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a b s t r a c t

Bioactive glasses are a class of inorganic biomaterials widely used in bone tissue engineering and regen-
erative medicine. Once implanted in the human body, these biomaterials react with the body fluid result-
ing in the formation of a surface hydroxyapatite (HA) layer, which exhibits the ability to form a stable
chemical bond with the adjacent living bone tissue. The experimental evaluation of the degradation of
bioactive glasses in contact with body fluid requires long-term in vitro assays. In this work, a novel math-
ematical model is proposed to numerically analyze the dissolution and bioactivity of bioactive glasses in
relevant conditions for their in vitro and in vivo applications. A detailed framework is described for the
numerical implementation using the Voxel-FEM method, in order to account for the microstructural evo-
lution as consequence of degradation and HA layer formation. Two examples of application are high-
lighted, showing the suitability and usefulness of the proposed model for the evaluation of bioactive
glasses in tissue engineering applications.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Bioactive silicate glasses were discovered by Hench et al. (1971)
almost 40 years ago. When implanted in the human body, these
glasses react with the body fluid, which dissolves the glasses
through complex surface physico-chemical reactions. Glass disso-
lution releases a cascade of ions, which in turn react with the body
fluid finally resulting in the formation of a surface hydroxyapatite
(HA) layer. Due to the presence of this layer, the biomaterial exhib-
its the ability to form stable chemical bonds with the adjacent liv-
ing tissue (Hench et al., 1971; Hench, 1998). This particular behaviour
is known as ‘bioactivity’ in the specialised literature (Kokubo et al.,
1990). One of the most popular bioactive glasses has the composi-
tion 45 wt.% SiO2, 24.5 wt.% Na2O, 24.5 wt.% CaO and 6 wt.% P2O5,
and it is known as 45S5 Bioglass� (Hench et al., 1971). This bioac-
tive glass has been the base material for many developments in the
framework of (non-load bearing) orthopaedic implants, dental
materials as well as regenerative medicine and bone tissue engi-
neering, showing promising results in several cases and applica-
tions (i.e., see Chen et al., 2006a; Hench and Paschall, 1973;
ll rights reserved.
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Hench et al., 1991; Hench and West, 1996; Rezwan et al., 2006;
Roether et al., 2002a,b; Wilson and Low, 1992; Wilson et al.,
1993; Yamamuro, 1990).

The intrinsic behaviour of bioactive glasses has placed these
materials as perfect candidates for fabrication of scaffolds for bone
tissue engineering applications (Chen et al., 2006a; Hench and
Polak, 2002; Rezwan et al., 2006; Roether et al., 2002a). In this
field, highly porous scaffolds are used as substrates to promote
new bone tissue formation. Among many requirements, the scaf-
fold should be porous with adequate pore size, exhibit tailored
degradation/dissolution and must be strong enough to support
mechanical loads (mainly in bone tissue applications) (Guarino
et al., 2007; Hutmacher, 2000; Jerome and Maquet, 1997; Wake
et al., 1994). Fabrication techniques to produce suitable porous
scaffolds from bioactive glasses (and glass–ceramics) have been re-
ported (Chen et al., 2006a; Fu et al., 2007; Livingston et al., 2002;
Vitale-Brovarone et al., 2007).

In terms of structural integrity, bioactive glasses are not optimal
materials due to their intrinsic brittleness (Chen et al., 2006a).
Some solutions in this context are either forming a crystalline
phase in the bioactive bulk glass, effectively developing glass–
ceramics (Chen et al., 2006a; Vitale-Brovarone et al., 2007), or intro-
ducing a different phase (usually a polymer), forming a composite
(Yunos et al., 2008).

Scaffold performance evaluation is crucial to ensure a well-
designed tissue engineering scaffold. Experimental protocols may
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be classified into in vivo and in vitro tests. In vivo tests carried out
on scaffolds usually involve a multidisciplinary team including
tasks like scaffold characterization, scaffold implantation, histolo-
gies, bone quantification or scaffold dissolution. On the other hand,
in vitro characterization of scaffolds includes mechanical charac-
terization in terms of toughness, stiffness, constitutive behaviour
as well as biodegradation, among many other assays. Therefore,
both in vivo and in vitro evaluation of scaffold behaviour require
a great amount of facilities and long-term setups (e.g. a biodegra-
dation assay usually takes 21 days for bioactive glasses). In this
scenario, numerical prediction of scaffold behaviour represents a
very useful alternative for scaffold design, once a proper validation
is conducted.

For example, overall mechanical properties of scaffolds may be
numerically obtained using the homogenization theory (Lin et al.,
2004; Sanz-Herrera et al., 2008b). The suitability of this theory
was experimentally corroborated recently for the evaluation of
the mechanical properties and the permeability of scaffolds
(Sanz-Herrera et al., 2008c). Moreover, the complex evolution of
the mechanical behaviour of a scaffold as new bone tissue grows
has been simulated (Sanz-Herrera et al., 2008d).

Very few works have been developed to numerically analyze
degradation/dissolution of biomaterials. Adachi et al. (2006) devel-
oped a numerical approach to simulate degradation and erosion,
by the implementation of a model previously introduced by
Gopferich (1997) available for polymeric biomaterials. The phe-
nomenon of erosion was simulated in this work using the Voxel
Finite Element Method (Voxel-FEM) (Adachi et al., 2001; Guldberg
et al., 1998). This model was also applied in a multiscale formula-
tion of bone growth and scaffold resorption for polymeric scaffolds
(Sanz-Herrera et al., 2009a).

Recently, Wang et al. (2009) and Han and Pan (2009) presented
a novel model to analyze degradation of biopolymers. The model
was established from a continuum approach based on reaction–
diffusion equations. The phenomenon of erosion, however, was
not explicitly modelled in their work. Other important issues in
bioactive glasses, such as bioactivity, have been investigated and
modelled by means of a molecular dynamics (MD) framework
(see Tilocca, 2009 for a review). MD simulation allows the specific
and rigorous study of some events that take place during dissolu-
tion and bioactivity phenomena at the atomic level. MD numerical
approaches include the analysis of the atoms and ions involved in
the related physico-chemical reactions in order to add some infor-
mation regarding glasses nanostructure, atomic groups role on bio-
activity or clustering (Tilocca, 2009). However, there exist a gap
between information provided by MD models and its implication
in the overall macroscopic behaviour. In contrast, a pure macro-
scopic approach itself requires phenoenological feedback. Both
kind of models are then complementary and necessary to get in-
sight on the behaviour of bioactive glasses.

In this paper, a novel theoretical model for the analysis and sim-
ulation of dissolution and bioactivity of bioactive glasses is pre-
sented. The model starts rationally from the study and analysis of
the fundamental reaction equations of dissolution and precipitation
that take place in bioactive glasses, finally yielding to reaction–diffu-
sion equations. Model parameters implications and assumed bound-
ary conditions are discussed in detail. The obtained set of differential
equations allows to phenomenologically model dissolution and pre-
cipitation, as a measure of bioactivity. The phenomenon of biomate-
rial dissolution is numerically simulated through the Voxel-FEM
method. Two examples of applications are shown: the first one re-
gards a parametric analysis that highlights the influence of some of
the most important model parameters, discussing their physical
meaning in terms of their mathematical definition. The second
example represents an actual Bioglass� based scaffold microarchi-
tecture. The aim of this example is to show the potential and useful-
ness of the proposed theoretical model on an actual biodegradation
in vitro test. Results are qualitatively validated, to some extent, with
experimental results.
2. Model equations for bioactivity and dissolution

2.1. Problem description

The model is rationally based on the chemistry and underlying
phenomena that take place once a bioactive glass specimen is im-
mersed in a simulated body fluid (SBF) (Hench, 1998). In vitro tests
in SBF are currently used to study bioactivity of materials, repre-
senting usually the first test carried out on biomaterials to detect
the formation of HA, which should lead to strong bond to bone tis-
sue (Hench, 1998; Kokubo et al., 1990). Before describing in detail
the model equations, the main fundamental issues about the disso-
lution of bioactive glass derived tissue engineering scaffolds are
addressed in this section.

For fabrication of scaffolds from melt-derived Bioglass� powder,
a foam replica technique involving sintering at high temperature
(>1000�) has been developed (Chen et al., 2006a). The heat-
treatment results in partial crystallisation of the foam struts. It
has been reported that an excessively crystalline degree may turn
the glass into an inert material (Li et al., 1992). However, in highly
porous scaffolds, crystallisation of the Bioglass� matrix induces
only a retardation of the HA formation in contact with simulated
body fluid due to the increased surface area in direct contact with
the fluid (Chen et al., 2006a).

Once the biomaterial is implanted in vivo or immersed in vitro
(e.g. in SBF) the bioreactivity of bioactive glasses leads to a cascade
of reactions, which may be summarized through a sequence of five
consecutive steps (Clark et al., 1976; Hench, 1998): (i) Na+ ions are
rapidly released at the surface and replaced by H+ from the SBF
solution, (ii) the corresponding increase in local pH promotes
breaking of surface Si–O–Si bonds and release of soluble silica to
the SBF solution, (iii) some of the surface silanol groups formed
in steps (i) and (ii) condense to form a hydrated silica-rich layer
on the surface, depleted in modifier cations, (iv) calcium and phos-
phate ions are released through the surface silica layer, and incor-
porate other Ca2+ and PO3�

4 from the SBF solution to form an
amorphous calcium phosphate phase deposited on the surface,
and (v) the latter amorphous film incorporates additional carbon-
ate ions from solution and crystallizes to hydroxycarbonate
apatite.

Similarly the partially crystallised Bioglass�-based scaffold
exhibits surface reactions in contact with SBF, in particular the
crystalline phase dissolves first (Chen et al., 2006a). The mecha-
nism of dissolution in this case can be explained through three
main phenomena (Boccaccini et al., 2007): (i) preferential dissolu-
tion at glass/crystal interfaces, (ii) break-down of crystalline parti-
cles into very fine grains through preferential dissolution at crystal
structural defects, and (iii) amorphisation of the crystalline
structure by introduction of point defects produced during ion ex-
change. From this step, the sequence of reactions mentioned above
for Bioglass� are thought to take place and HA forms (Boccaccini
et al., 2007; Chen et al., 2006a).

In the present study, both the process of bioactivity and disso-
lution are modelled in a simplified way. Four main species are con-
sidered in our model:

� SBF [mol/m3] which is a model aqueous solution in contact with
the biomaterial.
� Bioactive glass (BG) [mol/m3] which represents the overall con-

stituent of the scaffold and reacts with the SBF, as outlined
above.



Fig. 1. Different species identified in the model and their implication in the
dissolution–precipitation reactions.
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� Reactant aqueous solution (R) [mol/m3] which represents the
overall dissolved products (cations and anions) resulting from
the reaction between the (partially crystallised) bioactive glass
scaffold and the SBF.
� Precipitate (P) [mol/m3] which represents the overall nucleated

products deposited on the biomaterial surface.

As a simplification, we do not explicitly consider the precipita-
tion of both the silica and HA layers but they are globally featured
by the precipitate layer (P). According to the considered species
and the explained reactions that take place, we can write the fol-
lowing equation for the dissolution of the BG species:

nsd � SBFðaqÞ þ nb � BGðsÞ ! nrd � RðaqÞ þ othersd ð1Þ

where nsd, nb and nrd are the molar (stechiometric) proportions of
the involved species in the dissolution reaction. othersd represent
some other species involved in the dissolution reaction. It is consid-
ered they have a minor relevance and were neglected as a first
approach. We consider that the species SBF and R can diffuse into
the bulk biomaterial. This is a consequence of the micropores and
eventually microcracks formed during the fabrication of the scaffold
(Chen et al., 2006a). Therefore, the dissolution equation (1) applies
to the entire domain (not only to the surface). Eq. (1) macroscopi-
cally represents thus the phenomenon of crystal dissolution and
break-down of crystalline particles explained above since the
glass–crystal material is assumed as a homogeneous continuum
(see Fig. 1). Moreover, the release of reactant constituents—featured
by R—in the solution, enables the cascade of reactions mentioned
above to occur in contact with SBF. These reactions first result in
the formation of a silica layer on the scaffold surface to finally yield
the HA layer, as explained above. This process is simplified by con-
sidering an overall unique1 precipitation reaction according to the
following expression:

nsp � SBFðaqÞ þ nrp � RðaqÞ ! np � PðsÞ þ othersp ð2Þ
1 Even though several ions are involved in the precipitation reaction, the net
reaction may be featured by such reaction equation by properly fitting the
stechiometric coefficients.
where nsp, nrp and np are the molar (stechiometric) proportions of
the involved species in the precipitation reaction. Analogously to
the dissolution equation (1), othersp represent some other species
involved in the precipitation reaction. They are neglected as well,
as a first approach. Since the species involved in the precipitation
reaction, Eq. (2), can diffuse through the biomaterial, one may con-
sider that the product P may precipitate along the bulk biomaterial.
However, since precipitation reactions depends on pressure, we
consider, as a model hypothesis, that ideal conditions are not
reached in the biomaterial interior for precipitation, being thus
Eq. (2) restricted only to the biomaterial surface.

2.2. Chemical rate reaction equations

Dissolution and precipitation reactions, Eqs. (1) and (2), respec-
tively, are expressed in terms of rate reaction equations. For the
dissolution we propose a first order kinetic reaction similar to that
used in previously developed models (Knabner et al., 1995; van
Noorden and Pop, 2008), i.e., the formation rate of R only depends
on SBF concentration such that,

_Rd ¼ kd � SBF � H½BG� in XðxÞ ð3Þ

being _� the time derivative (rate) of h, kd [1/s] the dissolution rate
constant and X(x) the biomaterial domain. H[�] is the Heaviside
function which was introduced in (3) to take into consideration
the stechiometry of Eq. (1) in terms of the limiting reagent thus,

H½BG� ¼
1; BG > 0
0; BG ¼ 0

�
ð4Þ

According to Eqs. (1) and (3), the following expression is found for
the rate reaction equation of BG dissolution,

_BG ¼ �nrd

nb

_R ¼ �nrd

nb
kd � SBF � H½BG� in XðxÞ ð5Þ

Likewise, using Eqs. (1) and (3) we obtain,

_SBFd ¼ �
nrd

nsd

_R ¼ � nrd

nsd
kd � SBF � H½BG� in XðxÞ ð6Þ

_SBFd regarding to the SBF consumption in the dissolution equation.
On the other hand, the precipitation rate is modelled by the law

of mass action kinetics, similarly to other models for the precipita-
tion rate (van Noorden and Pop, 2008),

_P ¼ kp � SBFnsp � Rnrp in CðxÞ ð7Þ

where kp s�1 mol
m3

� �1�nsp�nrp
h i

is the precipitation rate constant. Note
that Eq. (7) is defined at the biomaterial surface C(x) due to the pre-
viously introduced hypothesis that the precipitation reaction takes
place at that location. The consumption rate of the reactant (R) in
the precipitation reaction is obtained by using Eqs. (2) and (7) as,

_Rp ¼ �
np

nrp

_P ¼ � np

nrp
kp � SBFnsp � Rnrp in CðxÞ ð8Þ

Analogously, using Eqs. (2) and (7), the consumption rate of the
SBF specie in the precipitation reaction yields:

_SBFp ¼ �
np

nsp

_P ¼ � np

nsp
kp � SBFnsp � Rnrp in CðxÞ ð9Þ
2.3. Reaction–diffusion equations

Aqueous species are allowed to diffuse in our model as conse-
quence of porosity and cracks developed at the interior of the bio-
material during fabrication. Diffusion is assumed to be driven by
the Fick’s law both for the SBF and R. Therefore, by balancing the
mass transfer over an infinitesimal control volume, the following



2 In this case, Eq. (21) is integrated considering nrp, np = 1 for the sake of simplicity.
This value is used after for the examples of applications shown. However, Eq. (21)
could be integrated for any other nrp, np values.
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time-dependent differential expressions are found for the SBF and
R, respectively:

_SBF ¼ �Ds � r2½SBF� � _SBFd in XðxÞ ð10Þ
_R ¼ �Dr � r2½R� þ _Rd in XðxÞ ð11Þ

r2[�] being the Laplacian operator, and Ds, Dr the diffusion coeffi-
cients of SBF and R, respectively, in the biomaterial (both assumed
as constant as a first approach). Using (6) in (10) it yields:

_SBF ¼ �Ds � r2½SBF� � nrd

nsd
kd � SBF � H½BG� in XðxÞ ð12Þ

Analogously, introducing (3) in (11) we obtain,

_R ¼ �Dr � r2½R� þ kd � SBF � H½BG� in XðxÞ ð13Þ

Ordinary differential equations (5) and (7) and reaction–
diffusion equations (12) and (13) define the proposed model avail-
able to analyze bioactivity and dissolution in bioactive-glasses.
Boundary conditions for Eqs. (12) and (13) are analyzed below,
whereas initial conditions are defined as BG(t = 0) = BG0,
P(t = 0) = 0, SBF(t = 0) = SBF0 and R(t = 0) = 0.

2.4. Dimensionless formulation

In order to reduce the number of parameters involved in the
model, the following dimensionless variables and parameters are
proposed,

�x ¼ x
L

; �t ¼ kd � t; SBF ¼ SBF
SBF0

BG ¼ BG
SBF0

; R ¼ R
SBF0

; P ¼ P
SBFn

0

Ds ¼
Ds

kdL2 ; Dr ¼
Dr

kdL2 ; �kp ¼
kp

kd

ð14Þ

where x is the vector position of a material point of the domain; L is
the characteristic specimen size; n = nrp + nsp, and t is the time var-
iable. Using the dimensionless parameters and variables according
to Eq. (14), one can achieve the following set of coupled differential
equations:

_BG ¼ �nrd

nb
� SBF � H½BG� in Xð�xÞ ð15Þ

_P ¼ �kp � SBFnsp � Rnrp in Cð�xÞ ð16Þ
_SBF ¼ �Ds � r2½SBF� � nrd

nsd
� SBF � H½BG� in Xð�xÞ ð17Þ

_R ¼ �Dr � r2½R� þ SBF � H½BG� in Xð�xÞ ð18Þ

Hereafter, dot differentiation is referred to dimensionless time
�t. Eqs. (15)–(18) are numerically implemented as explained in Sec-
tion 3. The initial conditions for this set of equations are
BGð�t ¼ 0Þ ¼ BG0; Pð�t ¼ 0Þ ¼ 0; SBFð�t ¼ 0Þ ¼ 1 and Rð�t ¼ 0Þ ¼ 0.
The boundary conditions of this problem are treated in the next
section.

2.5. Boundary conditions

The problem defined through the set of Eqs. (15)–(18) lacks the
boundary conditions for SBF and R. To define them, some simplifi-
cations are introduced. We consider that the bioactive glass is im-
mersed in an abundant solution of SBF. Due to the reactions that
take place at the boundary SBF-biomaterial, SBF concentration
diminishes stechiometrically according to Eqs. (1) and (2). How-
ever, as a consequence of SBF concentration depletion, SBF diffuses
along the aqueous solution. At this stage, we consider the two fol-
lowing assumptions: (i) SBF diffuses along the solution much more
faster than in the biomaterial and it also is much more faster than
the typical reaction times, and (ii) SBF is abundant and hence no
SBF depletion is considered along the solution. Therefore, we con-
sider that SBF concentration is constant (oversaturated) along the
biomaterial surface,

SBFð�x;�tÞ ¼ 1 in Cð�xÞ ð19Þ

This hypothesis is analogous to consider a laminar SBF flow in
contact with the biomaterial (for example as in perfusion-based
bioreactor experiments). In this case, this would be the actual
boundary condition. Moreover, this hypothesis is enforced by the
fact that SBF is usually changed or refilled at certain times through
the experiment to keep a constant concentration. It should be
noted that this hypothesis may not be accurate for rapid reaction
times or limited amount of SBF.

To obtain the boundary conditions regarding to the reactant, a
mass conservation equation is established at the SBF-biomaterial
surface according to Eqs. (2), (3) (in its dimensionless form) and
(16),

_R ¼ SBF � H½BG� � np

nrp

�kp � SBFnsp � Rnrp in Cð�xÞ ð20Þ

Assuming that SBF concentration is constant along the SBF-bio-
material surface according to (19), Eq. (20) is rewritten as follows:

_R ¼ H½BG� � np

nrp

�kp � Rnrp in Cð�xÞ ð21Þ

Here, it is noted that the biomaterial boundary Cð�xÞ is changing
with time as a consequence of erosion and precipitation reactions
on the surface (first formation silica layer and then of HA) due to
the intrinsic bioactivity of the glass. We name the time �tHð�xÞ as
the instant time when a point �x becomes a boundary point. There-
fore, the initial condition for Eq. (21) is:

Rð�x 2 C;�tHÞ ¼
0; �tHð�xÞ ¼ 0
RH; �tHð�xÞ > 0

�
ð22Þ

It should be noted that Eq. (22) takes into consideration a pos-
sible initial concentration of R for �t > 0, i.e., RH, due to the diffusion
of this substance. Eq. (21) is an ordinary differential equation
which may be easily integrated.2 Thus, the final expression of the
boundary condition for the reactant reads as,

Rð�x;�tÞ ¼ RH exp½��kps� þ
1
�kp

H½BG�ð1� exp½��kps�Þ in Cð�xÞ ð23Þ

where s ¼ �t � �tHð�xÞ.
Eq. (16) can be integrated as well, once the expression for R has

been found in Eq. (23). It yields the following expression for P,

Pð�x;�tÞ ¼ H½BG� � �t � Rð�x;�tÞ in Cð�xÞ ð24Þ

Note that considering that the specie P is only defined at the
boundary, Eq. (24) reflects the analytical solution of P once BG
and R are known.

3. Numerical implementation

The developed model above through Eqs. (15), (17), (18)
and (24) with initial conditions BGð�t ¼ 0Þ ¼ BG0; Pð�t ¼ 0Þ ¼ 0;
SBFð�t ¼ 0Þ ¼ 1 and Rð�t ¼ 0Þ ¼ 0; and boundary conditions as in
Eqs. (19) and (23), is implemented in a finite element framework.
To accomplish this, the spatio-temporal discretization of the equa-
tions is developed in this section. In order to account for the dy-
namic generation of new boundaries and domain evolution, due
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to dissolution and new layer formation, i.e., bioactivity, the Voxel-
FEM method is used (see Sanz-Herrera et al., 2008c; Sanz-Herrera
et al., 2009b). The discretized problem and the numerical algo-
rithms are implemented using the program Abaqus (Hibbit et al.,
2001). This methodology is developed in the next subsections.

3.1. Time discretization

An implicit unconditionally stable time discretization algorithm
is chosen such that _� ¼ D�

D�t and � ¼ ��t þ D�. Following then an
incremental procedure, Eqs. (15), (17) and (18) are written, respec-
tively, as:

1
D�t
� DBGþ nrd

nb
� DSBF � H½BGþ DBG� þ nrd

nb
� SBF�t � H½BGþ DBG�

¼ 0 in Xð�xÞ ð25Þ

1
D�t
� DSBF þ Ds � r2½DSBF� þ nrd

nsd
� DSBF � H½BGþ DBG�

þ Ds � r2½SBF �t � þ nrd

nsd
� SBF �t � H½BGþ DBG� ¼ 0 in Xð�xÞ ð26Þ

1
D�t
� DRþ Dr � r2½DR� � DSBF � H½BGþ DBG� þ Dr � r2½R�t �

� SBF�t � H½BGþ DBG� ¼ 0 in Xð�xÞ ð27Þ

For convenience, boundary conditions, defined through Eqs.
(23) and (24), are expressed, respectively in an incremental
fashion,

DR ¼ R�t þ 1
�kp

H½BGþ DBG�

þ exp½��kp � D�t� R�t � 1
�kp

H½BGþ DBG�
 !

in Cð�xÞ ð28Þ

DP ¼ D�t � DR in Cð�xÞ ð29Þ

Differential equations (26) and (27) are now spatially discret-
ized using a finite element framework. This procedure is explained
in the next section.

3.2. Spatial finite element discretization

Incremental variables DSBF and DR are interpolated over a finite
element through a nodal (discrete) values, such that,
DSBFðxÞ � NsðxÞ � DSBF and DRðxÞ � NrðxÞ � D�R. Interpolating shape
functions are assumed as N = Ns = Nr, whilst DSBF and D�R are a dis-
crete node-valued vectors containing DSBF and DR at the position
of each node of the element, respectively. Therefore, using this fi-
nite element discretization (see additionally Bathe, 1996; Hughes,
2000; Reddy, 1993; Zienkiewicz and Taylor, 2000), the weak form
of Eq. (26) yields,

A
Nel
e¼1

1
D�t

Z
Xe

NT �N � dXe � DSBFþ
Z

Xe

BT � Ds � B � dXe � DSBF
�
þ
Z

Xe

nrd

nsd
�NT � N � dXe � I �H½BGþ DBG� � DSBF

þ
Z

Xe

BT � Ds � B � dXe � SBF�t þ
Z

Xe

nrd

nsd
�NT � N � dXe � I

�H½BGþ DBG� � SBF�t
o
¼ 0 ð30Þ

B being the shape function gradient matrix and I the unity matrix
with dimension of the vector DSBF. The symbol A represents the
assembly operator and Nel the number of elements.
Eq. (30) is now developed for a single element as,

1
D�t
�Ms þ Ks þ

nrd

nsd
Ms � I �H½BGþ DBG�

� �
� DSBF

þ Ks þ
nrd

nsd
Ms � I �H½BGþ DBG�

� �
� SBF �t ¼ 0 ð31Þ

Ms and Ks are the standard mass and stiffness matrices of Eq. (30),
respectively (see Bathe, 1996; Hughes, 2000; Reddy, 1993;
Zienkiewicz and Taylor, 2000). Furthermore, Eq. (31) can be addi-
tionally rewritten and expressed as,eKsðBGÞ � DSBF ¼R

�t
sðBGÞ ð32ÞeKs being the extended stiffness matrix which may be found by

matching Eqs. (31) and (32). Eq. (32) is arranged taking the un-
known values at the left hand side and the residual values, i.e., those
known from the previous increment at the right hand side in the
residual vector R�t

s. Both the extended stiffness matrix and residual
vector depend upon the BG values. The treatment of this non-
linearity is easily circumvented as explained below.

Analogously, Eq. (27) can be developed once introduced the
spatial (nodal) discretization above, and establishing Eq. (27) in
its weak form, namely,

A
Nel
e¼1

1
D�t

Z
Xe

NT � N � dXe � D�R þ
Z

Xe

BT � Dr � B � dXe � D�R
�
�
Z

Xe

NT � N � dXe � I �H½BGþ DBG� � DSBF

þ
Z

Xe

BT � Dr � B � dXe � �R�t �
Z

Xe

NT � N � dXe � I �H½BGþ DBG� � �R�t

�
¼ 0

ð33Þ
Furthermore, Eq. (33) can be written for one element in terms of

the mass and stiffness matrices as,

1
D�t
�Mr þ Kr

� �
� D�R �Mr � I �H½BGþ DBG� � DSBF

þ Kr �Mr � I �H½BGþ DBG�
� 	

� �R�t ¼ 0 ð34Þ

Finally, Eq. (34) is expressed in terms of the unknown (left hand
side) and known residual (right hand side) values,eKr � D�R �fMrðBGÞ � DSBF ¼ R�t

rðBGÞ ð35Þ

Again, matrices eKr; fMr and residual vector R�t
r are a function of

variable BG. Eqs. (32) and (35) are arranged in the following set of
linearized algebraic system of equations as,eKsðBGÞ 0

�fMrðBGÞ eKr

" #
DSBF
DR

( )
¼

R�t
sðBGÞ
R�t

rðBGÞ

( )
ð36Þ

The solution procedure to solve the proposed model is summa-
rized in the following algorithm:

1. Initialize variables with nodal values SBFð�t ¼ 0Þ ¼ 1;
BGð�t ¼ 0Þ ¼ BG0 � 1 (assuming homogeneous distribution),
�Pð�t ¼ 0Þ ¼ 0; �Rð�t ¼ 0Þ ¼ 0, being 0 and 1 a vectors with the
dimension of SBF containing 0 and 1 at every row, respectively.

2. Impose boundary conditions at �t þ D�t for variables SBF and R,
such that, SBF ¼ 1 and �R ¼ D�R þ �R�t , being D�R computed
through Eq. (28).

3. Compute the system defined by Eq. (36) for each element and
assembly to obtain the whole global algebraic system. Consider
H½BGþ DBG� ¼ 1. This step yields the solution for DSBF and D�R.

4. Once computed these incremental quantities, DBG and D�P are
obtained using Eqs. (25) and (29), respectively. Variable values
at current increment are obtained as � ¼ ��t þ D�.

5. If BG becomes negative for the component i of the vector, then
GO TO item (3) considering now Hi½BGþ DBG� ¼ 0.



Table 2
Matrix components Kmn of Eq. (39).

m n

1 2 3 4 5 6 7 8

1 2aDi
3

0 �ðaDiÞ
6

0 0 �ðaDiÞ
6

�ðaDiÞ
6

�ðaDiÞ
6

2 2aDi
3

0 �ðaDiÞ
6

�ðaDiÞ
6

0 �ðaDiÞ
6

�ðaDiÞ
6

3 2aDi
3

0 �ðaDiÞ
6

�ðaDiÞ
6

0 �ðaDiÞ
6

4 2aDi
3

�ðaDiÞ
6

�ðaDiÞ
6

�ðaDiÞ
6

0

5 2aDi
3

0 �ðaDiÞ
6

0

6 Symmetric 2aDi
3

0 �ðaDiÞ
6

7 2aDi
3

0

8 2aDi
3
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Thus the process of dissolution and new layer formation is
explicitly modelled in the present work to simulate the geometry
evolution with time. This is accomplished by means of the Voxel-
FEM and explained in the next section.

3.3. Voxel-FEM methodology

Geometry evolution, i.e., dissolution and new layer formation, is
here simulated by means of the Voxel-FEM method (Adachi et al.,
2001; Guldberg et al., 1998). Briefly, each finite element is consid-
ered to be a voxel analogously to a straight edge eight-noded hexa-
hedron with linear interpolation. Due to the characteristic features
of this kind of element, mass and stiffness matrices can be analyt-
ically derived, and the assembly process is speeded up by binary
matrix transformations (Sanz-Herrera, 2008a; Sanz-Herrera et al.,
2008c). Moreover, the dissolution process, i.e., disappearance,
and new layer formation can be easily simulated by removing
and adding voxels, respectively. In contrast, this method becomes
problematic when Neumann boundary conditions are imposed
(this is not the case in our problem) and provides a poor approxi-
mation of the geometry when the mesh is relatively coarse (Sanz-
Herrera, 2008a).

Voxel linear shape functions are defined in natural coordinates
as,

N ¼ 1
8
ð1� nÞð1� gÞð1� 1Þ ð37Þ

being n, g, 1 2 [�1,1]. The sign of each coordinate is taken according
to the proper nodal location (eight functions in total). Therefore,
mass matrices expressed above can be obtained as follows:

Mi ¼
Z

Xe

NT � N � dXe ¼
Z 1

�1

Z 1

�1

Z 1

�1
NT � N � a3 � dndgd1 ð38Þ

a being the semivoxel length and i = s,r. Analogously, using shape
functions as in Eq. (37), stiffness matrices are written as,

Ki ¼
Z

Xe

Di � rNT � rN � dXe

¼
Z 1

�1

Z 1

�1

Z 1

�1
Di � rNT � rN � a � dndgd1 ð39Þ

The above mass (Eq. (38)) and stiffness (Eq. (39)) matrices may
be analytically integrated. They are expressed in their closed form
in Tables 1 and 2, respectively.

The solution of the established problem joined with its numer-
ical implementation by the Voxel-FEM, explained above, yield the
variables involved at each node of the voxel mesh. Thus, dissolu-
tion and precipitation are easily simulated by removing and adding
voxels, respectively. For that purpose, we use an internal third or-
der binary mesh featured by subscripts i, j, k,with i, j, k = 1, . . . vox-
length, being voxlength the voxel resolution. This matrix contains
Table 1
Matrix components Mmn of Eq. (38).

m n

1 2 3 4 5 6 7 8

1 8a3

27
4a3

27
2a3

27
4a3

27
4a3

27
2a3

27
a3

27
2a3

27

2 8a3

27
4a3

27
2a3

27
2a3

27
4a3

27
2a3

27
a3

27

3 8a3

27
4a3

27
a3

27
2a3

27
4a3

27
2a3

27

4 8a3

27
2a3

27
a3

27
2a3

27
4a3

27

5 8a3

27
4a3

27
2a3

27
4a3

27

6 Symmetric 8a3

27
4a3

27
2a3

27

7 8a3

27
4a3

27

8 8a3

27
1 if the region of the space located at i, j, k is occupied by a voxel,
being null otherwise. The dissolution (disappearance) algorithm
proceeds as follows (see additionally Fig. 2 and Sanz-Herrera
et al., 2008c):

1. Identify boundary voxels in the binary matrix mesh.
2. Compute BG concentration at boundary voxel centroids by

means of a Lagrangian interpolation.
3. If BG < BGcr, being BGcr a model parameter, then remove the

boundary voxel.

On the other hand, the algorithm available to simulate the pre-
cipitation phenomenon is analogously established (see Fig. 3 and
Sanz-Herrera et al., 2008c),

1. Identify potential voxel candidates to shift into precipitate
(layer) voxels. These are either the boundary voxel (equal to 1
in the binary matrix mesh) or the adjacent ones to the boundary
voxels (equal to 0 in the binary matrix mesh).

2. Compute product concentration P at voxel candidate centroids
through a Lagrangian interpolation.

3. If P > Pcr and BG < BGcr (note that BG = 0 in adjacent voxels),
being Pcr a model parameter, then shift the candidate voxel into
a precipitate voxel.
Fig. 2. Dissolution scheme: (a) initial voxel mesh, (b) identify boundary voxels, (c)
compute BG at boundary voxels centroids and (d) if BG < BGcr then remove the
boundary voxel.



Fig. 3. Precipitation scheme: (a) initial voxel mesh, (b) identify voxel candidate, (c) compute precipitate concentration P at voxel candidates and (d) add a new precipitate
voxel if P > Pcr at voxel candidate centroid.

Fig. 4. Problem geometry for the parametric analysis, 1/8 of a spheric biomaterial
(scaffold) wall containing a hole.
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4. Results

In this section, some examples of applications of the model pro-
posed above are shown. For that purpose, we consider a bioactive
glass scaffold with a certain microstructure immersed in an infinite
SBF medium.

A priori, any bioactive material may be analyzed just fitting the
model parameters, namely, nsd; nb; nrd; nsp; nrp; np;

�kp; Ds and Dr .
Molar coefficients nsd, nb, nrd, nsp, nrp and np may be obtained by
analyzing the chemical reagents involved in the reactions, whereas
�kp is determined measuring the amount of formed product P per
time. On the other hand, diffusion coefficients Ds and Dr can be
determined by the setup of Fickean experiments for the SBF and
reactant, respectively, within the biomaterial. Obtaining model
parameters requires experimental setup for each specific biomate-
rial. However, these tests regard to well-established standard pro-
tocols. As a first simplified approach, we consider nsd = nb =
nrd = nsp = nrp = np = 1 due to the difficulty to search this specific
information in the literature. Furthermore, we assume that the dif-
fusion velocity of SBF within the biomaterial is the same than the
reactant, such that, Ds ¼ Dr . On the other hand, we assume the
formed HA layer to be impermeable and therefore null diffusion
in this part of the domain occurs. Note that according to these sim-
plifications, the model is driven by parameters �kp and Ds ¼ Dr ¼ D.
Since the aim of the paper is not an exhaustive model validation,
the chosen parameters were not specifically related to known prac-
tical conditions.

In the first example, a sensitivity analysis to model parameters
�kp and D is performed. A generic microstructure is considered in
this case. Secondly, an actual Bioglass� scaffold microstructure is
reproduced in order to simulate a realistic example of dissolution
and bioactivity. Results are discussed, to some extent, based on
qualitative validation of the model.
4.1. Example of application: parametric analysis

Fig. 4 represents the microstructure of 1/8 of a spheric biomate-
rial (scaffold) containing a hole. This kind of microarchitecture is
usually found in scaffolds fabricated by means of a porogens (Diego



Fig. 5. Geometry of the specimen at the final stage of the analysis. (a) Case i at �t ¼ 20, (b) case ii at �t ¼ 20, (c) case iii at �t ¼ 20 and (d) case iv at �t ¼ 19.
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Fig. 6. Overall degradation in the specimen computed through Eq. (40) for the
different analyzed cases.
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et al., 2007). Symmetric boundary conditions are applied on the
symmetry planes, whereas the biomaterial is assumed to be inm-
mersed in SBF. Geometric aspect ratios are R2/R1 = 10/9, R2/r = 5,
with initial species concentration SBF0 ¼ 1; BG0 ¼ 1. The rest of
parameters are set to BGcr ¼ 0:5 and Pcr ¼ 0:4.

Four different cases are analyzed with different parameters,
namely:

� Case i: D ¼ 0:0004; �kp ¼ 6:0.
� Case ii: D ¼ 0:004; �kp ¼ 6:0.
� Case iii: D ¼ 0:0004; �kp ¼ 3:0.
� Case iv: D ¼ 0:004; �kp ¼ 3:0.

The selected cases correspond to the analysis of the most impor-
tant model parameters for bioactivity and biomaterial degradation.
Dimensionless diffusion parameter D regards to aqueous species
transport within the biomaterial which may be tailored, to some ex-
tent, controlling biomaterial microporosity and cracks formation
during scaffold fabrication. On the other hand, dimensionless pre-
cipitation rate constant �kp regards to precipitation deposition veloc-
ity on the surface, which is an important parameter dependent on
glass composition.

Fig. 5 shows the geometry of the specimen at the final stage of
the analysis for each case. We can qualitatively observe both the
macroscopic dissolution and the formation of the HA layer for
cases i and ii. The effect of diffusion and precipitation velocity
parameters can be easily understood in the model: a rapid precip-
itation velocity yields to HA layer formation (cases i and ii) even in
the case that diffusion is slow (case i). This is true up to a suffi-
ciently high value of D such that the structure starts degrading be-
fore HA formation.

Furthermore, slow values of kp result in no HA layer and conse-
quently biomaterial dissolution (case iii). The higher the velocity of
dissolution is in this case, the quicker dissolution we get as shown
in case iv (see additionally the animation in the supplementary
material for the dissolution evolution in case iv). The obtained re-
sults in Fig. 5 are in agreement with the experimental trends (Chen
et al., 2006a). It is observed that a slow dissolution rate slows down
the precipitation phenomenon due to the lack of released ions to
the surrounding SBF (Tilocca, 2009). On the other hand, a rapid
HA formation must reflect a fast dissolution of the glass network
(Tilocca, 2009), as predicted numerically.

In order to account for degradation and precipitate formation,
two indicators are defined over the volume, namely,

DEGð%Þ ¼ 100 � BG0 �
1

V0

Z
V0

BGð�tÞdV0

� �
ð40Þ

PRECð%Þ ¼ 100 � 1
V0

Z
V0

Pð�tÞ dV0 þ
VHAð�tÞ

V0

� �
ð41Þ

V0 being the initial glass volume and VHA the HA layer volume
formed during precipitation. Finally the mass loss is defined as,

MLð%Þ ¼ DEG� PREC ð42Þ

Fig. 6 plots the degradation evolution for the different cases
computed through Eq. (40). Note that, only cases i and ii develop
a HA layer on the boundary (see Fig. 5) starting from time equal
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Fig. 7. Overall mass loss in the specimen computed through Eq. (42) for the
different analyzed cases.

Fig. 9. Left: Geometry evolution of the unit cell Bioglass� scaffold (see also Fig. 8).
Right: Equally spaced sections of the geometry presented in the left along the x-
axis. (a) �t ¼ 1, (b) �t ¼ 10 and (c) �t ¼ 20. Containing unit cell sphere diameter
800 lm.
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to 9. Therefore, it can be observed in Fig. 6 that cases were HA layer
was formed prevented, or slowed down, the degradation process
since time equal to 9. Therefore, HA layer tends to passivate the
bioglass surface against further dissolution. This fact has been lar-
gely observed experimentally (see for instance Guarino et al., 2007;
Kokubo et al., 1990; Tilocca, 2009). On the other hand, cases iii and
iv (no HA is formed) promoted and speeded up degradation start-
ing from time equal to 10, which is the time when BG reaches the
critical value at boundary voxels, and voxels start to disappear. The
difference of behaviors for the different parameters explained
above, are also reproduced in Fig. 6. In Fig. 7 the total mass loss
of the specimen by computation of Eq. (42) is shown. It can be ob-
served for the different cases the effect of precipitation and new
HA formation on degradation. Depending on the rate of degrada-
tion, new mass formation can slow down or even temporary re-
verse the trend as for example in case i, which has been also
experimentally observed (Bil et al., 2007; Boccaccini et al., 2007;
Roether et al., 2002a).

Note that an excessively fast degradation rate joined to a slow
precipitation velocity (case iv) yields the complete disappearance
of the biomaterial before the analysis is ended.

4.2. Actual Bioglass� scaffold microstructure

Here an actual Bioglass� scaffold microstructure is simulated
(see Fig. 8). A unit cell with dimensions 1 � 1 � 1 was chosen from
Fig. 8. Actual Bioglass� scaffold microstructure (left) taken from Chen and Boccaccini
the actual geometry to simulate bioactivity and biomaterial disso-
lution. This unit cell results in a pentagonal dodecahedron with as-
pect ratio R/r = 8.66 being R the radius of the containing sphere in
the unit cell and r the radius of the rods of the dodecahedron.
Geometric relationships and characterisation of the biomaterial
can be seen in Chen et al. (2006a) and Chen and Boccaccini
(2006b). For the simulation of the problem using the proposed
model, we select the parameters of case i of the problem above.
Fig. 9 shows the geometry evolution with dimensionless time �t
of the problem stated in Fig. 8. As consequence of degradation,
ion release and precipitation, the HA layer is formed in the geom-
etry around dimensionless time �t ¼ 9. The thickness and distribu-
tion of the HA layer can be observed in Fig. 9 for different cross
sections of the geometry at different times.

Results regarding SBF; BG; R and P concentrations are shown in
Figs. 10–13, respectively.

Fig. 10 highlights the SBF distribution in the Bioglass� interior.
At the beginning ð�t ¼ 1Þ the body fluid concentrates preferentially
(2006b) and unit cell model (right). Containing unit cell sphere diameter 800 lm.



Fig. 10. SBF concentration at the different sections (see Fig. 9). (a) �t ¼ 1, (b) �t ¼ 5,
(c) �t ¼ 10, (d) �t ¼ 15, (e) �t ¼ 20. Containing unit cell sphere diameter 800 lm.

Fig. 11. BG concentration at the different sections (see Fig. 9). (a) �t ¼ 1, (b) �t ¼ 5, (c)
�t ¼ 10, (d) �t ¼ 15, (e) �t ¼ 20. Containing unit cell sphere diameter 800 lm.

Fig. 12. R concentration at the different sections (see Fig. 9). (a) �t ¼ 1, (b) �t ¼ 5, (c)
�t ¼ 10, (d) �t ¼ 15, (e) �t ¼ 20. Containing unit cell sphere diameter 800 lm.

Fig. 13. P concentration at the different sections (see Fig. 9). (a) �t ¼ 1, (b) �t ¼ 5, (c)
�t ¼ 10, (d) �t ¼ 15, (e) �t ¼ 20. Containing unit cell sphere diameter 800 lm.

266 J.A. Sanz-Herrera, A.R. Boccaccini / International Journal of Solids and Structures 48 (2011) 257–268
at the boundary, and increases with time in the interior due to
diffusion. Once the HA layer is formed, the body fluid concentra-
tion is depleted due to the impermeable condition of the layer.

On the other hand, Fig. 11 shows the BG concentration with
time. This field decreases with time as a consequence of SBF diffu-
sion, being thus a complementary behavior to SBF. Furthermore,
the evolution of the reaction product R is drawn in Fig. 12. Note
the increasing trend of R with time due to ion release by BG disso-
lution and SBF diffusion. Finally, the precipitate concentration
(only at the boundary where this variable is defined) can be seen
in Fig. 13. An increasing trend with time is observed due to ion re-
lease, SBF diffusion and reactant circulation to the boundary.

Fig. 14 shows both the degradation and mass loss in the whole
unit cell of the Bioglass� scaffold versus time. These variables were
computed through Eqs. (40) and (42), respectively. A similar trend,
in this example, is observed as in the case (i) of the previous sec-
tion. Here, the degradation slope changes once the HA layer is
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Fig. 14. Overall degradation and mass loss in the specimen computed through Eqs.
(40) and (42), respectively, for the actual Bioglass� scaffold.
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formed on the scaffold boundary (around time equal to 9). After
this effect, degradation slows down as a consequence of the imper-
meable layer. Moreover, mass loss increases up to a time when it
abruptly decays due to the formation of the HA layer. Once the
layer is formed, it recovers the precipitate formation trend, as ex-
pected from experimental evidence (Tilocca, 2009).
5. Conclusions

A novel biodegradation model suitable for the macroscopic sim-
ulation of bioactivity and dissolution of bioactive glasses has been
proposed. The model is posed at the continuum level and is ratio-
nally based on the most fundamental chemical equations, identify-
ing four main generic species involved in the phenomenon of
bioactivity and glass dissolution. Many other ions and species are
involved, in this complex process of bioactive glass surface reac-
tions in SBF which were neglected in our model. However, the
model may be easily extended considering such species in two
ways: first, one can write dissolution and precipitation Eqs. (1)
and (2), respectively, considering a number of different species.
The kinetics of each species must be also modelled and each one
included in the global model as an independent variable. Therefore,
the number of parameters to be fitted and model variables in-
creases. The second simplified approach to consider the neglected
ionic species, as a rough approach, is to fit an average molar con-
tent and average kinetic equation, to account for them through
the stechiometric coefficients of the variable othersd and othersp

in Eqs. (1) and (2), respectively. Variables othersd and othersp

should be then incorporated in the global model.
Biomaterial structure evolution, as consequence of both disso-

lution and HA layer formation (as a measure of bioactivity), has
been simulated using the Voxel-FEM. Other geometric methods
based on the level set or isogeometric analysis may be explored
in order to get a better representation of the geometry rather than
the Voxel-FEM. However, this method provides a robust and
efficient platform to simulate structure evolution of complex
geometries.

Once the model here presented is properly validated, it may
serve as a useful platform for designing protocols to test biodegra-
dation and bioactivity of Bioglass�-based scaffolds, which are an
active and promising area of research of biomaterials for bone tis-
sue engineering and regenerative medicine fields.
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