A GENERALIZATION OF THE REEB STABILITY THEOREM

WILLIAM P. THURSTON

(Received 1 March 1974)

IN 1947 G. Reeb [2] proved a theorem fundamental to the theory of codimension one foliations.

REEB'S STABILITY THEOREM. Let \mathcal{F} be a codimension one foliation of a compact manifold M^n . Suppose L is a compact leaf of \mathcal{F} such that $\pi_1(L)$ is finite. Then all leaves of \mathcal{F} are diffeomorphic with L (up to two-fold covers if there are leaves with one-sided tubular neighborhoods). We assume here that if M^n has boundary, ∂M^n is a union of leaves of \mathcal{F} .

It is clear from Reeb's proof that the hypothesis on $\pi_1(L)$ can be weakened somewhat. The crucial property is that the holonomy around such a leaf must be trivial; thus, for instance, if $\pi_1(L)$ is generated by elements of finite order, it is easy to see that suffices to obtain Reeb's conclusion. In fact, we give the necessary and sufficient condition, in the C^1 case, to obtain this conclusion:

Theorem 1. Let \mathscr{F} be a codimension one, C^1 , transversely oriented foliation of a compact manifold M^{n-1} with a compact leaf L such that $H^1(L;\mathbb{R})=0$. Then all leaves of \mathscr{F} are diffeomorphic with L, and the leaves of \mathscr{F} are the fibers of a fibration of M^{n-1} over S^1 or I. We assume here that if M^{n-1} has boundary, then ∂M^{n-1} is a union of leaves of \mathscr{F} .

Example 1. We observe here that the hypothesis about L is necessary: suppose L^{n-1} is a manifold such that $H^1(L; \mathbb{R}) \neq 0$. Let α be a cohomologically non-trivial one-form. Then on $L \times S^1$, the one-form $\mathrm{d}\theta + f(\theta)\alpha$, for an arbitrary function f, is non-singular and integrable, and defines a foliation whose closed leaves correspond exactly to the zeros of f, and are diffeomorphic to L. Examples on other manifolds can be generated from these.

Here is a counter-example in the C^0 case:

Example 2. There is a homology three-sphere, M^3 , with fundamental group $(a, b, c: a^2 = b^3 = c^7 = abc)$ which occurs as a leaf of a foliation \mathscr{F} of $M^3 \times S^1$, where \mathscr{F} has also non-compact leaves.

Construction. The fundamental group of M^3 is a discrete subgroup Γ of $Sl(2, \mathbb{R})$ with compact quotient M^3 . Γ is the group of transformations covering transformations of the non-Euclidean plane which preserve the tiling generated by the triangle with angles $\pi/2$, $\pi/3$, and $\pi/7$. $Sl(2, \mathbb{R})$ acts on $\mathbb{R} = \overline{S}^1$, so $Sl(2, \mathbb{R})$ acts topologically on $S^1 = \mathbb{R} \cup \{\infty\}$. This gives a C^0 action of Γ on S^1 , which determines a foliation of $M^3 \times S^1$ as required. $M^3 \times \{\infty\}$ is a leaf, and all other leaves are non-compact.

It would be interesting to have a characterization of compact leaves L for which Reeb's conclusion holds in the C^0 case. It seems reasonable to conjecture that if $\pi_1(L)$ is amenable (e.g. if $\pi_1(L)$ has polynomial growth, cf. Hirsch and Thurston [1] for applications of amenability to foliations), and if L has a non-trivial C^0 foliated neighborhood, then $H^1(L; \mathbb{R}) \neq 0$

Reeb also obtained a local stability theorem which applies in all codimensions: if a leaf L has finite fundamental group, then all nearby leaves are (finite) covering spaces o L, and L has a saturated tubular neighborhood. Our method also gives a generalization o this local stability theorem. Given a leaf L of a codimension k, let H be the holonomy along L, so H is a representation of $\pi_1(L)$ in the group of germs of diffeomorphisms of a smal k-disk normal to L, dH is then the linear holonomy, H_z , where $\alpha \in \pi_1(L)$, denotes the holonomy around α .

Theorem 2. Let \mathcal{F} be a codimension k foliation, and let L be a compact leaf of \mathcal{F} . Thereither

- (i) $dH: \pi_1(L) \to Gl(k, \mathbb{R})$ is non-trivial;
- or (ii) $H^1(L; \mathbb{R})$ is non-trivial;
- or (iii) the holonomy H is trivial;

and L has a saturated tubular neighborhood with a product foliation.

COROLLARY 1. Let \mathcal{F} , L be as above. If $H^1(L, \mathbb{R}) = 0$ and $H^1(L; Gl(k, \mathbb{R})) = 0$ then the holonomy around L is trivial, and L has a saturated tubular neighborhood with a product foliation.

COROLLARY 2. Let \mathscr{F} , L be as in Th^m2 . If $dH: \pi_1(L) \to Gl(k, \mathbb{R})$ has a finite image and if $H^1(\widetilde{L}; \mathbb{R}) = 0$, where \widetilde{L} is the covering space of L corresponding to Ker(dH), then L has a saturated tubular neighborhood in which the foliation is that of a flat disk bundle over L with structure group $\pi_1(L)/Ker(dH)$.

Derivation of corollaries. Corollary 1 is immediate from Theorem 2 $[H^1(L); Gl(k, \mathbb{R})]$ is the set of representations of $\pi_1(L)$ in $Gl(k, \mathbb{R})$]. Corollary 2 is proved by considering the finite covering space of a tubular neighborhood of L corresponding to Ker(dH). This tubular neighborhood has a compact leaf \tilde{L} covering L, and $H^1(\tilde{L}; \mathbb{R}) = 0$ by hypothesis. There is a smaller, saturated tubular neighborhood of \tilde{L} with a trivial foliation. This means the holonomy around L is finite, from which Corollary 2 follows (e.g. there is a Riemannian metric invariant by holonomy transformations; begin with a convex disk normal to L, and intersect all its images under holonomy transformations to obtain an invariant normal disk etc.).

Theorem 3. Let G be a topological group generated by a compact neighborhood of 1 Suppose G acts continuously in the C^1 topology as a group of C^1 transformations on a connected manifold V^k with a fixed point p. Then either the linear action at p is non-trivial, or there is a non-trivial continuous representation of G in \mathbb{R} (i.e. $H_c^{-1}(G; \mathbb{R}) \neq 0$), or the action of G is trivial.

Remark. In the case G is compact, this just says, if the linear action at p is trivial, the action is trivial; this is well-known. An interesting special case is when G is finitely generated:

then it is essentially equivalent to Theorem 2. Although Theorem 3 is stated in global terms, it is derived from a local form which says that under the hypotheses, points sufficiently near p must be fixed. The action near p is like the holonomy of a foliation.

Proof of the Theorems

Reduction of Theorem 1 to Theorem 2. Under the assumptions of Theorem 1, the linear holonomy around L must be trivial, since otherwise $\log |dH_x|$ [$\alpha \in \pi_1(L)$] is a non-trivial representation of $\pi_1(L)$ in \mathbb{R} ; i.e. a non-zero element of $H^1(L;\mathbb{R})$. Assuming Theorem 2, we conclude the holonomy around L is trivial, and L has a saturated tubular neighborhood with all leaves diffeomorphic to L. Therefore, the set of points on leaves diffeomorphic with L is open. This set is also closed (see, for instance, Thurston [3], or Reeb [2]). Therefore, since we should have mentioned that M^n is connected, all leaves of $\mathscr F$ are diffeomorphic to L.

Proof of Theorem 2. We assume L is a compact leaf of \mathscr{F} such that the linear holonomy dH is trivial, but the holonomy H is not trivial; i.e. there are points x_i arbitrarily near L on the k-dimensional normal disk to L, and elements $\alpha_i \in \pi_1(L)$, such that $H_{z_i}(x_i) \neq x_i$. We need to produce, then, a non-trivial element of $H^1(L; \mathbb{R})$. In fact, we will construct a non-trivial representation of $\pi_1(L)$ in the group \mathbb{R}^k . This will suffice. The idea is that as x_k approaches L, $dH_z(x_i)$ approaches L, so H_z becomes more and more nearly a translation, in a neighborhood of x_i ; if H_z were a translation for each α , this would be our desired representation.

Definitions. Let K be a subset of a group G. Let $\varepsilon \ge 0$. Then a (K, ε) cocycle γ with values in \mathbb{R}^k is an \mathbb{R}^k -valued function on K satisfying $\|\delta\gamma(\alpha, \beta)\| \le \varepsilon$, when α, β and $\alpha\beta$ are elements of K, and $\delta\gamma: G \times G \to \mathbb{R}^k$ is defined by:

$$\delta \gamma(\alpha, \beta) = \gamma(\alpha) + \gamma(\beta) - \gamma(\alpha\beta).$$

Suppose that B is a finite set of generators for G. Then, for $K \supset B$, we define a normal (K, ε) -cocycle γ to be a (K, ε) -cocycle such that

$$\max_{\beta \in \mathcal{B}} \|\gamma(\beta)\| = 1.$$

In general, a (K, ε) -cocycle is not a really-truly cocycle. If $K' \supset K$ and $\varepsilon' \leq \varepsilon$ then a (K', ε') -cocycle is a (K, ε) -cocycle. A (G, 0)-cocycle is a 1-cocycle. A 1-cocycle is a representation of G in \mathbb{R}^k .

We assume now that B is a generating set containing 1 and closed under inversion. Let B^l denote the set of products of at most l elements of B.

Lemma 1. Non-trivial cocycles exist iff normal (B^l, ε) -cocycles exist, for every $\varepsilon > 0$ and every positive l.

Proof of Lemma 1. The set of normal (B^l, ε) -cocycles is compact, since they form a closed, bounded subset of the set of functions from B^l to \mathbb{R}^k . The set of normal (B^l, ε) -cocycles which are restrictions of normal $(B^{l'}, \varepsilon')$ -cocycles, for $l' \ge l$, $0 < \varepsilon' \le \varepsilon$, is non-empty, and the family of such sets has the finite intersection property. Taking the intersection over ε , we obtain normal $(B^l, 0)$ -cocycles for every l. Forming the intersection over l,

we obtain a normal $(B^l, 0)$ -cocycle γ which extends to a normal $(B^{l'}, 0)$ -cocycle for every l' > l. Choose an extension of γ to a normal $(B^{l+1}, 0)$ -cocycle which extends to a normal $(B^{l'}, 0)$ -cocycle for every l' > l + 1. Continue by induction to obtain a normal (G, 0)-cocycle, with values in \mathbb{R}^k . (Alternatively, we could have used the Tychanoff product theorem.) This concludes the proof of Lemma 1.

Now, suppose x is a point in the normal disk D through L which is not fixed by H. (From now on, we take a fixed parametrization of D by \mathbb{R}^k .) Let B be a finite set of generators for $\pi_1(L)$, closed under inversion and containing 1. Define a function γ_x on the subset of $\pi_1(L)$ for which $H_x(x)$ is defined, by:

$$\gamma_x(\alpha) = \frac{1}{m} (H_x(x) - x) \tag{1}$$

where

$$m = \max_{\alpha \in B} \|H_{\alpha}(x) - x\|.$$

The rest of the proof is devoted to estimates needed to prove the following lemma:

Lemma 2. For every natural number l, and every $\varepsilon > 0$, there is a δ such that if $||x|| \le \delta$, then γ_x is a (B^l, ε) -cocycle.

Proof of Lemma 2. We define recursively a function $f(r, \varepsilon')$, r a natural number, $\varepsilon' \varepsilon \mathbb{R}$, by:

$$f(0, \varepsilon') = 0$$

$$f(r+1, \varepsilon') = 1 + f(r, \varepsilon')(1 + \varepsilon').$$
 (2)

 $f(r, \varepsilon')$ is a polynomial in ε' with constant term r.

Let $\varepsilon' > 0$ be sufficiently small that

$$\varepsilon' \cdot f(l, \varepsilon') \le \varepsilon \tag{3}$$

and let $\delta' > 0$ be sufficiently small that if $||x|| \le \delta'$, and $\alpha \in B^l$, then

$$\|dH_{r}(x) - I\| \le \varepsilon'. \tag{4}$$

Finally, let $0 < \delta < \delta'$ be sufficiently small that if $||x|| \le \delta$, then $||H_{\alpha}(x)|| \le \delta'$ for $\alpha \in B^{l}$. This, we claim, is a δ suitable for Lemma 2. Let x be such that $||x|| \le \delta$, and $H_{\alpha}(x) \ne x$, for some α .

First, we will give an upper bound for $\gamma_x(\alpha)$, when $a \in B^r$, $r \le l$:

$$\|\gamma_{\star}(\alpha)\| \le f(r, \, \varepsilon'). \tag{5}$$

This is true for r=0 or r=1. Assuming inductively that (5) is true for r=k, let σ be an arbitrary element of B^{k+1} . Write $\sigma=\beta\alpha$, with $\alpha\in B^k$, $\beta\in B^1$. Then

$$\|\gamma(\sigma)\| = \frac{1}{m} \|H_{\sigma}(x) - x\|$$

$$= \frac{1}{m} \|H_{\beta}(H_{x}(x)) - H_{z}(x) + H_{z}(x) - x\|$$

$$\leq \frac{1}{m} \|H_{\beta}(H_{x}(x)) - H_{z}(x)\| + \|\gamma_{x}(\alpha)\|.$$

Now

$$\frac{1}{m} \left(H_{\beta}(H_{\alpha}(x) - H_{\alpha}(x)) - \frac{1}{m} \left(H_{\beta}(x) - x \right) \right)$$
$$= \frac{1}{m} \int_{x}^{H_{\alpha}(x)} dH_{\beta} - I.$$

Thus,

$$\frac{1}{m} \|H_{\beta}(H_{\alpha}(x)) - H_{\alpha}(x)\| \leq \max \|\mathrm{d}H_{\beta} - I\| \cdot \left\| \frac{1}{m} (H_{\alpha}(x) - x) \right\| + 1 \leq \varepsilon' (f(k, \varepsilon') + 1)$$

by (4), (5), for r = k, and (1). So

$$\|\gamma_{\mathbf{r}}(\sigma)\| \le 1 + (1 + \varepsilon')f(k, \varepsilon') \le f(k+1, \varepsilon')$$

by (2).

Equation (5) is established for r = k + 1, so by induction, (5) is established for all $r \le l$.

Now we can estimate $\delta \gamma_x$. Let β_1 , β_2 , and $\beta_1 \beta_2$ be in B^l . Then,

$$\begin{split} \delta\gamma_x(\beta_1,\,\beta_2)) &= \gamma_x(\beta_1) + \gamma_x(\beta_2) - \gamma_x(\beta_1 \cdot \beta_2) \\ &= \frac{1}{m} \left[H_{\beta_1}(x) - x + H_{\beta_2}(x) - x - H_{\beta_1 \, \beta_2}(x) + x \right] \\ &= -\frac{1}{m} \left[H_{\beta_1}(H_{\beta_2}(x)) - H_{\beta_2}(x) - (H_{\beta_1}(x) - (x)) \right] \\ &= -\frac{1}{m} \int_{x}^{H_{\beta_2}(x)} (\mathrm{d}H_{\beta_1} - I) \end{split}$$

so

$$\|\delta\gamma_{x}(\beta_{1}, \beta_{2})\| \leq \left\|\frac{1}{m}\left(H_{\beta_{2}}(x) - x\right)\right\| \cdot \max_{\|y\| \leq 0} \|\mathrm{d}H_{\beta_{1}}(y) - I\| \leq \varepsilon$$

by (5), (4) and (3). Thus, γ_x is a normal (B^t, ε) -cocycle with values in \mathbb{R}^k , and the proof of Theorem 2 is concluded.

Modifications necessary to prove Theorem 3. In the proof of Theorem 3, we take B to be a compact neighborhood of 1, closed under inversion and generating G. We denote the representation of G by H. If p is a fixed point of H, then for x near p (and in some Euclidean neighborhood, which we identify with Euclidean space by a fixed chart) such that x is not fixed by H, a continuous function γ_x on a subset of G containing B is constructed by the same formula (1).

The proof of Lemma 2 works verbatim: by the continuity of H and the compactness of B^l , there are no problems with finding sufficiently small ε 's and δ 's. Lemma 1 must be helped along, here and there. In the definition of normal (B^l, ε) -cocycles, for a topological group G, we do not add any requirement that they be continuous. However, a normal (B^l, ε) -cocycle is bounded by $l + (l - 1)\varepsilon$. Then, in the topology of pointwise convergence,

the space of normal (B^l, ε) -cocycles is compact. Assuming the hypotheses of Lemma 1, we conclude that there is a normal (G, 0)-cocycle with values in \mathbb{R}^k . For the purposes of Theorem 3, we need a continuous cocycle. However, a cocycle γ which is bounded (say, by 1) on B is automatically continuous. We need only see it is continuous at 1, because of the cocycle condition $\delta \gamma = 0$. But for every n, there is a neighborhood U of 1 such that $U^n \supset B$. Then for $\alpha \in U$, $n\gamma(\alpha) = \gamma(\alpha^n) \le 1$, so γ is bounded by 1/n on U: therefore, γ is continuous. This shows that if the linear action at p is trivial, and if there are no non-trivial continuous representations of G in \mathbb{R} , then a neighborhood of p is fixed by H. The set of fixed points of H for which the linear action is trivial is a closed set; the above argument shows it is open so it is all of V^k .

REFERENCES

- 1. M. W. Hirsch and W. Thurston: Foliated bundles, invariant measures, and flat manifolds (to appear *Annals*).
- 2. G. Reeb: Sur certaines proprietes topologiques des variétés feuilletees, *Actual Sci. Ind.* No. 1183. Hermann Paris (1952).
- 3. W. THURSTON: Foliations of 3-manifolds which are circle bundles. Thesis, University of California. Berkeley (1972).

M.I.T., Cambridge, Massachusetts*

^{*} Current address: Princeton University, Princeton, N.J.