
PERGAMON Applied Mathematics Letters 15 (2002) 875-879 

Applied 
Mathematics 
Letters 

www.elsevier.com/locate/aml 

Learning and Using Mathematics 
Software the Natural Way 

S. TSE AND V. DAHL 
Department of Computing Science, Simon Fraser University 

Burnaby, British Columbia, Canada V5A lS6 
<stephentXveronica>@cs.sfu.ca 

(Received July 2001; accepted August 2001) 

Communicated by N. Cercone 

Abstract-we motivate the need for more standard while natural ways of accessing the growing 
number of internet applications of mathematics software. We then identify a subset of natural 
language appropriate for this task, and describe an efficient logic programming transformation from 
this subset of language into the desired commands. We use substructural logic for dealing with 
different kinds of mathematical anaphora. We exemplify our ideas in the context of Maple, an 
advanced mathematics software for symbolic computing. @ 2002 Elsevier Science Ltd. All rights 
reserved. 

Keywords-Mathematics software, Natural language processing, Logic programming, Assump- 
tion grammars, Maple. 

1. MOTIVATION 

The number of internet applications of mathematics software is growing quite dramatically [l-3]. 
Most notably, applications such as scientific visualization, distance collaboration, tele-learning, 
etc., allow users from different backgrounds to share information over the network. 

Yet the interfaces remain clumsy, non-user-friendly. Even though the provision of a standard 
protocol and syntax for mathematical input is a remote possibility, users often feel reluctant to 
learn yet another syntactic convention. One-time visitors, particularly if not computationally 
inclined or versed, who typically want results immediately, demand a more friendly yet uniform 
interface. 

What better or more natural way of using a new tool than through commands in your own 
mother tongue? The state of the art in natural language processing is not yet at the point in 
which it can treat unrestricted text. However, for the restricted domain of mathematics software, 
we should be able to identify a useful subset of, say, English, and a fairly standard way of 
transforming it into commands of the particular syntax chosen by the software. 

The significance of this research is twofold: on one hand, it enables users to consult mathematics 
software directly in their mother tongue. On the other hand, it can be of great help to students 

This research was made possible by NSERC Research Grant 611024. 

0893-9659/02/s - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. Typeset by &&V$ 
PII: SO893-9659(02)00056-3 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82173073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


876 S. TSE AND V. DAHL 

learning to use the software, who will be able to consult it or command it in English and see the 
formalized query popping up on the screen as a result. While mathematical software is usually 
not too difficult to learn, some of its command syntax and user interface can be discouraging to 
newcomers. Maple (41, f or instance, is particularly well-suited to aid university freshmen learn 
calculus through verifying calculations and plotting complicated graphs. However, understanding 
calculus concepts while learning to use computer program/mathematics software, and picking up 
Maple syntax, all at once, can be overwhelming for them. What better way of learning a new 
syntax than through picking its commands up one by one in your own mother tongue? 

2. COVERAGE 

The first decision to be made concerns the coverage of constructs. Obviously, the wider, the 
better, within tractability and minimizing of ambiguities. The decision is made harder by the 
fact that there are simply too few resources on NLP for mathematics software: no reference 
implementation, no complete corpus for mathematics, and no parser tailored for mathematics. 

Instead of aiming at a full blown system with a complete lexicon for mathematics, we concen- 
trate on a restricted yet interesting and tractable domain: that of basic arithmetic with calculus 
operations. The system is intended to be a prototype for first-year calculus students. A BNF 
description of the input language of our system can be found on our homepage [5]. 

3. CHALLENGES AND PROPOSED SOLUTIONS 

Anaphora in Mathematics 

Mathematics definition can be viewed as a form of anaphora, i.e., as a resource which is defined 
at some point to be used elsewhere. We use linear implication as embedded in BinProlog [6,7] 
for a direct implementation of mathematical definitions. For instance, in 

> assume that f is ,cos(x)’ differentiate f 

the system works as follows: when it encounters assume that f is ’ cos (x) ‘, it adds temporar- 
ily a clause usable at most once in later proofs. In this case, it adds the definition pre_def ine (X, 
Meaning), where X is f and Meaning is ’ cos(x) ‘. Also, in the later proof differentiate f, it 
attempts to resolve the variable f to its definition. Note that this assumption vanishes nicely on 
backtracking since it is scoped over the current AND-continuation. 

Preceding or Postceding Variable Definitions 

In mathematics, statements with variable definitions at the beginning or at the end of a formula 
are both common, e.g., as follows. 

> given that f is the sum of ‘sin(x)’ and ,cos(x), 
what is the derivative of f? 

> integrate f with respect to x where f is ‘log(x)’ 

This kind of anaphora in mathematics statements can be handled by timeless assumptions [7], 
which can be consumed after or before being made. The source code [5] shows their (surprisingly 
concise) implementation in terms of linear implication. 

Multiple Uses of Definitions Viewed as Resources 

Consider the following examples. 

> given that f is ‘sin(x)’ what is the sum of f and f? 

> differentiate the product of f and f wrt x where f is ‘COB(X)’ 



Mathematics Software the Natural Way 877 

In these examples, the referent that f stands for is referred to more than once. We therefore use 
intuitionistic implication instead of linear implication, which allows us to consume the referent 
an indefinite number of times. However, we have implemented our own version of it for this 
particular research. The source code [5] shows the implementation. 

Coordination 

Another feature of mathematics statements which is common in natural language is the use 
of conjunction. Traditionally, one of the most difficult problems in natural language process- 
ing, conjunction, is simpler in mathematics statements, although it still exhibits the problem 
of combinatorial explosion. A proper and general treatment of coordination may involve “meta- 
grammatical” constructions, but for a restricted, well-defined domain of problems, writing specific 
rules may suffice [7]. 

In particular, we recognize that variable definition and usage involves an excessive amount of 
backtracking. This is due to the fact that any expression can be regarded as a variable, which 
can be defined either before the usage or after the usage. This interacts with the fact that a 
conjoined expression is a list of subexpressions separated by and. 

To greatly reduce backtracking and neatly solve the problem of coordination in mathematics, 
we restrict the syntax of variable definition as in the predicate variable, which can be seen in 
the source code [5]. Surprisingly, together with some tweaking of rule orderings, the system can 
handle common conjunctive statements in mathematics such as the following. 

> graph ‘sin(x)’ and ‘cos(x)’ for x 
> solve ‘x+y=2’ and 'x-y=4' for x and y 

Extensibility and Customizability 

Regarding implementation, one major challenge is that Maple, as most closed commercial 
softwares, does not supply a set of API to control its interface. This severely limits its extensibility 
and customizability, e.g., we cannot have a plug-in for input in natural language. Fortunately, 
Maple comes with a command line mode in which plain text can be sent via process control. 
A simple Emacs Lisp script is written to easily handle the communication of processes in two 
windows. 

4. A SAMPLE SESSION 

%%-- Command, Query, Digit Name 
> add 1 to 3 
==> MAPLE: 1+3; 

> add one to three 
==> MAPLE: 1+3; 

> what is the sum of one and three 
==> MAPLE: 1+3; 

> differentiate 'x-2+1' with respect to x 
==> MAPLE: diff(x^2+i,x); 

> simplify '(x-2-y^2)/(x-y)' 
==> MAPLE: simplify((x-2-y-2)/(x-y)); 

> solve )x-2-3*x-4=0' for x 
==> MAPLE:solve(x-2-3*x-4=o,x); 



878 S. TSE AND V. DAHL 

> graph the product of x and x for x 
==> MAPLE: plot(x*x,x); 
Output from Maple is shown in Figure 1. 

> add the difference of the derivative of 'x-2, 
wrt x and the integral of 'y-2, wrt y to 9 
==> MAPLE: diff(x^2,x)-int(y^2,y)+9; 

YL-- Preceding or Postceding Variable Definitions 
> integrate f with respect to x where f is 'log(xY2)+sin(x)' 

==> MAPLE: int(log(x^2)+sin(x),x); 

> provided that f is the quotient of 'sin(x)' and 

the sum of ,cos(x), and 'tan(x), differentiate f with respect to x 
==> MAPLE: diff(sin(x)/(cos(x)+tan(x)),x); 

xx-- Multiple Uses of Definitions Viewed as Resources 
> given that f is 'sin(x), what is the sum of f and f 
==> MAPLE: sin(x)+sin(x); 

> differentiate the product of f and f wrt x where f is 'cos(x), 

==> MAPLE: diff(cos(x)*cos(x),x); 

r/,-- Coordination 
> graph ‘sin(x)’ and ‘COS(X)’ for x 

==> MAPLE: plot(sin(x),cos(x),x); 

> graph the derivative of ‘x-2’ wrt x and the product of 

’ sin(x) ’ and 'tan(x)' for x 
==> MAPLE: plot(diff(x"2,x),Sin(X)*ta.u(X),X); 

> solve 'x+y=lO' and ‘y+z=20’ and ‘x+z=30’ for x and y and z 
==> MAPLE: solve(x+y=iO,y+z=2O,x+z=9O,x,y,z); 

A 100 + A 

A + A 
A + A 
AA 80 + AA 

A + A 
A + A 
A + A 

A 60 + A 
A + A 
AA + AA 
AA 40 + AA 
AA + AA 
AA + AA 

A + A 
AA 20 + AA 

AA + AA 
AAA + AAA 

++++++++++++++++++++~~~~~~~.~~~+++++++++++++++++++++ 
-10 -8 -6 -4 -2 I 2 4 6 8 10 

Figure 1. 



Mathematics Software the Natural Way 879 

5. RELATED WORK 

To the best of our knowledge, there are no similar systems providing natural language interfaces 
to mathematics software. The closest we have come to in the literature is standardizing efforts 
for cross-platform representation and communication of mathematics, such as MathML [2] and 
OpenMath [l], but these are not designed to act as user interfaces to a mathematics system. 

The most, related other work wQuld be that of tutorials. There are many, for instance, for 
learning Maple, but none of them is as direct as ours, which allows users to input commands in 
natural language directly to the system. Online help in Maple, which lists syntax format and 
usage examples, can be useful sometimes but functions rather like a reference manual--too formal 
and restrictive for learning. 

6. CONCLUSION, EXTENSIONS 

We have provided a proof-of-concept, in the form of an implemented English interface to 
Maple, that natural language is a viable option for providing a natural way or learning and using 
mathematics software. Implemented in BinProlog to make use of the unique expressiveness of 
the different types of assumptions needed (linear, intuitionistic, timeless), the system successfully 
and concisely addresses in particular two crucial problems in NLP for mathematics, namely, 
definitions and coordination. The result is an interestingly rich set of user interactions with 
Maple. 

fiture work includes the extension of our ideas into other mathematics software, and the 
provision of support for multiple back-ends simultaneously, giving users a uniform interface for 
various softwares. It would also be interesting to integrate the NLP system into an open source 
mathematics system such that the fiLP system has more powerful and complete control of the 
interface. To gain more publicity and a wider audience, a web-ready applet version of the system 
will testify to the friendliness of the interface. 

REFERENCES 
1. J. Abbott, A. van Leeuwen and A. Strotmann, Objectives of OpenMath, Technical Report 12, RIACA, (1996); 

http://vvv.opemnath.org. 
2. P. Ion and R. Miner, Mathematical markup language, W3C Recommendation REC-MathML-19980407, 

World Wide Web Consortium, (1998); http: //WV. w3. org/TR/REC-MathML. 
3. P. Wang, Design and protocol for internet accessible mathematical computation, Technical Report, ICM/Kent 

State University, (1999). 
4. B.W. Char, K.O. Geddes, G.H. Gonnet, B. Leong, M.B. Monagan and S.M. Watt, Maple V: Language 

Reference Manual, Springer-Verlag, (1991); http: //www . maplesof t . corn. 
5. V. Dahl and S. Tse, Documentation to accompany the paper: Learning and using mathematics software 

the natural way, Technical Report, Simon Fraser University, (2001); http: //wuw. ca. sfu. ca/people/ 
Faculty/Dahl/leanunath. 

6. P. Tarau, Professional edition: User guide, Technical Report, BinNet Corp, (1998); http: //www. binnetcorp. 
com/binprolog. 

7. V. Dahl, P. Tarau and R. Li, Assumption grammars for processing natural language, In Proceedings Inter- 
national Conference on Logic Programming, (1997). 


