy set theory to solve the fuzzy Cournot game with the fuzzy demand function and
fuzzy cost function.

3.1. The Cournot equilibrium quantity in a duopoly market

Let qi denote the production quantity of firm i, i = 1, 2. Consider the general fuzzy profit function of firm i, π̃i, as

π̃i = p̃(Q ) · qi − T̃C(qi) (6)

where p̃(Q ) is the fuzzy inverse demand function, T̃C(qi) is the fuzzy cost function of firm i and Q is the total quantity in the
duopoly market, namely Q = q1 + q2.
The fuzziness of p̃(Q ) and T̃C(qi) result from the fuzzy parameters of the inverse demand function and the cost function.

From (6) it is clear that if p̃(Q ) or T̃C(qi) is unbounded, then π̃i is unbounded. However, since unboundedness is irrational
in the real world, this paper assumes that both p̃(Q ) and T̃C(qi) are bounded. Thus, π̃i is bounded as well. The upper (lower)
bound of π̃i denoted by πUi (π

L
i ) can be obtained by the extension principle. According to fuzzy arithmetic operations, the

profit function of firm i is a fuzzy number, which may cause difficulty in solving for each firm’s equilibrium quantity. In this
paper, we utilize (1) to defuzzify the profit function into a crisp value. The center of the fuzzy profit function can be stated as

WCoG(π̃i) =

∫ πUi
πLi
g(πi)µ(πi)kdπi∫ πUi
πLi
µ(πi)kdπi

. (7)

The equilibrium quantity of the conventional Cournot game is directly related to each firm’s profit function. Additionally,
we imagine that the equilibrium quantity derived by our proposed model is related to the resulting profit function. As
expected, if the profit function of each firm is unbounded, the equilibrium quantity is also unbounded. Thus, (7) requires a
more rigorous definition so that the estimated profit function of each firm is bounded and the equilibrium quantity indeed
exists.

Proposition 1. If
∫ πUi
πLi
g(πi)dπi is bounded, theWCoG(π̃i) is bounded.

Proof. Let µ(πi) be the membership function of the fuzzy profit function. Thus, we observe that the possibility of µ(πi) is
always less than or equal to one. The membership function is contained by a rectangle; the height of the rectangle is equal
to one and the base of the rectangle extends between the upper bound of the fuzzy profit function and the lower bound of
the fuzzy profit function, πUi − π

L
i respectively. The shape of the membership function µ(πi)

k differs when the value of k
varies, but µ(πi)k is still contained by a rectangle whose height and base are 1 and πUi − π

L
i . Therefore, one can argue that

the integration of membership function µ(πi)k has the inequality

0 ≤
∫ πUi

πLi

µ(πi)
kdπi = w ≤ πUi − π

L
i , (8)

wherew is a constant. Thus, (7) can be rewritten as

WCoG(π̃i) = 1/w ·
∫ πUi

πLi

g(πi)µ(πi)kdπi. (9)
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Because the maximum value of µ(πi)k is 1, (9) can be rearranged as

WCoG(π̃i) = 1/w ·
∫ πUi

πLi

g(πi)µ(πi)kdπi ≤ 1/w ·
∫ πUi

πLi

g(πi)dπi. (10)

Thus, if
∫ πUi
πLi
g(πi)dπi is bounded, WCoG(π̃i) is bounded as well. �

We note that decision-makers who utilize (7) to defuzzify the fuzzy profit function, must check whether
∫ πUi
πLi
g(πi)dπi

is bounded. The best response function, an important concept in game theory, returns the quantity that yields the optimal
profit for firm i given other players’ decisions about the quantity. In this paper, we use (7) to defuzzify the fuzzy profit
function into a crisp value. Thus, the best response functions of firm i can be obtained by optimizing each firm’s profit
functions with respect to each firm’s decision variable qi while assuming the competitors’ quantity qj as given. The resulting
best response functions are

Ri
(
qj
)
= argmaxWCoG (π̃i) , i 6= j, i, j = 1, 2. (11)

We can obtain the equilibrium quantity of each firm by simultaneously solving the first-order condition being obtained
by letting the partial derivative of each firm’s profit function equal zero. Now that we have crisp values, we can examine
the variations of the profit function to provide more information for decision-makers. As discussed earlier, we can express
in (3) or (5) the profit variation resulting from the gap of the parameter’s spread of both the firm’s cost and market demand
functions. In addition, the optimistic and pessimistic cases can be realized by membership function µ(πi), which can be
derived by the extensionprinciple in [4].Moreover,we can adapt our proposedmethod to fit the different criteria of decision-
makers or markets by setting different controlling mechanisms of g(x) and k.

3.2. Linear model

Next, we develop the fuzzy Cournot game that includes the parameters with triangular fuzzy numbers, a linear inverse
demand and cost functions. Initially, we introduce the conventional Cournot game and generalize it in the fuzzy environ-
ment. Given the linear inverse demand function

p(Q ) = a− bQ , 0 ≤ Q ≤
a
b

(12)

where a, b > 0 are given numbers and p(Q ) is the unit price, which is a function of themarket demand quantity Q . The total
cost function of firm i, i = 1, 2, denoted by TCi(qi), is stated as

TCi(qi) = ci + diqi (13)
where ci denotes the production fixed cost of firm i and di represents the production variable cost of firm i. Then the profit
function of firm i is given by

πi = p(Q ) · qi − TCi(qi) = (a− bQ )qi − TCi(qi). (14)
Without loss of generality, we assume that all parameters are fuzzy numbers since crisp values can be treated as

degenerated fuzzy numbers. In other words, the last two elements in the triplet of the fuzzy number are equal to zero for a
crisp value. Particularly in the linear model, we let fuzzy sets p̃(Q ) = ã− b̃Q , T̃C i(qi) = c̃i+ d̃iqi, and π̃i = p̃(Q ) ·qi− T̃C i(qi)
where p̃(Q ), T̃C i(qi), and π̃i represent the fuzzy price, fuzzy cost function of firm i and fuzzy profit function of firm i, i = 1, 2,
respectively. Triangular fuzzy numbers are adopted in this paper because they are considered themost suitable formodeling
the market demand; see [24,25]. We assume that all parameters are nonnegative triangular fuzzy numbers; in other words,
all elements in the following triplets of fuzzy numbers are nonnegative.

ã = (a, la, ra) ,
b̃ = (b, lb, rb) ,
c̃i =

(
ci, lci , rci

)
,

d̃i =
(
di, ldi , rdi

)
.

(15)

By Definition 1, when ã and b̃ are triangular fuzzy numbers, we have
p̃(Q ) = (a− bQ , la + rbQ , ra + lbQ ) . (16)

To derive the lower bound of price, wemust substitute the lower bound of a, namely a− la, and the upper bound of b, namely
b+ rb, into (12). Also, the upper bound of price can by derived by substituting the upper bound of a, namely a+ ra, and the
lower bound of b, namely b− lb, into (12). Similarly, T̃C i(qi) and π̃i are given by

T̃C i(qi) =
(
TCi, lci + ldiqi, rci + rdi qi

)
,

π̃i =
(
πi, (la + rbQ ) qi +

(
rci + rdi qi

)
, (ra + lbQ ) qi +

(
lci + ldiqi

))
.

(17)

Note that p̃(Q ), T̃C i(qi), and π̃i are triangular fuzzy numbers as well due to the extension principle.
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The controllingmechanism should be clearly defined and follows Proposition 1 before applying (1) to defuzzify the fuzzy
profit function into a crisp value. For illustrative purposes, this paper assumes k = 1 and g(x) = x. Simply put, it is the same
as the centroid method and it weights all of the values with different possibility to form a single value to represent a fuzzy
number. Since each firm’s fuzzy profit function is a triangular fuzzy number, WCoG(π̃i) can be easily calculated as

WCoG (π̃i) =

∫
∞

−∞
πiµπ̃idπi∫

∞

−∞
µπ̃idπi

=
1
3

(
π Li + πi + π

U
i

)
. (18)

Thus, the partial derivative of WCoG(π̃i) can be stated as

∂WCoG (π̃i)
∂qi

= a− 2bqi − bqj − di +
1
3
[(ra − la)+ 2(lb − rb)qi + (lb − rb)qj + (ldi − rdi)], i, j = 1, 2, i 6= j. (19)

By letting (19) equal zero, the first-order condition of firm i, i = 1, 2, can be obtained. The equilibrium quantity of firm i
follows by simultaneously solving the first-order conditions of firms 1 and 2. Thus, we have

qi =

[
a+

(
dj − 2di

)
−
1
3 (la − ra)+

2
3

(
ldi − rdi

)
−
1
3

(
ldj − rdj

)]
[3b− (lb − rb)]

, i, j = 1, 2, i 6= j. (20)

The denominator of (20), 3b− (lb − rb), can be decomposed into three terms

3b− (lb − rb) = (b− lb)+ b+ (b+ rb). (21)

Because b − lb is nonnegative, (21) is obviously greater than zero. To ensure a nonnegative equilibrium quantity of firm i,
we impose the condition such that qi ≥ 0, i = 1, 2. From this condition follows Assumption 1.

Assumption 1. a+ (dj − 2di)− 1
3 (la − ra)+

2
3 (ldi − rdi)−

1
3 (ldj − rdj) ≥ 0.

In addition, (20) is the same as the equilibrium quantity of the conventional Cournot game when the spreads of all
parameters are equal to zero. Next, we calculate the variance of each firm’s profit by the Lee and Li [18] index and we
suppose the distribution of the fuzzy profit function is the uniform distribution. The standard deviation of the fuzzy profit
function can be defined as

σ(π̃i) =

[∫
S(π̃i)

(π2i µπ̃idπi)
/∫

S(π̃i)
(µπ̃idπi)

2
− (WCoG(π̃i))2

]1/2
. (22)

By substituting (18) into (22), when the fuzzy profit function is a triangular fuzzy number, (22) can be rewritten as

σ̃ (π̃i) = 1/18
((
π Li
)2
+ (πi)

2
+
(
πUi
)2
− π Li π

U
i − πiπ

U
i − π

L
i πi

)
, (23)

where πUi , πi, and π
L
i can be obtained by (17). Using the solution procedure proposed in this section, we now have both the

equilibrium quantity and the standard deviation of the fuzzy profit function of firms 1 and 2.

3.2.1. Uniqueness and existence of equilibrium quantity
The equilibrium quantity (20) is a solution to a system of two first-order conditions. Non-existence of an equilibrium

quantity is a potential outcome depending on the value of the parameters. In the linear model proposed in this paper, the
equilibrium quantity does exist under the condition we discuss later and there is a simple way to show that the equilibrium
quantity is unique.

Proposition 2. If the lower bound of parameter b is greater than zero, namely b − lb > 0, there exists a unique equilibrium
quantity of firms 1 and 2.

Proof. By letting (19) equal zero, the equilibrium quantities of firms 1 and 2 are obtained by simultaneously solving their
two first-order conditions. Obviously, (19) is a linear system when the demand and cost functions are linear. We can solve
a linear system by Cramer’s Rule (see [26]).
Let∆ be a 2× 2 matrix defined as

∆ =

[
2B B
B 2B

]
, where B = b−

1
3
(lb − rb). (24)

The determinant of∆, denoted by det(∆), is 4B2 − B2 = 3B2. We can decompose entry B into three terms as

B =
1
3
(b− lb)+

1
3
b+

1
3
(b+ rb). (25)

The first term in (25), (b− lb), is the lower bound of parameter b. If the lower bound of parameter b is greater than zero, we
have B > 0. By Cramer’s Rule, we show that the equilibrium quantity of firms 1 and 2 is unique if and only if det(∆) 6= 0.
This completes the proof. �
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3.2.2. Illustrative examples
The solution procedure that we have proposed is to find the equilibrium quantity in a duopoly market. To demonstrate

the proposed method, we consider the Cournot game with the following problem setups.

Example 1. Suppose p(Q ) = 12−Q , 0 ≤ Q ≤ 12, then a = 12, b = 1 and cost function of firms 1 and 2, TC1(q1) = 2+4q1,
TC2(q2) = 1+ 5q2 in the crisp case. The equilibrium quantity of the conventional Cournot game can be obtained by substi-
tuting zero spreads in our model. Hence, the equilibrium quantity of firm 1 is 3 units (q∗1 = 3), and the equilibrium quantity
of firm 2 is 2 units (q∗2 = 2).

Example 2. We consider the case with fuzzy parameters. Let ã = (12, 1, 2), b̃ = (1, 1, 1), c̃1 = (2, 1, 1), d̃1 = (4, 1, 2),
c̃2 = (1, 1, 1), and d̃2 = (5, 2, 1). We can obtain the equilibrium quantity of firms 1 and 2 as

q1 =
12+ (5− 8)− 1

3 (1− 2)+
2
3 (1− 2)−

1
3 (2− 1)

3× 1
=
25
9
,

q2 =
12+ (4− 10)− 1

3 (1− 2)−
1
3 (1− 2)+

2
3 (2− 1)

3× 1
=
22
9
.

Given the equilibrium quantity of each firm, we calculate the standard deviation of the fuzzy profit function of each firm as

σ̃ (π̃i) = 1/18
((
π Li
)2
+ (πi)

2
+
(
πUi
)2
− π Li π

U
i − πiπ

U
i − π

L
i πi

)
, i = 1, 2 (26)

where

π Li = ((a− la)− (b+ rb)Q ) qi −
(
ci + rci

)
−
(
di + rdi

)
qi

πi = (a− bQ ) qi − ci − diqi
πUi = ((a+ ra)− (b− lb)Q ) qi −

(
ci − lci

)
−
(
di − ldi

)
qi

i = 1, 2.

Substituting the qi, Q , and parameters into (26), the standard deviation of the profit of firms 1 and 2 is

σ̃ (π̃1) = 94.72,
σ̃ (π̃2) = 74.52.

4. Sensitivity analysis

The goal of sensitivity analysis is to investigate the effect of parameter perturbations on the resulting outcome such as
the equilibrium quantity and firms’ profits so that we gain several managerial insights from the proposed model. As we can
see, (20) indicates that the terms, la − ra and ldj − rdj , have negative coefficients. Parameters la and ra can be interpreted
as the left- and right-spreads of fuzzy parameter ã in the demand function. An increase in la − ra (the difference between
left- and right-spreads in a) would result in a decrease in each firm’s equilibrium quantity. Similarly, from (20), an increase
in ldj − rdj (the difference between left- and right-spreads of the competitor’s production variable cost dj) would lead to a
decrease in the equilibrium quantity of the firm as well. In (20), the term, ldi − rdi , is with a positive coefficient. As a result,
an increase in ldi − rdi (the difference between the left- and right-spreads of its own production variable cost di) would
lead to an increase in the equilibrium quantity. It is interesting to note that the coefficient magnitude of ldi − rdi is greater
than that of ldj − rdj ; in other words, the equilibrium quantity decreases in ldj − rdj , but increases in ldi − rdi at a faster rate.
However, there are other factors affecting the change in the equilibrium quantity rather than the differences between the
left- and right-spreads. From (20), decision-makers cannot examine how a total spread of a fuzzy parameter could affect the
equilibrium quantity; for example, it is not obvious how the change in la + ra affects qi for firm i. The next section describes
our study of parameter centers in sensitivity analysis.

4.1. Effect of parameter centers

As discussed earlier, fuzzy parameters can be defuzzified into a crisp value representing the center of the associated fuzzy
parameter. We now look at the impacts of parameter centers.

Proposition 3. The equilibrium quantity of each firm is only affected by the centers of the parameters.

Proof. Considering the center of triangular fuzzy parameter a, it is trivial having the center of a in (27).

ac =
1
3
(a− la + a+ a+ ra) . (27)
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Table 2
Partial derivatives of outcomes with respect to different centers.

ac bc dci dcj

Q 2/3bc −3(2ac − dcj − d
c
i )/(3b

c)2 −1/3bc −1/3bc

qi 1/3bc −3(ac + dcj − 2d
c
i )/(3b

c)2 −2/3bc 1/3bc

WCoG(π̃i)
2(ac+dcj −2d

c
i )

9bc
−3(2ac−dcj −d

c
i )(a

c
+dcj +d

c
i )

27(bc )2
−4(ac+dcj −2d

c
i )

3bc
2ac+2dj−2di

9bc

Similarly, the centers of the other fuzzy parameters can be written as

bc =
1
3
(b− lb + b+ b+ rb) ,

dci =
1
3

(
di − ldi + di + di + rdi

)
,

dcj =
1
3

(
dj − ldj + dj + dj + rdj

)
.

(28)

Substituting (27) into (20), (20) can be rewritten as

qi =
ac + dcj − 2d

c
i

3bc
. (29)

Although both (20) and (29) represent the equilibrium quantity of each firm, (29) is much more convenient for illustrative
purposes in sensitivity analysis and it completes the proof. �

All possible perturbation in parameters can be represented in the right-hand side of (27) or (28) and translated into the
change in the center of the associated fuzzy parameter. From Proposition 3, the equilibrium quantity is a function of the
center of fuzzy parameters ac , bc , dci , and d

c
j as shown in (29). Therefore, the change in the equilibrium quantity due to any

perturbation in fuzzy parameters can be explored by (29). Suppose that the right-spread of fuzzy parameter a, namely ra,
increases. It is clear that ac would be larger and it is with a positive coefficient in (29). As the result, the equilibrium quantity
increases in ac .
From (29), the total market demand is written as

Q = q1 + q2 =
2ac − dci − d

c
j

3bc
. (30)

We can now conduct the sensitivity analysis of the totalmarket demand and equilibriumquantity of firms. Taking the partial
derivative of (29) and (30) with respect to ac , we have

∂qi
∂ac
=
1
3bc

, (31)

∂Q
∂ac
=
2
3bc

. (32)

Similarly, we also take the partial derivatives of (29) and (30) with respect to other centers of fuzzy parameters. Following
Assumption 1, the resulting equilibrium quantity is positive, and implies that the numerator of (29), ac+dcj −2d

c
i , is positive

aswell. The total quantity of themarket demand is positive simply because of the positive quantities of both individual firms;
therefore, the numerator of (30), 2ac−dcj −d

c
i , is positive. Table 2 summarizes these results (for example,

∂Q
∂ac =

2
3bc is listed

in the upper-left cell in Table 2). From Table 2, we have the following statements:

• the total market demand, Q , increases in ac , but decreases in bc , dci , and d
c
j , and

• the equilibrium quantity of firm i, qi, increases in ac and dcj , but decreases in b
c and dci .

Note that the equilibrium quantity of firm i increases in dcj , but the equilibrium quantity of firm j decreases in d
c
j at a

faster rate so that an increase in dcj would lead to a decrease in Q .
Next, we consider the weighted center of the fuzzy profit function, WCoG(π̃i), as perturbations of the center of fuzzy

parameters occur. After some algebraic manipulations, (18) can be rewritten as

WCoG (π̃i) =
(
ac − bcQ

)
qi −

(
cci + d

c
i qi
)
. (33)

Again, we take partial derivative of (33) with respect to ac and we have

∂WCoG(π̃i)
∂ac

= qi + ac
∂qi
∂ac
− bcQ

∂qi
∂ac
− bc

∂Q
∂ac
qi − dci

∂qi
∂ac

. (34)
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Using the results of the first two rows in Table 2, (34) can be rewritten as

∂WCoG(π̃i)
∂ac

= qi + ac
1
3bc
−
1
3
Q −

2
3
qi − dci

1
3bc
= ac

1
3bc
−
1
3
qj − dci

1
3bc
=
2
3
qi. (35)

Similarly, we can also take the partial derivative of (33) with respect to the other centers of fuzzy parameters. From earlier
discussion, we know ac + dcj − 2d

c
i > 0 and 2a

c
− dcj − d

c
i > 0. Trivially, 2a

c
+ 2dcj − 2d

c
i is positive since 2a

c
+ 2dcj − 2d

c
i

is greater than ac + dcj − 2d
c
i . Therefore, the sign of the last row in Table 2 can be determined by these inequalities. We

summarize these results indicating the change rate in WCoG(π̃i)with respect to the centers of fuzzy parameters. From the
last row in Table 2, we have the following statement:
• the weighted center of the fuzzy profit function increases in ac and dcj , but decreases in b

c and dci .

4.2. Analysis of variation of the fuzzy profit function

It is interesting to discuss the effect of the perturbation of fuzzy parameter centers on the standard deviation of firms’
profits. Taking the partial derivative of (23) with respect to ac , we have

∂σ (π̃i)

∂ac
= WCoG (π̃i)

2
3
qi −

1
6
∂
(
π Li · π

U
i + π

L
i · πi + πi · π

U
i

)
∂ac

. (36)

Our purpose is to show the mathematical relation between ac and σ(π̃i). Considering the second term of (36),
∂(πLi ·π

U
i +π

L
i ·πi+πi·π

U
i )

∂ac , it can be decomposed into three terms of ∂(π Li · π
U
i )/∂a

c , ∂(π Li · πi)/∂a
c and ∂(πi · πUi )/∂a

c . The first
term can be further simplified as

∂
(
π Li · π

U
i

)
∂ac

=
∂π Li

∂ac
πUi +

∂πUi

∂ac
π Li

=

{
3qi +

b∗
( 5
3d
c
i −

1
3d
c
j

)
+ aL − dUi

3bc

}
πUi +

{
3qi +

b∗∗
( 5
3d
c
i −

1
3d
c
j

)
+ (a+ ra)−

(
di − ldi

)
3bc

}
π Li

= 3qiπUi + θπ
U
i + 3qiπ

L
i + δπ

L
i , (37)

where

b∗ =
b+ rb
bc

,

b∗∗ =
b− lb
bc

θ =
b∗
( 5
3d
c
i −

1
3d
c
j

)
+ (a− la)−

(
di + rdi

)
3bc

,

δ =
b∗∗

( 5
3d
c
i −

1
3d
c
j

)
+ (a+ ra)−

(
di − ldi

)
3bc

.

Similarly, the second and third terms are

∂
(
π Li · πi

)
∂ac

=
∂π Li

∂ac
πi +

∂πi

∂ac
π Li

=

{
3qi +

b∗
( 5
3d
c
i −

1
3d
c
j

)
+ (a− la)−

(
di + rdi

)
3bc

}
πi +

{
3qi +

b∗∗∗
( 5
3d
c
i −

1
3d
c
j

)
+ a− di

3bc

}
π Li

= 3qiπi + θπi + 3qiπ Li + ηπ
L
i ,

∂
(
πi · π

U
i

)
∂ac

=
∂πi

∂ac
πUi +

∂πUi

∂ac
πi

=

{
3qi +

b∗∗∗
( 5
3d
c
i −

1
3d
c
j

)
+ a− di

3bc

}
πUi +

{
3qi +

b∗∗
( 5
3d
c
i −

1
3d
c
j

)
+ (a+ ra)−

(
di − ldi

)
3bc

}
πi

= 3qiπUi + ηπ
U
i + 3qiπi + δπi

(38)

where

b∗∗∗ =
b
bc
,

η =
b∗∗∗

( 5
3d
c
i −

1
3d
c
j

)
+ a− di

3bc
.
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Substituting (37) and (38) into (36), we obtain

∂σ (π̃i)

∂ac
= −

7
3
WCoG (π̃i) qi −

1
6

{
(θ + η) πUi + (θ + δ) πi + (δ + η) π

L
i

}
where WCoG(π̃i), qi, πUi , πi, and π

L
i can be found in (26). Similarly, taking the partial derivative of (23) with respect to d

c
i ,

dcj , and b
c , respectively, we have

∂σ (π̃i)

∂dci
= WCoG (π̃i)

5
3
qi −

1
6

{(
θ ′ + η′

)
πUi +

(
θ ′ + δ′

)
πi +

(
δ′ + η′

)
π Li
}
,

∂σ (π̃i)

∂dcj
= WCoG (π̃i)

2ac + 2dcj − 2
c
i

9bc
−
1
6

{(
θ ′′ + η′′

)
πUi +

(
θ ′′ + δ′′

)
πi +

(
δ′′ + η′′

)
π Li
}
,

∂σ (π̃i)

∂bc
= WCoG (π̃i)

−3
(
2ac − dcj − d

c
i

) (
ac + dcj + d

c
i

)
27 (bc)2

−
1
6
∂
(
π Li · π

U
i + π

L
i · πi + πi · π

U
i

)
∂bc

(39)

where

θ ′ =

1
3b
∗
(
5ac − dcj − 4d

c
i

)
− 2 (a− la)+ 2

(
di + rdi

)
3bc

,

δ′ =

1
3b
∗∗
(
5ac − dcj − 4d

c
i

)
− 2 (a+ ra)+ 2

(
di − ldi

)
3bc

,

η′ =

1
3b
∗∗∗
(
5ac − dcj − 4d

c
i

)
− 2a+ 2di

3bc
,

θ ′′ =
b∗
(
ac − dci

)
+ (a− la)−

(
di + rdi

)
3bc

,

δ′′ =
b∗∗

(
ac − dci

)
+ (a+ ra)−

(
di − ldi

)
3bc

,

η′′ =
b∗∗∗

(
ac − dci

)
+ a− di

3bc
,

∂
(
π Li · π

U
i

)
∂bc

=

{(
b∗ − 3

)
Qqi +

1
bc
qi

(
dUi
3bc
− π Li

)}
πUi +

{(
b∗∗ − 3

)
Qqi +

1
bc
qi

(
dLi
3bc
− πUi

)}
π Li ,

∂
(
πi · π

U
i

)
∂bc

=

{(
b∗∗∗ − 3

)
Qqi +

1
bc
qi

(
dUi
3bc
− πi

)}
πUi +

{(
b∗∗ − 3

)
Qqi +

1
bc
qi

(
di
3bc
− πUi

)}
πi,

∂
(
π Li · πi

)
∂bc

=

{(
b∗ − 3

)
Qqi +

1
bc
qi

(
dUi
3bc
− π Li

)}
πi +

{(
b∗∗∗ − 3

)
Qqi +

1
bc
qi

(
dUi
3bc
− πi

)}
π Li .

Hence, (38) and (39) indicate the change rate in the standard deviation with respect to fuzzy parameter centers. One can
easily conduct sensitivity analysis of the firm’s profit variation by examining the above results.

5. Conclusion

The real world is with many uncertainties in the decision-making environment so that the conventional Cournot model
is inadequate to explain or describe the real situation. Many stochastic models have been developed to handle uncertainty
in game-theoretical models where the uncertain parameters are typically modeled by probability distributions. However,
probability distributions may not be available in practice or may be difficult to estimate from limited or absent data points.
The fuzzy set theory is an appropriate tool to model such a situation when uncertain parameters cannot be described in
probability distributions. In addition, the fuzzy set theory provides a mathematical approach to model intrinsic vagueness
and the imprecision of human cognitive processes.
In this paper, we propose the fuzzy Cournot game for resolving fuzziness aspect of demand and cost uncertainty. We

present a solving procedure for the equilibrium quantity of a general fuzzy Cournot model and indicate the condition to
ensure the existence and uniqueness of the equilibrium quantity. For simplicity, we assume that the demand and cost
functions of firms exist with the form of linearity and fuzzy parameters. The linearity assumption is commonly used in
the literature and it helps us obtain the qualitative managerial insights without computation complexity. The equilibrium
quantities of firms can be obtained by our proposed method. We further investigate the standard deviation of the fuzzy
profit function of each firm to provide decision-makers with more information about the variations in profits.
In addition, we conduct sensitivity analysis to examine the effect of parameter perturbation on firms’ outcomes including

the equilibrium quantity, total market demand and weighted center of the fuzzy profit function. It is worth mentioning that
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the resulting equilibrium quantity of each firm varies with its own parameter at a faster rate than with its competitor’s
parameters. A second finding indicates that the center of parameter plays an important role in sensitivity analysis and it
dominates how the equilibrium quantity varies due to a perturbation of fuzzy parameters. Further research may include
the issue of fuzzy parameters with probability distributions, and our proposed procedure requires additional refinement for
this series of research questions.
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