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1. I N T R O D U C T I O N ,  DEFINITIONS,  A N D  PRELIMINARIES 

The widely-investigated subject of fractional calculus (that is, calculus of derivatives and integrals 
of any arbitrary real or complex order) has gained importance and popularity during the past 
three decades or so, due chiefly to its demonstrated applications in numerous seemingly diverse 
fields of science and engineering (see, for details, [1-4]). Recently, by applying the following 
definition of a fractional differintegral (that is, fractional derivative and fractional integral) of 
order u E R, many authors have explicitly obtained particular solutions of a number of families 
of homogeneous (as well as nonhomogeneous) linear ordinary and partial fractional differintegral 
equations (see, for details, [5-18], and the references cited in each of these earlier works). 

DEFINITION. (See [19-21].) If the function f ( z )  is analytic (regular) inside and on C, where 

C := {C-,C+}, (1.1) 

C- is a contour along the cut joining the points z and -co  + i3(z), which starts from the point 
at -oc,  encircles the point z once counter-clockwise, and returns to the point at -oo, C + is a 
contour along the cut joining the points z and c~ + i f(z) ,  which starts from the point at oo, 
encircles the point z once counter-clockwise, and returns to the point at 0% 

f.(z) = ((f(z))~ r ( " + l )  fe f(¢!~ := 2~i (¢ = 7 ~ +  de (1.2) 

(~ e R \ Z - ;  z - : =  { - 1 , - 2 , - 3 , . . . } )  

and 

where ¢ # z, 

and 

f_,~(z) := lim {f,(z)} 
l / - - ~ - - n  

-~r =< arg (~ - z) _< ~r, 

0 =< arg(¢ - z) _<_ 27r, 

(n 6 N : - -  {1,2,3, . . .  }), (1.3) 

for c - ,  (1.4) 

for c +, (1.5) 

then f~(z)(~ > O) is said to be the fractional derivative of f ( z )  of order v and fv(z)(v  < O) is 
said to be the fractional integral of f ( z )  of order -u ,  provided that 

]f~(z)l < ~ (~ 6 JR). (1.6) 

REMARK 1. Just as in the aforecited earlier works, we shall simply write f~ for f~(z) whenever 
the argument of the differintegrated function f is clearly understood by the surrounding context. 
Moreover, in case f is a many-valued function, we shall tacitly consider the principal value of f in 
our investigation. For the sake of convenience in dealing with their various (known or new) special 
cases, we choose also to state one of the fundamental results (Theorem 1 below) for homogeneous 
(as well as nonhomogeneous) linear ordinary fractional differintegral equations of a general order 

First of all, we find it to be worthwhile to recall here the following potentially useful lemmas 
and properties associated with the fractional differintegration which is defined above (cf., e.g., 
[19,20]). 

LEMMA 1. LINEARITY PROPERTY. f f  the functions f ( z )  and g(z) are single-valued and analytic 
in some domain fl c_ C, then 

(a~f(z) + a2~(z)). = k~f~(z) + k2g~(z) (~, c R; ~ e ~) (1.7) 

for any constants kl and k2. 
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LEMMA 2. INDEX LAW. I f  the function f (z)  is single-valued and analytic in some domain ~ c_ C, 
then 

(f.(z)) v --'- f.+v(z) ---- (fv(z)). (1.8) 
( f , ( z )  ~ 0; f , ( z )  ~ 0; /~,v • ~; z • f~). 

LEMMA 3. GENERALIZED LEIBNIZ RULE. If  the functions f (z )  arid g(z) are single-valued and 
analytic in some domain ~ C_ C, then 

( f ( z ) .  g(z)) u = n fu-n(Z) '  gn(z) (v • ]~; z • f~), (1.9) 
n=O 

where gn(Z) is the ordinary derivative of g(z) of order n (n E N0 := N U {0}), it being tacitly 
assumed (for simplicity) that g(z) is the polynomial part (if any) of the product f ( z )  . g(z). 

PROPERTY 1. For a constant A, 

(eXZ)v = AVe ~z (A ¢ O; v • 1~; z • C). (1.10) 

PROPERTY 2. For  a constant A, 

(e-~Z)v --- e-'~VAVe -xz (A # O; .u • ]~; z • C).  (1.11) 

PROPERTY 3. For a constant A, 

(z~). = _ , ~ v  r ( .  - ~) z~_~ 
F(-A)  (1.12) (v•R;z•c;[ r(u--~)c(-~) <co). 

Some of the most recent contributions on the subject of explicit particular solutions of linear 
ordinary and partial fractional differintegral equations are those given by Tu et al. [5] who pre- 
sented unification and generalization of a significantly large number of widely scattered results 
on this subject (see also the many relevant earlier works cited by Tu et al. [5]). For the sake 
of ready reference, we choose to recall here one of the main results of Tu et al. [5], involving a 
family of linear ordinary fractional differintegrat equations, as Theorem 1 below. 

THEOREM 1. (See [5, p. 295, Theorem 1; p. 296, Theorem 2].) Let P(z;p) and Q(z;q) be 
polynomials in z of degrees p and q, respectively, defined by 

and 

P 

P(z;p) := E a~zP -~ 
k=0 

P 

= ao 1-[ ( z -  zj) 
j = l  

(ao # 0; p • N) 

(1.13) 

q 

O(z; q) := ~ 6~z q-k (b0 ¢ 0; q • N). (1.14) 
k=0 

Suppose also that f_~,(¢ O) exists for a given function f .  
Then the following nonhomogeneous linear ordinary fractionM differintegral equation: 

P ( z ; p ) ¢ , ( z ) +  f i  P k ( z ; p ) + ~  k - 1  Qk-l(z;q)  ¢ , -k(Z)  
k = l  k = l  

v , (1.15) 
+ ( q ) q . b o ¢ , _ q - l ( z ) =  f (z )  

( # , y E N ;  p , q • N )  
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has a particular solution of the form: 

¢(z) = t t , ~  )_1 .._.+~ 

(Z e C \  {Zl , . . .  ,zp}), 

(1.16) 

where, for convenience, 

/= (zE \{zl, ,z.}), Q(C; q) 
H(z; p, q) := ~ d ( ~  C . . .  (1.17) 

provided that the second member of (1.16) exists. 
Furthermore, the following homogeneous linear ordinary fractional differintegral equation: 

P ( z ; P ) ¢ ~ ( z ) T [ ~ ( k ) P k ( z ; P ) T ~ ( k : l ) Q k - l ( z i q ) ]  k=l 

(1.18) 
Y I 

(#, u E I~; p, q E N) 

has solutions of the form 
= K , (1.19) \ / v-~+l 

where K is an arbitrary constant and H(z;p,q) is given by (1.17), it being provided that the 
second member of (1.19) exists. 

REMARK 2. As already remarked in conclusion by Tu et aL [5, p. 301], it is fairly straightforward 
to observe that either or both of the polynomials P(z;p) and Q(z; q), involved in Theorem 1, 
can be of degree 0 as well. Thus, in the definitions (1.13) and (1.14), and in analogous situations 
appearing elsewhere in this paper, N may easily be replaced (if and where needed) by No. The 
definitions (1.13) and (1.14) do serve the main purpose of this paper. 

For various interesting applications of Theorem 1, one may refer to the earlier works [5-18], 
in each of which numerous further references on this subject can be found. The main object 
of the present paper is to investigate solutions of some general families of second-order linear 
ordinary differential equations, which are associated with the familiar Bessel differential equation 
of general order u (cf. [22, Chapter 7; 23; 24, Chapter 17]): 

2 d2w dw 
z ~ + z ~  + (z  ~ - ~,~) ~, = o, (1.2o) 

which is named after Friedrich Wilheim Bessel (1784-1846). Specially, we aim at demonstrating 
how the underlying simple fractional-calculus approach to the solutions of the classical differential 
equation (1.20) would lead naturally to several interesting consequences including (for example) 
an alternative investigation of the power-series solutions of (1.20) in terms of the familiar Bessel 
function Jr(z) defined by 

(_1) k ((1/2)z) ~+2k 
J ~ ( z ) : = E  k ! P ( v + k + l )  

k=O 

- ( (1 /2)z )~ 'oFl (  " u + l ; - - 1 Z 2 )  (1.21) 
r (v+l)  

i ( 1 .  ) ((1]2)z)V~exp(~=~i;.1F 1 v + -~, 2 v +  1; T2iz , 
r ( . + l )  
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which are derived usually by appealing to the familiar method attributed to Ferdinand Georg 
Frobenius (1849-1917) (cf., e.g., [25, Chapter 16]). 

REMARK 3. The last hypergeometric 1F1 representation in (1.21) follows readily from the usual 
hypergeometric 0Fx representation by means of the following hypergeometric transformation 
(known as Kummer's second theorem): 

0 F I (  ; )~+ 2; l z2 )  =e-ZlFl()~; 2~; 2z) 

(2~ # -1 , -3 , -5 , . . .  ). 

REMARK 4. It is fairly obvious that the Bessel differential equation (1.20) remains unaltered 
when z is replaced by - z  (and also when v is replaced by -v) ,  so the functions J+~(-z) are 
solutions of the equation (1.20) satisfied by J+~(z). 

2. APPLICATIONS OF T H E O R E M  1 TO A FAMILY OF 
GENERALIZED BESSEL D I F F E R E N T I A L  EQUATIONS 

Motivated essentially by the celebrated Bessel differential equation (1.20), Lin et al. [7] pre- 
sented a systematic investigation of the following general family of second-order nonhomogeneous 
linear ordinary differential equations: 

d2~ d~ 
AZ2~z2 +(Bz  +C)-~z + (Dz~ + Ez + F ) ~ ( z ) =  f ( z ) '  (2.1) 

which obviously corresponds to (1.20) when the parameters A ~ 0, B, C, D ¢ 0, E, and F are 
specialized as follows: 

A = B = D = 1, C = E = 0, and F = - v  s. (2.2) 

With a view to applying Theorem 1 in order to find (explicit) particular solutions of the 
nonhomogeneous non-Fuehsian differential equation (2.1), Lin et al. [7] made use of the following 
transformation: 

(z) = zPeaZ¢ (z), (2.3) 

so that 
d~ zp_le~Z [zd¢ ] 
d-U = [ ~ + (p + ~z) ¢ (z) (2.4) 

and 
d2~ zp-2e)~Z[ 2d2¢ ~ 1 dz 2 -- [z ~z2 +2(p+Az ) z  +{)~2z2+2pAz+p(p-1)}¢(z )  . (2.5) 

Upon substituting from (2.3), (2.4), and (2.5) into the nonhomogeneous non-Fuchsian differ- 
ential equation (2.1), Lin et al. [7] finally arrived at the following application of Theorem 1. 

THEOREM 2. (See [7, p. 39, Theorem 3].) If the given function f satisfies the constraint (1.6) 
and f - v  ~ O, then the following nonhomogeneous linear ordinary differential equation: 

A2 d27 ~ d~ 
z ~ + SZ-~z + (Dz 2 + Ez + F) ~ (z) = f (z) (2.6) 

" (A#0 ;  0 5 0 )  

has a particular solution in the form 

~(z)_~zPe'hZ ((A-1z--v--I+(2Ap+B)/A.e2AZ (z-P-l.e-,~z.f(z))_V)_l 

zV-(2Ap+B)/A . e-2~z~ (2.7) 
o 

I /Y--1 
(A~0 ;  D e 0 ;  z e C \ { 0 } ) ,  



1492 S.-D. LINet al. 

where p and A are given by 

A -  B + ~ / ( A -  B) 2 -  4AF f-~ 
P = 2A and A = + i V y ,  (2.8) 

and 
(2Ap + B) A + E 

v = 2A)~ ' (2.9) 

it being provided that the second member of (2.7) exists. 
Furthermore, the following homogeneous linear ordinary differential equation: 

A 2d2~ ~z  ~ z 7 ; :  + Bz + (Dz 2 + Ez + F) ~ (z) = 0 (2.10) 

has solutions of the form 

= ( 2 . 1 1 /  
( A # 0 ;  D # 0 ;  z e C \ { 0 } ) ,  

where K is an arbitrary constant, p and A axe given by (2.8), and v is given by (2.9), it being 
provided that the second member of (2.11) exists. 

REMARK 5. By first setting v, > v + 1/2 and then specializing the involved parameters A, B, 
D, E, and F as in (2.2), Theorem 2 would immediately yield the following special case involving 
the Bessel differential equation (1.20). 

THEOREM 3. (See [7, p. 40, Corollary 1; 26, p. 27, Theorem 1, p. 29, Theorem 2].) Under the 
hypotheses of Theorem 2, the following nonhomogeneous linear ordinary differential equation: 

2 d2~ 
z -~fiz2 + z ~  + (z 2 - u 2) ~ (z) = f (z) (2.12) 

has a particular solution in the form 

V(Z) =zVe Xz v-±'e 2Az (z -v-1 e -Xz.f(z))_~_I/2) Z 2 Z-- --~ • e -2Az 

(2.13) u-l /2 
(v c R; ), = +i;  z c c \ {o}), 

provided that the second member of (2.13) exists. 
Furthermore, the following homogeneous linear ordinary differential equation: 

2 d2~ ~z z ~ + z + ( :  - : )  ~ (~) = o (2.14) 

has solutions of the form 
= 

(2.15) 
(. ~ R; ~ = +/;  z e c \ {0}), 

where K is an arbitrary constant, it being provided that the second member of (2.15) exists. 

Since A -- +i  in the assertions (2.13) and (2.15) of Theorem 3, by further setting 
1 

v = ~ and : (z) = zv/~, (2.16) 

and making use of the principle of superposition of solutions of linear differential equations, Lin 
et al. [7] deduced the following interesting consequence of Theorem 3. 

COROLLARY 1. (See [7, p. 40, Corollary 2].) The genera/solution of the following nonhomoge- 
neous Bessel equation of order 1/2: 

2 d2q ° 
z -~z2 + Z~zz + ( Z 2 - 1 )  ~(z) = zv/-~ (2.17) 

is given by 
e o s z  _ s i n ~  1 (~ e C \ ( - o o , 0 ] ) ,  (2.18) 

(z) = K 1 - - ~ -  z + K2--~z- z + 

where K1 and K2 are arbitrary constants. 
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3. S O L U T I O N S  O F  T H E  
D I F F E R E N T I A L  E Q U A T I O N  

W H E N  v = n + ½  ( n E N 0 )  

1 
v = n + ~ ,  (nCNo) and A = - i  

in assertion (2.15) of Theorem 3, we obtain 

~(') (z) = Kz~+l/2e -iz d~ {z -~-I  . e 2~z} 
d z  n 

1493 

(1.20) 

(3.1) 

(n ~ N0), (3.2) 

where K is an arbitrary constant. If we now apply the familiar case of the Leibniz rule (1.9) for 
ordinary derivatives, we find from (3.2) that 

{z-n-l} • ~ }, (3.3) 

k=O 

which can readily be simplified to the following form: 

([ l,n ~ ( 1 ) ( z ) = K E ( _ I )  k (nTk)[ 2n_kz_k_l/2.ex p i z+-~ 
k! (n - k)! 

k=O 

Similarly, by setting 
1 

v = n + ~  (heN0)  and A = i  (3.5) 

in assertion (2.15) of Theorem 3, we get 

" (-1) k ( [  1 ( n -  k)~r]),  (3.6) (n+ k)! 2,~_kz_k_l/2.exp --i z +  ~(2) (z) 
g k! (n - k)! 

k=0 

where K is an arbitrary constant. 
Since the homogeneous Bessel differential equation (1.20) is also linear, it obviously admits 

itself of solutions in the following forms: 

(n+k)[ 2~_k+lz_k_l/2 ( l ( n _ k ) ~ r )  (3.7) 
= g (--1)k ki('n~-~)! .COS Z + 

k=O 

and (cf. Remark 4 above) 

~ )  (z) := ~(~) (-z)  - ~ )  (-z)  

( ) (n+ k)! 2~_k+lz_k_l/2 1 (n-- k) r = K  k ! (n -k ) !  .sin z - ~  , 
k=O 

where we have also used the fact that i := x/L--1. 
In view of the following elementary series identity: 

OO ~ 

E a (k) = E D (2k) + E f~ (2k + 1), (3.9) 
k=0 k=0 k=0 
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it is not difficult to reduce the solutions (3.7) and (3.8) as follows: 

2 n+l 1 (n + 2k)[ 
w(~) (z) = K - ~ -  cos z+ ~ . Z (-1) ~ (2k)!N-~k)~ (2z)-~k 

k=0 

-sin z+ ~ .  ~ (-t)~(2k~:K,~--2-~:l)!(2~)-~-' 
k=O 

(3.10) 

and 

2 ~+1 1 (n + 2k)! 
w <~) (z) = K - ~ -  sin z - ~n~ • ~ (-1) ~ (2k)!N-~k)! (2z)-~ 

k=0 
(3.11) 

+cos z - n ~ r  • E ( - 1 ) k ( 2 k + l ) ! ( n _ 2 k _ l )  ! 
k=0 

Now, from the vast available literature on the Bessel functions, we recall that [23, p. 55, 
Equation 3.4 (5)] 

j[ ( ) {~/2] (n+2k) [  
j_n_W2(z)= 2 cos z+ 2nrr • E (-1)k(2~.~--Sk)!(2z)-2k 

k=O 
[(n--I)/2] ] (3.12) 

( 1 ) ( n + 2 k + l ) !  -sin z+~n~ ~ ( -1 )~ (2k~ i~ (~ -g -~ ) ! (2z ) -~ - i  
k=0 

and that [23, p. 53, Equation 3.4 (2)] 

For 

j [  ( ) E~/=1 (~+2k)! (2z)_=k Jn+l/2 (z) = 2 sin z--  lnTr - E (--1)k (2k)} (n--  2k)! 
k=O 

[(n-1)/2] ] 
( 1 ) ( n + 2 k + l ) !  

+cos z--~n~r ~ (-1)k(2k~_i~.~--~-__l)!(2z)-2k-1 . 
k=O 

(3.13) 

K = (n E No), (3.14) 
v ~  

the expressions for w(1)(z) and w(2)(z), given by (3.10) and (3.11), coincide precisely with the 
known results (3.12) and (3.13), respectively. Thus, by means of our fractional-calculus approach, 
we have shown that the homogeneous Bessel differential equation (1.20) of order 

1 
u = n + ~ (n E No) 

has its general solution given by 

w (z) = K1J-~-I/2 (z) + K2J,~+l/2 (z), (n E No), (3.15) 

where Ki and K2 are arbitrary constants. 
It is easily seen from (3.12) and (3.13) with n = 0 that 

J-i~2 (z) J ~-~ COS Z and Jl/2 (z) = ~ sinz, (3.16) 
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which incidentally account for the complementary function in the general solution (2.18) asserted 
by Corollary 1. Furthermore, since 

and 

j _3 /2 ( z )=V~z(  cOSZz sinz) (3.17) 

 osz) 
which follow readily from (3.12) and (3.13) with n = 1, by setting 

3 

in Theorem 3, we obtain the following result. 

COROLLARY 2. 

der 3/2: 

(3.18) 

(3.19) 

The general solution of the following nonhomogeneous Bessel equation of or- 

2 d2~ 
z -gjz2 + Z~zz + ( Z 2 - 9 )  ~(z)=z2vq (3~20) 

is giwn by 
K1 (eoSZ+sinz)+K2(s i  z ) n  - c o s z  --~2 ~ ( z ) =  
- ~  , z - ~  ~ + ~ + z v z '  (3.2!) 

(z e c \  (-o~,0]), 
where K1 and K2 are arbitrary constants. 
REMARK 6. Numerous further consequences of Theorem 3, analogous to Corollary 1 and Corol- 
lary 2 above, can indeed be deduced from the results presented in this section. 

4. T H E  B E S S E L  D I F F E R E N T I A L  E Q U A T I O N  
(1 .20)  O F  G E N E R A L  O R D E R  u 6 Z 

We turn our attention once again toward the assertion (2.15) of Theorem 3. As a matter of 
fact, in view of the generalized Leibniz rule (1.9), we find from (2.15) that 

1)( / 
(z) = Kz~e ~z E v -  k=0 k Z - - u - - l / 2  " ( -2Az~ (4.1) k \e ] u - k - - l ~ 2  

where K is an arbitrary constant. 
Now, by appealing appropriately to the fractional differintegral formulas (1.10) and (1.12), we 

can rewrite (4.1) (with A = -i) in the following form: 

@(D(z)=2vg,._~ (-1)kk-(.~-_--k--+-t/z) (2z)-k-1/2.ex p i v - k -  7r . (4.2) 
k=0 

In a similar manner, if we apply the fractional differintegral formulas (1.11) and (1.12) in (4.1) 
(with A = i), we get 

r I ~ + k + l / ~ /  ( [  ~ (  2 )  ] )  @(2)(z)=2VKE(_l)kklr(u_k+l/2) (2z)-k-1/2.exp - i  z+~ v - k -  ~r . (4.3) 
k=O 

It follows from (4.2) and (4.3) that 

w(') (z) := @(~) (z) + ¢(~) (z) 

oo r(u+k+l/2)~/,, ( z + ~ l  ( 1 )  ) , (4.4) 
= 2~+1K ~ (-1)k k T ( V - ~ $ - ~ ) ( 2 z ) - k - 1 / 2  • cos ~ - k -  

k=0 
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which, in light of the series identity (3.9), yields 

[: ( ) ~ F(r ,+2k+l/2)  
2~+' 1 - ¼~ ' (-1)~ (2k)!r ( ~ -  ff~Ti?2) (2z)-~ w (~) (z) = K ~ z  z os z + ~ .~  

k=O 

( 1 1 ) oo F(v+2k+3/2)  
- s i n  z + 7 ~  - ~ • ~ ( - 1 )  ~ (2k ; V ) ! ~ ( - ; - ~ - -  1/2) ( 2 z ) - ~ k - ~  " 

k=0 

Similarly, we have 

W (2) (z)  : =  ~(2) ( - z )  --  ~)(1) (--Z) 

oo r(u+k+l/2) ( 1 (  1) ) 
= 2 ~ + I K Z ( - ~ ) ~  k,.--~(f,-)~-+--fl//2) (2z)-~-~/~ .sin z -  ~ ~ - k -  ,~ , 

k=0 

(4.5) 

(4.6) 

so that, by virtue of the series identity (3.9) once again, we obtain 

2u+1[ ( 1 1 ) °~ F(p+2k+1/2) (2z)-2k 
w(:) (z) = K ~ z  z cos z - ~ - ~ .  • ~ (-1) ~ ( 2 V ) ' . Y V - ~  + 1/2) 

k=O (4.7) 
( 1  1 )  ~ r ( u + 2 k + 3 / 2 )  ] 

- sin z - ~uTr - ~r • E (-1)k (2k + 1)!r (u - 2k - 1/2) (2z)-2k-~ " 
k=0 

By comparing (4.5) and (4.7) with the following known results [23, p. 199, Equations 7.21 (1) 
and 7.21 (3)]: 

j ~ ( z ) ~ V ~ z [  ( 1 1 ) ~ (_x )k  F(u+2k+l /2 )  (2z) - ~  cos z - ~ , .  - ~ • _  (2~-) . r f f ( ; - -~- i?2)  
k=0 (4.s) 

( 1 1 ) f i  F(v+2k+3/2) ] 
- sin ~ - ~u~  - ~ • ( -1 )k  (2k + 1)!r (~ - 2k - 1/2) (2z)-2~-~ 

k=0 

and 

J_u(z) ~ z  [ ( 1 1 ) c¢ F(v+2k+l/2) (2z)-2k cos z+~u~r-~Tr "E(--1)k (2k)!F(u-2k+l/2) 
k=O 

( 1 1 ) ~ F(L,+2k+3/2) ], 
-sin z + ~y~r- ~r • (--1)k (2k ~')!F(~-z-2"k--1/2) (2z)-2k-1 

k=O 

each of which is valid for large values of Izl provided that 

(4.9) 

larg (z)l £ ~ - E (o < E < ~ ) ,  (4.10) 

we can immediately identify the solutions W (1) (z) and W (~) (z) of the Bessel differential equa- 
tion (1.20) of general order v !g Z as the Bessel functions J-v(z) and Jr(z), respectively, the 
arbitrary constant/( being given here by 

K =  --~, (u ~Z). (4.11) 

Thus, we have arrived at the following general solution of (1.20): 

w (z) = K i J - v  (z) + g2Ju  (z) (~, ~ Z) (4.12) 

at least for large values of Izl under the constraint (4.10). 



A Simple Fractional-Calculus Approach 1497 

5. F U R T H E R  R E M A R K S  A N D  O B S E R V A T I O N S  

Upon writing the assertion (2.15) of Theorem 3 in the following form: 

~O(Z) : K z V e X Z ~  ( 1 2 - - 1 )  \ / y - k - l / 2  (e-2XZ)k 
k=0 

(5.1) 

in place of (4.1), if we apply the above fractional-calculus method mutatis mutandis, we can 
derive 

r (2~- k) (-2iz)k (5.2) 
¢(1) (Z) : :  ~0 (Z) ),=-i ~ K z - V ' e x p  ( i  [ z - ( p - 1 ) 7 1 " ] ) .  ~ F ( v ~ - k ~ - ] - / 2 )  k' 

k=0 

and 

¢ ( 2 ) ( z ) : = ~ ( z ) x = i = g z - , . e x p  - i  z +  v -  7r " 'v 1/2) 
k=0 

Now, since 

r ( 2 ~  - k)  

r ( v  - k + 1 / 2 )  

22~-1 F (1/2 - v + k) F (1 - 2v) 
(k e N0), (5.4) 

we find from (5.2) and (5.3) that 

and 

22~'-1 (i [Z (/2 1)71"]) 1F 1 (21- 1 2v;-2iz) ¢(1) (z) = ----~-gz-~r (v). exp . . . .  v ;  - -  (5.5) 

¢(2) (z) = --~-Kz-~r ( v )  . e x p  + • - v;  

in terms of (Kummer's) confluent hypergeometric 1F1 function with one numerator parameter 
1/2 - v and one denominator parameter 1 - 2v. Thus, for appropriate choice of the arbitrary 
constant K in (5.5) and (5.6), both ¢(1)(z) and ¢(2)(z) can easily be identified with the Bessel 
function J_~(z) given by the last expression in (1.21). Consequently, in light of Remark 4 above, 
our fractional-calculus approach has led us to the following result. 

COROLLARY 3. The above-stated general solution (4.12) of the classical Bessel differential equa- 
tion (1.20) of order v ~ Z holds true for all admissible values of z C C under the constraint (4.10). 

For appropriate choices of the nonhomogeneous term f ( z )  occurring on the right-hand side 
of (2.12), we can similarly apply the assertion (2.13) of Theorem 3 with a view to deriving the 
particular integrals of the corresponding nonhomogeneous Bessel differential equations of the class 
given by (2.12). 
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