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We demonstrate generation of the two-dimensional Chern–Simons-like Lorentz-breaking action via an
appropriate Lorentz-breaking coupling of scalar and spinor fields at zero as well as at the finite tempera-
ture and via the noncommutative fields method and study the dispersion relations corresponding to this
action.

 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

During recent years, different aspects of possibility of the
Lorentz symmetry breaking and its possible implications call high
scientific interest. One of the most important directions of these
investigations is the study of generation and physical impacts of
new, Lorentz-breaking terms in the Lagrangian, which firstly was
carried out in [1] where the new, gauge-invariant but Lorentz-
breaking term was introduced into the action of electrodynamics.
Further, a lot of new effects implied by the Lorentz symmetry
breaking were discovered, such as ambiguity of finite quantum
corrections [2,3], birefringence of the electromagnetic waves in
vacuum, generation of this term and of its non-Abelian generaliza-
tion via different methods (some papers describing these results
are given in [4,5]). The Lorentz-breaking terms were also obtained
and studied in the gravity [6,7].

At the same time, the two-dimensional field theories, due to
their relatively simple structure, being motivated, in particular, by
string theory, black holes theory and possibility of finding the
exact solutions in certain cases, represent themselves as a conve-
nient laboratory for studying different physical phenomena (stud-
ies of different aspects of two-dimensional field theories are pre-
sented in [8]). Thus, the very interesting problem is the possi-
bility of generating the Lorentz-breaking terms in lower dimen-
sions. An example of the possible Lorentz-breaking term with no
higher derivatives in three-dimensional space–time is given by the
mixed scalar–vector term studied earlier in the context of Julia-
Toulouse mechanism [9]. Moreover, recently a two-dimensional
Lorentz-breaking term was suggested and studied in the context
of the defect structures [10]. Also, it is naturally to expect, that
this term naturally arises in the process of dimensional reduction
of the above-mentioned three-dimensional Lorentz-breaking term
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and, consequently, of the four-dimensional Lorentz-breaking term
arising in electrodynamics [1] which was earlier shown [11] to give
the three-dimensional Lorentz-breaking term from [9]. In this Let-
ter, we will discuss different issues related to this term, that is, its
generating via coupling to some spinor matter (both at zero and fi-
nite temperature) and the dispersion relations in theories involving
such a term.

The Letter is organized as follows. In Section 2, we introduce
the two-dimensional Chern–Simons-like Lorentz-breaking term
and study the dispersion relations in the theory with such a term.
Section 3 is devoted to obtaining of this term via perturbative ap-
proach, and in Section 4 these calculations are generalized to the
finite-temperature case. Section 5 is devoted to generation of this
term via the noncommutative fields method. In Section 6, the re-
sults are discussed.

2. Scalar field model with the Chern–Simons-like term

In this section we formulate the two-dimensional scalar field
model with the Chern–Simons-like term. The Lagrangian for this
theory has the form [10]:

L= −1

2
∂µφ∂µφ − 1

2
∂µχ∂µχ + kµεµνφ∂νχ − V (φ,χ). (1)

So, we suggest that the Lorentz violation is concentrated in
the “mixed” quadratic term, similarly to the three-dimensional
term [9], whereas the potential is Lorentz invariant. Here the kµ is
a vector implementing the Lorentz symmetry breaking.

We can obtain the propagators for this theory. Supposing the
theory to be massless (the generation for the massive case is
straightforward), we find that the action, after Fourier transform,
is characterized by the matrix

� =
( −p2 ikµεµν pν

−ikµεµν pν −p2

)
= −p21 − kµεµν pνσ2, (2)

where σ2 = ( 0 −i) is a corresponding Pauli matrix.

i 0
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The matrix propagator is given by the matrix inverse to �, that
is( 〈φφ〉 〈φχ 〉

〈χφ〉 〈χχ 〉
)

= − p2

p4 + p2k2 − (p · k)2
(
1− kµεµν pν

p2
σ2

)
. (3)

The dispersion relations can be found from the poles of the de-
nominator of this expression. For the signature diag(+−) they look
like (here E = p0, �p = p1):(
E2 − �p2)2 + (

E2 − �p2)k2 − (Ek0 − �pk1)2 = 0. (4)

There are three characteristic cases:

(i) Time-like kµ , k0 �= 0, k1 = 0 gives dispersion relation E2 −
�p2 = ±|�p||k0| for which we have birefringence. Indeed, the group

velocities of the possible waves are vgr = �p± 1
2 |k0|√

�p2±|�p||k0|
. For both

signs these group velocities are greater than the speed of light,
which allows to treat this case as a nonphysical one.

(ii) Space-like kµ , k0 = 0, k1 �= 0 gives dispersion relation E2 −
�p2 = ±|E||k1|, so, we have birefringence due to two different phase
velocities, with the group velocities vgr = ± �p√

�p2+k21/4
, and with no

superluminal group velocities.
(iii) Light-like kµ , k0 = k1 = k gives either common dispersion

relation E = ±�p or the deformed dispersion relation E − �p = ±k,
for which the phase velocity is variable whereas the group velocity
coincides with the speed of light.

3. Generation of the Chern–Simons-like term via radiative
corrections

Let us consider the model of fermions interacting with scalar
fields φ(x) and χ(x), with the Lorentz symmetry violation is im-
plemented via a constant vector bµ . The Lagrangian density of the
model is as follows:

L= −1

2
∂µφ∂µφ − 1

2
∂µχ∂µχ + ψ̄(i/∂ −m)ψ

− gψ̄/bφψ − gmψ̄γ5χψ. (5)

We are planning to find the one-loop Chern–Simons-like effec-
tive action of the scalar fields. It is natural to suggest that in the
momentum space it can be represented as

Γ =
∫

d2q

(2π)2
φ(−q)Π(q)χ(q), (6)

with the Π(q) is the self-energy tensor.
Applying the following Feynman rules:

= i(/p +m)

p2 −m2
, = −igmγ5,

= −ig/b,

we arrive at the following diagrams that contribute to the two-
point “mixed” function of the scalar fields (it is easy to see that the
Lorentz-breaking contributions to the two-point function of the φ

field only or of χ field only represent themselves as total deriva-
tives):

(a) (b)

Here the simple line is for the propagator of the ψ field, the wavy
line–for the external φ field, and the dashed line–for the external
χ field. These diagrams produce two contributions to self-energy
tensor:

Πa(q) = −ig2
∫

d2p

(2π)2
tr

[
/b S(p)γ5 S(p + q)

]
(7)

and

Πb(q) = −ig2
∫

d2p

(2π)2
tr

[
γ5 S(p)/b S(p + q)

]
, (8)

where S(p) is the usual Dirac propagator for fermions. Summing
up the self-energy tensors in (7) and (8), we can write down the
following expression for the self-energy tensor Π(q) characterizing
the new, Lorentz-breaking contribution to the quadratic effective
action of the theory:

Π(q) = Πa(q) + Πb(q)

= −2m2g2
1∫

0

dx (1 − x)

∫
d2p

(2π)2

1

(p2 − M2)2
bµεµνqν, (9)

where we have used Feynman parameter x to form the denomina-
tor in (9), with M2 = m2 − q2(1 − x)x. To simplify the numerator
in (9), we use the fact that the trace of product of γ5 with an
even number of γ matrices can be reduced: tr[γ µγ νγ5] = 2iεµν

and tr[γ5] = 0. Also, by symmetry reasons we can omit all terms
which are odd in the internal momentum p. The integration over
the internal momentum in the self-energy tensor (9) gives the re-
sult:

Π(q) = − im2g2

2π

1∫
0

dx (1− x)
1

m2 − q2(1− x)x
bµεµνqν

� − ig2

4π
bµεµνqν, (10)

where we have neglected higher orders in the external momen-
tum qν .

The corresponding Chern–Simons-like effective action of the
scalar fields after the Fourier transform looks like:

Γ =
∫

d2xkµεµνφ∂νχ, (11)

with the following relation between the constant vectors kµ and
bµ takes place:

kµ = g2

4π
bµ. (12)

One can observe that this factor is similar to the result obtained in
[5,12], up to the factor 1

π . We note that this result is not ambigu-
ous due to its explicit finiteness (see discussion of ambiguities in
the Lorentz-breaking theories in [2,3,12]).

4. Finite temperature case

Let us implement the finite temperature in this theory. To do
it, first we carry out the Wick rotation in (9), and use a Mat-
subara formalism for fermions, which consists in taking p0 ≡
ωn = (n + 1/2) 2π

β
and replacement of the integration over ze-

roth component of the momentum by a discrete sum by the
rule 1

2π

∫
dp0 → 1

β

∑
n [13]. Thus, the self-energy tensor Π(q) (9),

which determines the correction to the quadratic action and rep-
resents itself as the key object of the method, takes the form

Π(q) = − im2g2

β

∫
dp1

2π

+∞∑
n=−∞

1

[ 4π2

β2 (n + 1
2 )2 + p2

1 +m2]2
bµεµνqν,

(13)
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which after integration yields

Π(q) = − ig2a2

8π
bµεµνqν

+∞∑
n=−∞

1

[(n + b)2 + a2]λ , (14)

where a = mβ
2π , b = 1/2 and λ = 3/2.

The sum (14) is evidently finite. To calculate it, we proceed in
the following way. First of all, we apply an explicit expression for
the sum over the Matsubara frequencies [14]:

∑
n

1

[(n + b)2 + a2]λ

=
√

πΓ (λ − 1/2)

Γ (λ)(a2)λ−1/2
+ 4sin(πλ)

∞∫
|a|

dz

(z2 − a2)λ

× Re

(
1

exp2π(z + ib) − 1

)
. (15)

However, this expression is valid for 1/2 < λ < 1, therefore it can-
not be straightforwardly applied for λ = 3/2 since the integral in
the right-hand side of this expression diverges. So, we must pro-
ceed similarly to [12], that is, we carry out the analytic continua-
tion of the second term of the right-hand side of this identity, see
[12,15]:

∞∫
|a|

dz

(z2 − a2)λ
Re

(
1

exp2π(z + ib) − 1

)

= 1

2a2
3− 2λ

1− λ

∞∫
|a|

dz

(z2 − a2)λ−1

× Re

(
1

exp2π(z + ib) − 1

)
− 1

4a2
1

(2− λ)(1− λ)

×
∞∫

|a|

dz

(z2 − a2)λ−2

d2

dz2
Re

(
1

exp2π(z + ib) − 1

)
. (16)

This expression can be used for λ = 3
2 and gives no singularities in

this case. Then, putting all together, we get

Πa(q) = − ig2

4π
bµεµνqν

[
1+ 2π2F (a)

]
, (17)

and, consequently,

kµ = g2

4π
bµ

[
1+ 2π2F (a)

]
, (18)

where the function

F (a) =
∞∫

|a|
dz

(
z2 − a2

)1/2 tanh(π z)

cosh2(π z)
(19)

has the following asymptotics: F (a → ∞) → 0 (T → 0), F (a →
0) → 1

2π2 (T → ∞), see Fig. 1.
Thus we see that the value of kµ at the high temperature is

its doubled value at the low temperature. The similar temperature
dependence of the Lorentz-breaking parameter has been observed
earlier for the four-dimensional electrodynamics [12].

5. Noncommutative fields method

The noncommutative fields method is known to be an efficient
mechanism of introducing the Lorentz-breaking terms into the ac-
tion [7,16]. The essence of this method consists in deformation of
the canonical commutation relations implying in arising of new
Fig. 1. The function F (a) is different from zero everywhere. At zero temperature
(β → ∞), the function tends to a nonzero value.

additive, in general case Lorentz-breaking terms in the Lagrangian.
Earlier [7,16] this method was mostly applied to the gauge theo-
ries where it was based on deformation of the constraints arisen
by requirements of the gauge symmetry. However, as we will see
here, despite there is no constraints in the scalar field theory, in
this case deformation of the canonical commutation relations will
also modify the Lagrangian of the theory.

Let us for convenience consider the theory of the complex
scalar field:

L= −∂µσ ∗∂µσ − V (σ ,σ ∗). (20)

This theory is equivalent to the theory (1), under change σ = φ +
iχ , σ ∗ = φ − iχ . The canonical momenta are π = −σ̇ ∗ , π∗ = −σ̇ .
The corresponding Hamiltonian density is

H = −ππ∗ − ∂1σ∂1σ
∗ + V (σ ,σ ∗). (21)

To quantize the theory in general case, we must convert fields and
momenta into the operators and employ the canonical commuta-
tion relations: [σ(�x),π(�y)] = iδ(�x − �y), [σ ∗(�x),π∗(�y)] = iδ(�x − �y),
with all other commutators of the canonical variables are equal to
zero, which evidently reproduces the known Hamilton equations.

Now, let us implement the noncommutative fields method. This
is done by modification of only one commutation relation:
[
π(�x),π∗(�y)] = θδ(�x− �y), (22)

with θ is a some constant. In this case, the σ and σ ∗ continue
to be the canonical variables whereas π and π∗ do not more. So,
we are to introduce the new canonical variables Π = π + i θ

2σ
∗ ,

Π∗ = π∗ − i θ
2σ . The only modification of the Lagrangian, which

now has the form

L′ = Πσ̇ + Π∗σ̇ ∗ − H, (23)

originates from the modification of the canonical variables (unlike
of [16], there is no constraints in this theory). Finally, we arrive at

L′ =L− i

2
θ(σ σ̇ ∗ − σ̇ σ ∗), (24)

which in terms of the fields φ,χ can be rewritten as

L′ =L+ θ(χφ̇ − φχ̇), (25)

which exactly reproduces the Lagrangian (1), with the Lorentz-
breaking vector kµ be kµ = (0, θ). So, we succeeded to generate
the Lorentz-breaking term in the action, with the Lorentz-breaking
vector turns out to be space-like, as it follows from the analysis of
the dispersion relations.



444 E. Passos, A.Yu. Petrov / Physics Letters B 662 (2008) 441–444
6. Summary

We succeeded to construct the two-dimensional Lorentz-break-
ing term. This term turns out to modify the dispersion relations,
with the physically consistent cases are those ones with the space-
like or light-like Lorentz-breaking vector. We also have generated
this term via an appropriate, Lorentz-breaking coupling of the
scalar fields with the spinor ones, both in the zero temperature
case and finite temperature case, with this term turns out to grow
with the temperature. Also, we succeeded to generate the Lorentz-
breaking term using the noncommutative fields method, with the
Lorentz-breaking vector turns out to be space-like, that is, consis-
tent with the dispersion relations. We expect that this term can be
applied for further studies of the topological defects, similarly to
the studies in [10].
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