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For a class of scalar partial differential equations that incorporate convection,

diffusion, and possibly dispersion in one space and one time dimension, the stability

of traveling wave solutions is investigated. If the initial perturbation of the traveling

wave profile decays at an algebraic rate, then the solution is shown to converge to a

shifted wave profile at a corresponding temporal algebraic rate, and optimal

intermediate results that combine temporal and spatial decay are obtained. The

proofs are based on a general interpolation principle which says that algebraic decay

results of this form always follow if exponential temporal decay holds for

perturbation with exponential spatial decay and the wave profile is stable for general

perturbations. # 2002 Elsevier Science (USA)

Key Words: generalized Burgers equation; generalized Korteweg–de Vries–

Burgers equation; traveling wave; stability; weighted norm.
1. INTRODUCTION

The topic of this note is the class of regularized scalar conservation laws
in one spatial dimension

ut þ buxxx � auxx þ gðuÞx ¼ 0;

where subscripts denote partial derivatives. The regularization is due to the
presence of viscous terms (a > 0) and dispersive terms (b=0). The case
gðuÞ ¼ u2=2 is typical and has received much attention. If a > 0 ¼ b; this is
known as Burgers equation. If a ¼ 05b; this is essentially the Korteweg–de
Vries equation. The case a; b > 0 thus is referred to with a canonical all-
Dutch name; it has also been studied extensively, as has been the case of
general g: I want to study the stability of traveling wave solutions of the
form uðx; tÞ ¼ fðx � ctÞ with respect to perturbations of the initial data, in
the cases a > 0 ¼ b and a;b > 0: Here c is the speed at which the wave profile
1Supported by the National Science Foundation (IRD program).
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f travels to the right (if c > 0). Only monotone wave profiles f will be
considered. The question is whether the solution approaches a traveling
wave in some sense. A natural setting for this is a spatial coordinate system
that moves along with the expected wave profile at speed c:

Since all shifted wave profiles also give rise to traveling wave solutions,
one can only expect that the solution will converge to some shifted profile
fðx � ct � hÞ: Since the quantity

R
R
ðuðx; tÞ � vðx; tÞÞ dx is independent of t

for any pair of solutions u and v for which it is finite, the shift h must be such
that

R
R
ðuðx; 0Þ � fðx � hÞÞ dx ¼ 0: It is easy to see that the quantity on the

left-hand side is an affine function of h; and thus h can be determined
explicitly and can be considered a known quantity.

Stability in this sense was first studied in [6], for the viscous case b ¼ 0:
These authors noted that one cannot expect a rate of convergence that holds
for all classes of perturbations. However, in 1976, Sattinger showed in [15]
that an exponential rate of decay holds in a moving coordinate system if the
perturbation of the initial value decays exponentially in space. Since this
class of perturbations is somewhat restrictive, one may ask the question
what the consequences of algebraic decay of the initial perturbation are. It
was shown in [8, 10, 11] that in this case algebraic decay for the initial
perturbation can be ‘‘traded in’’ for some temporal algebraic decay.
Heuristically, the equation for the perturbation behaves like wt � wx ¼ 0
near x ¼ �1 in this situation, that is, the solution near 1 behaves like
wðx; tÞ 	 wðx þ t; 0Þ: Therefore, if wðx; 0Þ 	 e�x; then wðx; tÞ 	 e�te�x near
x ¼ 1 as t ! 1 (exponential decay in exponentially weighted norms), and
if wðx; 0Þ 	 x�k; then wðx; tÞ 	 xm�kt�m near x ¼ 1 as t ! 1 (algebraic
decay with a weaker algebraic weight). For finite x; diffusion dominates and
leads to exponential decay. Similar results were shown for case b > 0 in [13],
assuming the wave profile f is monotone. The proofs rely on a detailed
study of the spectrum of the linearized problem or on ad hoc energy
estimates. A more refined analysis relying on Green’s function estimates is
carried out in [5].

The goal of this note is to show that this ‘‘trade-off’’ follows whenever
exponential decay holds in a setting with spatial exponential weights
together with (simple) stability in a setting without weights. Showing these
two conditions is often easier than analyzing the full problem in a setting
with polynomials weights. On the other hand, for viscous conservation laws,
this interpolation argument can only be applied in the ‘‘totally compressive
case’’ where all characteristics run into the shock for the inviscid problem.
This is always true for the scalar case, but systems of regularized
conservation laws from physical situations usually do not fall in this
category; see [3, 16] for the much more complicated theory for this case. On
the other hand, the argument given in this note is not restricted to the case of
one space dimension.
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The paper is organized as follows. In the next section, I show a general
interpolation result for linearized problems. In Section 3, this is applied to
study the generalized Burgers equation. The main result is a sharp decay
result in spaces with algebraic spatial decay. In Section 4, a similar result is
shown for the generalized Korteweg–de Vries–Burgers equation. Appen-
dices A and B contain results for the corresponding linearized problems.
Appendix C contains a simple integral inequality that is used for the passage
from linear to nonlinear stability.

Here is some notation that is used throughout the paper. Let O � Rn be
an unbounded measurable set. For 14p51; k > 0;r > 0 let us define the
function spaces

Lp;k ¼ u 2 LpðOÞ
Z
O

���� juðxÞjpð1 þ jxjÞkp dx ¼ jjujjpp;k51
� �

;

Lp;r ¼ u 2 LpðOÞ
Z
O

���� juðxÞjperpjxj dx ¼ jjujjpp;r51
� �

with their natural norms. The usual modifications are made to define L1;k

and L1;r: The norms on the unweighted Lp-spaces are denoted by jj � jjp: The
set O is specified to be the real line in Sections 3 and 4 and in Appendices A
and B, thus it does not appear further in the notation. Constants are
denoted by the same letter C whose value may change from line to line,
depending only on values that can be expressed in terms of quantities
mentioned in the assumptions of a result. If constants have indices, their
values remain constant throughout a proof.

2. A LINEAR INTERPOLATION RESULT

Suppose we are given an operator S; not necessarily linear, which maps
the space LpðOÞ into itself and also Lp;rðOÞ into itself, with estimates

jjSðuÞ � SðvÞjjp4C0jju � vjjp for all u; v 2 LpðOÞ; ð2:1aÞ

jjSðuÞjjp;r4C0e�tjjujjp;r for all u 2 Lp;rðOÞ ð2:1bÞ

for some constants r;C0; t > 0: The main result of this section says that S

also maps Lp;k into Lp;l for 05l5k and gives an estimate for this mapping.
I shall prove this in detail for the case p51: A different proof will be

given for the case where S is linear and p ¼ 1:

Theorem 2.1. Let 14p51: Under the above conditions, S maps Lp;k

into Lp;l for all 05l4k; and there exists C1 > 0; depending only on p; such that
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for all v 2 Lp;k

jjSvjjp;l4C0C1rk�lð1 þ tÞl�k jjvjjp;k: ð2:2Þ

Proof. Let us assume r ¼ 1 and continue to write jj � jjp;r for the
corresponding norm with exponential weight. Fix p 2 ½1;1Þ and define for
r50

mpðrÞ ¼
r

ð1 þ r
p

p�1 Þ
p�1

p

if p > 1 and m1ðrÞ ¼ minð1; rÞ: Clearly, m1ðrÞ42mpðrÞ42m1ðrÞ for all r50
and all p: For s 2 R and u 2 LpðOÞ define the functional

Kðs; uÞ ¼
Z
O
ðjuðxÞjmpðesþjxjÞÞp dx

� �1=p

:

This is clearly an equivalent norm on Lp and in fact a modified K-functional
[1], namely

Kðs; uÞ ¼ inf
v2Lp;r

ðjju � vjjpp þ espjjvjjpp;rÞ
1=p: ð2:3Þ

Indeed,

inf
v2Lp;r

ðjju � vjjpp þ espjjvjjpp;rÞ ¼ inf
v2Lp;r

Z
O
ðjuðxÞ � vðxÞjp þ espþjxjpjvðxÞjpÞ dx

5
Z
O

inf
z
ðjuðxÞ � zÞjp þ espþjxjpjzjpÞ dx

¼
Z
O
ðjuðxÞjmpðes þ jxjÞÞp dx

¼ ðjju � v0jj
p
p þ espjjv0jj

p
p;rÞ:

Here

v0ðxÞ ¼
uðxÞ

1 þ e
ðsþjxjÞ

p
p�1

for p > 1: For p ¼ 1 one sets v0ðxÞ ¼ uðxÞ for s þ jxj40 and v0ðxÞ ¼ 0
otherwise, and the last equation is again valid. Then v0 2 Lp;r; and (2.3)
follows. The definition shows immediately that Kð�; uÞ is differentiable, non-
decreasing, and bounded above by jjujjp for all p: Also,

2�p

Z
O
juðxÞjpm1ðesþjxjÞp dx4Kðs; uÞp4

Z
O
juðxÞjpm1ðesþjxjÞp dx:
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Next fix also k > 0 and set

hkðsÞ ¼
e�sp ðs50Þ;

ð1 � sÞkp�1 ðs50Þ

(
ð2:4Þ

and

jjujjpn ¼
Z 1

�1
Kðs; uÞphkðsÞ ds

whenever this quantity is finite. The next claim is that

Lp;k ¼ fu j jjujjpn51g

and that jj � jjn is an equivalent norm on this space. Indeed,Z 1

�1
Kðs; uÞphkðsÞ ds4

Z 1

�1

Z
O
juðxÞjp minð1; espþjxjpÞhkðsÞ dx ds

¼
Z
O
juðxÞjp

Z �jxj

�1
espþjxjpð1 � sÞkp�1 ds

�

þ
Z 0

�jxj
ð1 � sÞkp�1 ds þ

Z 1

0

e�sp ds

�
dx

4
Z
O
juðxÞjpCð1 þ jxjkpÞ dx4Cjjujjpp;k:

Reversely,Z 1

�1
Kðs; uÞphkðsÞ ds5 2�p

Z 1

�1

Z
O
juðxÞjp minð1; espþjxjpÞhkðsÞ dx ds

5 2�p

Z
O
juðxÞjp

Z 0

�jxj
ð1 � sÞkp�1 ds dx

5Cjjujjpp;k:

Let now S be an operator satisfying (2.1a, b). Then

Kðs; SuÞp ¼ inf
v2Lp;r

ðjjSu � vjjpp þ espjjvjjpp;rÞ

4 inf
v2Lp;r

ðjjSu � Svjjpp þ espjjSvjjpp;rÞ

4C
p
0 inf

v2Lp;r
ðjju � vjjpp þ eðs�tÞpjjvjjpp;rÞ

¼C
p
0Kðs � t; uÞp:
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Let 05l4k; let u 2 Lp;r; and set HlðrÞ ¼
R1

r
hlðtÞ dt and kðsÞ ¼ d

ds
Kðs; uÞp5

0: Then

jjSujjpp;l4C

Z 1

�1
Kðs; SuÞphlðsÞ ds

4CC
p
0

Z 1

�1
Kðs � t; uÞphlðsÞ ds

¼CC
p
0

Z 1

�1
kðsÞHlðs þ tÞ ds:

An elementary calculation shows that Hlðs þ tÞ4CHkðsÞð1 þ tÞðl�kÞp for all s

and t: One can therefore estimate further

jjSujjpp;l4CC
p
0ð1 þ tÞðl�kÞp

Z 1

�1
kðsÞHkðsÞ ds ¼ C1C

p
0ð1 þ tÞðl�kÞpjjujjpp;k:

This proves the theorem in the case r ¼ 1: The general case follows by a
scaling argument. ]

The proof can be modified to extend to the case p ¼ 1: However, I prefer
to give an alternative proof in this case. It extends to subspaces of L1 that
are closed under multiplication with smooth functions that are bounded
together with their derivatives. Such spaces include X ¼ BCmðOÞ and X ¼
L1ðOÞ \ UCðOÞ; where BCm is the space of m-times differentiable functions
with bounded derivatives and UC is the set of uniformly continuous
functions on O: The result is formulated for the cases X ¼ L1ðOÞ; X ¼
BC0ðOÞ; and X ¼ L1ðOÞ \ UCðOÞ; equipped with the supremum norm.
Accordingly, let Xk ¼ X \ L1;k and Xr ¼ X \ L1;r; equipped with their
natural norms jj � jj1;k and jj � jj1;r:

Theorem 2.2. Let S : X ! X ; S : Xr ! Xr be a linear operator for which

(2.1a, b) holds. Then S maps Xk into Xl for all 05l5k; and there exists a

constant C1 > 0 depending on k and r such that for all v 2 Xk

jjSvjj1;l4
C0C1

ð1 þ tÞk�l
jjvjj1;k: ð2:5Þ

Proof. Let v 2 L1;k be given. Thus ð1 þ jxjÞkjvðxÞj4A almost
everywhere for some smallest constant A: Let w ¼ Sv: The goal is to show
that ð1 þ tÞk�lð1 þ jxjÞk jwðxÞj4C0C1A almost everywhere for some constant
C1: Let R50; to be chosen later. Choose j 2 C1ðRÞ with jðrÞ ¼ 0 for r40;
jðrÞ ¼ 1 for r51; and j050: Set v1ðxÞ ¼ vðxÞjðjxj � RÞ and v2 ¼ v � v1:
Then jjv1jj14Að1 þ RÞ�k and jjv2jj1;r4AC0Cð1 þ RÞ�kerR with C ¼ Cðk;rÞ
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50: Thus

jjSv1jj14C0ð1 þ RÞ�kA and jjSv2jj1;r4C0Cð1 þ RÞ�kerR�tA:

Let x 2 O: Then

ð1 þ tÞk�lð1 þ jxjÞl jwðxÞj4 ð1 þ tÞk�lð1 þ jxjÞlðjSv1ðxÞj þ jSv2ðxÞjÞ

4C0ð1 þ tÞk�lð1 þ jxjÞlð1 þ RÞ�kAð1 þ erR�rjxj�tÞ:

Set s ¼ minð l
k
; k�l

rk
Þ and choose R ¼ st

k�l
k jxj

l
k4 t

r þ jxj: One can estimate
further

ð1 þ tÞk�lð1 þ jxjÞl jwðxÞj42C0ð1 þ tÞk�lð1 þ jxjÞlð1 þ RÞ�kA4C0C1A:

This proves the theorem. ]

At first glance, it is surprising that the algebraic decay estimates are
independent of the exponential spatial weight that appears in the
assumptions. The scaling argument used at the end of the proof explains
this phenomenon and shows where the constant r reappears in the result.
The special case O ¼ ð�1; 0� with the right shift operator StvðxÞ ¼ vðx � tÞ
for x40 shows that all estimates in the two theorems are sharp, up to the
values of the constants. Indeed, the use of K-functionals in the proof of
Theorem 2.1 makes the argument resemble the direct proof for this special
case.

3. SCALAR VISCOUS CONSERVATION LAWS

In this section scalar viscous conservation laws of the following form are
considered:

ut � uxx þ f ðuÞx ¼ 0 ðx 2 R; t > 0Þ: ð3:1Þ

Here f : R ! R is a C2-function with uniformly bounded derivatives. A
traveling wave solution uðx; tÞ ¼ fðx � ctÞ with speed c and limiting
behavior fðrÞ ! f� as r ! �1 is easily seen to exist if and only if c

equals the slope of the line segment connecting the points ðfþ; f ðfþÞÞ and
ðf�; f ðf�ÞÞ and the graph of f lies entirely above or below this line segment.
Accordingly, the wave profile f is decreasing or increasing. After rescaling
the dependent variable u; adding a linear function to f ; and changing to a
moving coordinate system, one can assume that c ¼ 0; f� ¼ 1; fþ ¼ 0: The
prototypical example is f ðrÞ ¼ r2 � r; with the wave profile fðrÞ ¼ ð1 þ erÞ�1:

The focus is the convergence of solutions of (3.1) to some translate
fð� � hÞ as t ! 1; where h is known. Let us therefore assume that h ¼ 0: It



TRAVELING WAVE SOLUTIONS’ ASYMPTOTIC STABILITY 355
was shown in [6] that this convergence in the uniform sense follows if f is
uniformly convex and

R1
0 juðx; 0Þj dx þ

R 0

�1 juðx; 0Þ � 1j dx is finite. If f is
merely C2-smooth but not necessarily convex, the same conclusion holds in
the L1-sense even for the case of quasilinear diffusion [13]. In the seminal
paper [15], it was shown that convergence at an exponential rate holds in
spaces with exponentially weighted norms, namely

jjuð�; tÞ � fjj1;e ¼ Oðe�dtÞ ð3:2Þ

for some e; d > 0; if the quantity on the left-hand side is sufficiently small for
t ¼ 0: This holds for arbitrary non-convex f ; assuming only that

f 0ð0Þ=0=f 0ð1Þ: ð3:3Þ

In several recent papers, the stability of wave profiles in spaces with polynomial
weights was discussed. Assuming only (3.3) it was shown in [8] that if

jjuð�; 0Þ � fjj1;kþm ¼ d ð3:4aÞ

is sufficiently small, then

jjuð�; tÞ � fð�Þjj1;k4Cð1 þ tÞ�m=2d ð3:4bÞ

for integers k;m satisfying k51; 24m4k þ 1; or k ¼ 1; m52: A compar-
able result for this situation from [10, 11] assumes that

jjCjj2;a51; ð3:5aÞ

where CðxÞ ¼
R x

�1ðuðz; 0Þ � fðzÞÞ dz; and that a suitable unweighted L2-
norm of uð�; 0Þ � f is small. The conclusion, then, is essentially that

jjuð�; tÞ � fjj14Cð1 þ tÞ�a: ð3:5Þ

Here a > 0 is arbitrary. Both results show a trade-off between the spatial
decay of the initial data and the temporal decay of the solution. A much
more detailed and general result in [5] implies that spatial decay of the
antiderivative C dominates the temporal decay of uð�; tÞ � f for finite x;
while the spatial decay of uð�; 0Þ � f dominates the temporal and spatial
decays as both x and t approach 1; with the canonical trade-off.

The main result for this situation assumes also (3.3).

Theorem 3.1. Let k > 1; 05m5k be real numbers, and set CðxÞ ¼R x

�1 ðuðz; 0Þ � fðzÞÞ dz: There exists a constant C0 such that if

jjCjj1;k ¼ eðu0Þ ð3:6aÞ
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is sufficiently small, then the solution u exists for all t > 0; and for all 05m5k

jjuð�; tÞ � fjj1;m4C0ð1 þ tÞm�keðu0Þ: ð3:6bÞ

Proof. The proof follows a pattern which will be repeated in the next
section. A formal linearization of the problem is introduced (step 0), a
function space setting is defined, and a solution u is produced, using results
about the linearized equation from Appendix A (step 1). After specifying the
short-time behavior of the solution (step 2), suitable a priori estimates are
shown with the aid of Lemma C.1, which finishes the proof.

Step 0. Let u be a solution of (3.1), and set vðx; tÞ ¼
R x

�1 ðuðz; tÞ �
fðzÞÞ dz: Thus vðx; 0Þ ¼ CðxÞ; and v solves the equation

vtðx; tÞ � vxxðx; tÞ ¼ f ðfðxÞÞ � f ðfðxÞ þ vxðx; tÞÞ ð3:7Þ

or

vtð�; tÞ þ Lvð�; tÞ ¼ F ðvÞð�; tÞ;

where formally

LyðxÞ ¼ �yxxðxÞ þ f 0ðfðxÞÞyxðxÞ; ð3:8Þ

F ðyÞðxÞ ¼ f ðfðxÞÞ þ f 0ðfðxÞÞyxðxÞ � f ðfðxÞ þ yxðxÞ ¼ f 00ðzðxÞÞy2
xðxÞ: ð3:9Þ

Here zðxÞ is a number between fðxÞ and fðxÞ þ yxðxÞ:
Step 1. Recall the notation and the results from Appendix A: X ¼

L1ðRÞ \ C0ðRÞ; X0 ¼ fy 2 X j y is uniformly continuousg are Banach
spaces, both equipped with the supremum norm. The operator L acting in
X is defined in (3.8), and the restriction of L to X0 is also denoted by L: Then
�L generates an analytic semigroup ðSðtÞÞt50 in X0 and in various weighted
spaces, especially in the spaces Xr and Xk: From the properties of f and the
definition of F in (3.8), one immediately deduces the estimates

jjF ðy1Þ � F ðy2Þjj1;k4Cjjy1;x � y2;xjj1;k; ð3:10aÞ

jjF ðyÞjj1;k4Cjjyxjj
2
1;k=2 ð3:10bÞ

for any k50 and suitable y; y1; y2: Suppose that C 2 Xk � X0 is given and
satisfies the assumptions of Theorem 3.1. Let us seek a continuous X0-
valued solution vð�; tÞ of the integral equation

vð�; tÞ ¼ SðtÞCþ
Z t

0

Sðt � sÞF ðvÞð�; sÞ ds: ð3:11Þ
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A contraction argument, using (3.10a), produces such a solution on some
finite time interval, and the solution satisfies (3.7) in the classical sense if it is
sufficiently smooth. Due to the global Lipschitz property in (3.10a), this
solution exists for all times. The existence and uniqueness arguments hold in
all spaces Xk; 05k4m; and therefore vð�; tÞ belongs to all these spaces
for all t: Set wðx; tÞ ¼ uðx; tÞ � fðxÞ ¼ vxðx; tÞ; and let us write NðtÞ ¼
maxð1; t�1=2Þ:

Step 2. Let us now characterize the behavior of w for 05t41 in more
detail. The goal is to show the estimate

jjwð�; tÞjj1;m4CNðtÞeðu0Þ ð05t41Þ ð3:12Þ

for all 05m4k: For this purpose, consider the integral equation for w

which is obtained by differentiating (3.1), namely

wð�; tÞ ¼ ½SðtÞC�x þ
Z t

0

½Sðt � sÞF ðvÞð�; sÞ�x ds: ð3:13Þ

For the ‘‘free term’’ ½SðtÞC�x in (3.13), (3.12) is just estimate (A.6). Using
(3.12), (A.6), and (3.10b) one then derives the inequality

jjwð�; tÞjj1;m

NðtÞ
4Ceðu0Þ þ

Z t

0

C
Nðt � sÞNðsÞ

NðtÞ
jjwð�; sÞjj1;m

NðsÞ
ds: ð3:14Þ

A standard argument for linear integral inequalities implies that
jjwð�; tÞjj1;m

NðtÞ
4C on ð0; 1�; i.e. (3.12).

Step 3. Finally, let us prove estimate (3.6b). The first thing to notice is
again that the estimate (3.6b) in Theorem 3.1 holds for the ‘‘free’’ term
½SðtÞC�x; since jj½SðtÞC�xjj1;m4CjjSðt � 1=2ÞCjj1;m4Cð1 þ tÞm�keðu0Þ: Con-
sider first the special case m ¼ k=2 and thus m � k ¼ �m: Define the
quantity

gðtÞ ¼ sup
14s4t

smjjwð�; sÞjj1;m ð3:15Þ

for t51: Then g is continuous, gð1Þ ¼ jjwð�; 1Þjjm4C0eðu0Þ for some constant
C0; and jjF ðvÞð�; sÞjj1;m4Cs�kg2ðsÞ for all s: Then (3.13) implies for t51

jjwð�; tÞjj1;m4Ct�meðu0Þ þ
Z 1

0

Cð1 þ t � sÞ�mNðt � sÞjjwð�; sÞjj1;m ds

þ
Z t

1

Cð1 þ t � sÞ�mNðt � sÞs�kg2ðsÞ ds

4C1t�meðu0Þ þ C2t�mg2ðtÞ
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by Lemma C.1 and estimate (A.6). Therefore, gðtÞ4C1eðu0Þ þ C2g2ðtÞ for all
t51: If 4C1C2eðu0Þ51 and 2C0C2eðu0Þ51 (thus gð1Þ5ð2C2Þ

�1), then gðtÞ4
C0eðu0Þ for all t by an elementary algebra argument. This is the desired
estimate for m ¼ k=2; and it holds if eðu0Þ is sufficiently small. If 05m5k is
arbitrary, then one can use the estimates for w on ð0; 1� and for ½SðtÞC�x to
obtain for t51

jjwð�; tÞjj1;m4Ctm�keðu0Þ þ
Z 1

0

Cð1 þ t � sÞm�kNðt � sÞjjwð�; sÞjj1;m ds

þ
Z t

1

Cð1 þ t � sÞm�kNðt � sÞjjF ðvÞð�; sÞjj1;k ds

4Ctm�keðu0Þ þ
Z t

1

Cð1 þ t � sÞm�kNðt � sÞjjw�; sÞjj21;k=2 ds

4Ctm�keðu0Þ þ Ceðu0Þ
2

Z t

1

ð1 þ t � sÞm�kNðt � sÞð1 þ sÞ�k ds

4Ctm�keðu0Þ

by the estimate for jjw�; sÞjj1;k=2 that was just established and by Lemma C.1.
The theorem is now completely proved. ]

4. GENERALIZED KORTEWEG–DE VRIES–BURGERS
EQUATIONS

Let us now look at the partial differential equation

ut � auxx þ uxxx þ gðuÞx ¼ 0 ðx 2 R; t > 0Þ: ð4:1Þ

The parameter a is positive, and g is C2-smooth. The case gðuÞ ¼
ðp þ 1Þ�1upþ1 with integer p > 0 is a model for long wave propagation in
media with dissipation and dispersion. The special case p ¼ 1 is known as
Korteweg–de Vries–Burgers equation. It reduces to the Korteweg–de Vries
equation if a ¼ 0: Under certain conditions, the equation admits monotone
traveling wave solutions uðx; tÞ ¼ fðx � ctÞ with speed c that connect the
end states f� ¼ limr!�1 fðrÞ: Such a wave profile must satisfy the third-
order ordinary differential equation

�cf0 þ gðfÞ0 þ f000 � af00 ¼ 0: ð4:2Þ

An example is gðrÞ ¼ 2rðr � 1Þðb � rÞ with b52; which has the wave profile
fðrÞ ¼ ð1 þ erÞ�1 for the parameter a ¼ 2b � 1 and the speed c ¼ 0: General
profiles (not necessarily monotone) have been constructed in [2, 7]. It is



TRAVELING WAVE SOLUTIONS’ ASYMPTOTIC STABILITY 359
known that monotone profiles exist for gðuÞ ¼ ðp þ 1Þ�1upþ1 and a52
ffiffiffiffiffi
pc

p
:

A slightly more general situation is the setting for the next result.

Proposition 4.1. Let g 2 C2 be strictly convex. A monotone wave profile

f for (4.1) exists if and only if

c ¼
gðfþÞ � gðf�Þ

fþ � f�
; ð4:3aÞ

a52
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðf�Þ � c

p
; ð4:3bÞ

fþ5f�: ð4:3cÞ

The profile f must therefore be monotonically decreasing.

Proof. Suppose f is a monotone wave profile with limits f� at r ¼ �1:
Clearly, �cfþ gðfÞ þ f00 � af0 ¼ const: and thus �cf� þ gðf�Þ ¼ �cfþ þ
gðfþÞ; implying (4.3a). Set cðzÞ ¼ f� � fð�zÞ and

f ðrÞ ¼ gðf�Þ � cr � gðf� � rÞ: ð4:4Þ

Then f is concave, and �ac0 � c00 ¼ f ðcÞ: This is the equation for a wave
profile c of the Fisher–Kolmogorov–Petrovskii–Piskunov (F–KPP) equa-
tion vt � vxx ¼ f ðvÞ that travels to the right with speed a and has limits
c� ¼ f� � fþ; cþ ¼ 0: It is known [4] that such a monotone wave profile
for concave f exists if and only if a52

ffiffiffiffiffiffiffiffiffiffi
f 0ð0Þ

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðf�Þ � c

p
: In this case,

c� > cþ and therefore f� > fþ; since f is positive between c� and cþ:
Thus (4.3b) and (4.3c) are true. Conversely, let (4.3a–c) hold. Define f as in
(4.4). By well-known results about the F–KPP equation, there exists a
unique decreasing wave profile c with cð0Þ ¼ ðf� � fþÞ=2 that moves to
the right with speed a: Then fðzÞ ¼ f� � cð�zÞ is a monotone wave profile
for (4.1) with fð�1Þ ¼ f�: ]

It is easy to see that in fact f050 on R: After rescaling the independent
variable, adding a linear function to g; and changing to a moving coordinate
system, one can assume that c ¼ 0; f� ¼ 1; and fþ ¼ 0: As in Section 3,
the focus is on the convergence of solutions of (4.1) to some translate
fð� � hÞ as t ! 1: As before, we can assume that h ¼ 0 and define CðxÞ ¼R x

�1ðuðz; 0Þ � fðzÞÞ dz: In [2], (4.1) was discussed in the case gðxÞ ¼ x2; and it
was shown that the difference uð�; tÞ � f converges to 0 in L2 together with
its derivatives if this difference is small in L2;k for some k > 1 at t ¼ 0 and if
sufficiently many derivatives of its derivatives are small in L2: One of the
results in [14] says that this convergence in fact holds if the initial difference
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is small just in L2: The main result in [12] also covers the case gðuÞ ¼ u2 and
states essentially that if jjCð�Þjj2;k is sufficiently small, then jjuð�; tÞ � fjj2;m ¼
Oðtm�kþeÞ: Here e ¼ 0 if 2m � 2k is an integer, and it is positive but
arbitrarily small otherwise. Derivatives of uð�; tÞ � f are shown to decay at
higher rates. The analysis in [17] gives detailed pointwise estimates for
juðz; tÞ � fðzÞj which imply that for finite x; the temporal decay
of this quantity is dominated by the spatial decay of uð�; 0Þ � f , times an
extra factor

ffiffi
t

p
; while the spatial decay of this difference dominates the

temporal and spatial decays as both x and t approach 1; with the canonical
trade-off. We avoid the extra factor by making a (stronger) decay
assumption for the antiderivative C of uð�; 0Þ � f and show a stronger
decay estimate for the antiderivative of uð�; tÞ � f: The paper [17] also
discusses the ‘‘undercompressive’’ case which corresponds to non-convex
functions g: This case is not addressed here.

The main result of this section assumes that

g0ð0Þ505g0ð1Þ and g00ðrÞ > 0 for all x: ð4:5Þ

Theorem 4.2. Let k > 1 be a real number. There exists a constant C0 such

that if

jjCjj2;k ¼ eðu0Þ ð4:6Þ

is sufficiently small, then the solution u exists for all t > 0; and for all 05m5k

and t51

jjuð�; tÞ � fjj4;m4Cð1 þ tÞm�keðu0Þ; ð4:7aÞ

jjuð�; tÞ � fjj2;m4Cð1 þ tÞm�keðu0Þ: ð4:7bÞ

Proof. The proof follows the scheme used in Section 3. Two different
function space settings (L4 and L2) are used to handle the quadratic
nonlinearity. Estimates (B.7a, b) connect these settings.

Step 0. Let u be a solution of (4.1), and set vðx; tÞ ¼
R x

�1ðuðz; tÞ � fðzÞÞ dz:
Thus vðx; 0Þ ¼ CðxÞ; and v satisfies

vtð�; tÞ þ Lvð�; tÞ ¼ GðvÞð�; tÞ;

where now formally

LyðxÞ ¼ �ayxxðxÞ þ yxxxðx; tÞ þ g0ðfðxÞÞyxðxÞ; ð4:8Þ

GðyÞðxÞ ¼ gðfðxÞÞ þ g0ðfðxÞÞyxðxÞ � gðfðxÞ þ yxðxÞ ¼ g00ðzðxÞÞy2
xðxÞ: ð4:9Þ
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Step 1. The operator L acting in L2ðRÞ is defined in (4.8), and �L

generates a C0 semigroup SðtÞt50 in this space by Appendix B. Let us note
that d

dx
g0ðfðxÞÞ ¼ g00ðfðxÞÞf0ðxÞ50; and thus S is a contraction semigroup

by (B.10). The semigroup can be restricted to the weighted spaces L2;k and
L2;r (r5a=3). From the properties of g and the definition of G in (4.8), one
immediately deduces the estimates

jjGðy1Þ � Gðy2Þjj2;k4Cjjy1;x � y2;xjj2;k; ð4:10aÞ

jjGðyÞjj2;k4Cjjyxjj24;k=2 ð4:10bÞ

for any k50 and suitable y; y1; y2; with some universal constant C: Suppose
now that C 2 L2;k is given. A continuous L2-valued solution vð�; tÞ of the
integral equation

vð�; tÞ ¼ SðtÞCþ
Z t

0

Sðt � sÞGðvÞð�; sÞ ds ð4:11Þ

is again found by a contraction argument, using (4.10a), and due to the
global Lipschitz property in (4.10a), this solution exists for all times. The
existence and uniqueness arguments hold in all spaces L2;m; 05m4k; and
therefore vð�; tÞ belongs to all these spaces for all t: The solution satisfies (4.1)
in the classical sense if it is sufficiently smooth. Although the linear part of
(4.1) does not enjoy maximal regularity properties, more smoothness for the
solution follows easily from smoothness of the data, if the equation is
differentiated and the results in Appendix B are used. Set wðx; tÞ ¼ uðx; tÞ �
fðxÞ ¼ vxðx; tÞ and write N0ðtÞ ¼ maxð1; t�1=2Þ and N1ðtÞ ¼ maxð1; t�5=8Þ:

Step 2. As before, let us next characterize the behavior of w for 05t41 in
more detail. The goal is to show the estimates

jjwð�; tÞjj2;m4CN0ðtÞeðu0Þ; ð4:12aÞ

jjwð�; tÞjj4;m4CN1ðtÞeðu0Þ ð4:12bÞ

for 05t41: For this purpose consider the integral equation for w which is
obtained by differentiating (4.11), i.e. (3.13) with F replaced by G: For the
‘‘free term’’ ½SðtÞC�x in (3.13), (4.12a, b) follows directly from (B.7a, b). To
show (4.12a), one uses (B.7a) and (4.10b) to derive inequality (3.14) with
jjwð�; tÞjj1;m=NðtÞ replaced everywhere by jjwð�; tÞjj2;m=N0ðtÞ: For (4.12b), one
uses (B.7b) and arrive at an inequality like (3.14) for jjwð�; tÞjj4;m=N1ðtÞ:
Standard arguments for linear integral inequalities imply that jjwð�; tÞjj2;m=
N0ðtÞ þ jjwð�; tÞjj4;m=N1ðtÞ4C on ð0; 1�; i.e. (4.12a, b).
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Step 3. Finally, let us prove estimate (4.7). Start by observing that
(B.14b,B.15b) are just estimates (4.7a, b) for the ‘‘free term’’ ½SðtÞC�x:
Consider again first the special case m ¼ k=2 and thus m � k ¼ �m: Define
the quantity

gðtÞ ¼ sup
14s4t

smjjwð�; sÞjj4;m ð4:13Þ

for t51: Then g is continuous, gð1Þ ¼ jjwð�; 1Þjj4;m4C0eðu0Þ for some C0; and
jjGðvÞð�; sÞjj2;m4Cs�kg2ðsÞ for all s: Equation (4.11), estimate (4.12) and
Lemma C.1 imply that for t51

jjwð�; tÞjj4;m4Ct�meðu0Þ þ
Z 1

0

Cð1 þ t � sÞ�mN1ðt � sÞjjwð�; sÞjj2;m ds

þ
Z t

1

Cð1 þ t � sÞ�mN1ðt � sÞs�kg2ðsÞ ds

4C1t�meðu0Þ þ C2t�mg2ðtÞ:

Therefore gðtÞ4C1eðu0Þ þ C2g2ðtÞ for all t51: As in Section 3, gðtÞ4C0eðu0Þ
follows if eðu0Þ is sufficiently small, which is the desired estimate. If 05m5k

is arbitrary, then one obtains as in Section 3 for t51

jjwð�; tÞjj4;m4Ctm�keðu0Þ þ
Z 1

0

Cð1 þ t � sÞm�kN1ðt � sÞjjwð�; sÞjj2;m ds

þ
Z t

1

Cð1 þ t � sÞm�kN1ðt � sÞjjGðvÞð�; sÞjj2;k ds

4Ctm�keðu0Þ þ
Z t

1

Cð1 þ t � sÞm�kN1ðt � sÞjjw�; sÞjj24;k=2 ds

4Ctm�keðu0Þ:

Finally for t51;

jjwð�; tÞjj2;m4Ctm�keðu0Þ þ
Z t

0

Cð1 þ t � sÞm�kN0ðt � sÞjjwð�; sÞjj24;k=2 ds

4Ctm�keðu0Þ þ
Z t

0

Cð1 þ t � sÞm�kN0ðt � sÞð1 þ sÞ�ke2ðu0Þ ds

4Ctm�keðu0Þ:

The theorem is now completely proved. ]
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Let us note in concluding that estimates (B.7a,b) can easily be modified
to

jjSðtÞfjj1;k4Ct�1=4jjfjj2;k; jj½SðtÞf�xjj1;k4Ct�3=4jjfjj2;k

for 05t41: The last argument in the proof of Theorem 4.1 then implies that
also

jjuð�; tÞ � fjj1;m4Ctm�keðu0Þ:
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APPENDIX A. LINEARIZATION OF SCALAR VISCOUS
CONSERVATION LAWS

In this section, properties of solutions of the equation

ut � uxx þ cux þ du ¼ 0 ðx 2 R; t > 0Þ ðA:1Þ

are collected that are used in the main part of this paper. Here c and d are
suitable coefficient functions which are bounded together with their first
derivatives. The results are mostly well known.

Define the Banach spaces X ¼ L1ðRÞ \ C0ðRÞ and X0 ¼ fy 2
X j y is uniformly continuousg; both equipped with the supremum norm
jj � jj1: Define the operator L acting in X by Lj ¼ �jxx þ cjx þ dj for
j 2 DðLÞ ¼ fy 2 X jj y00 2 Xg: The restriction of L to X0 will also be denoted
by L: Then �L generates a C0 semigroup ðSðtÞÞt50 in X0 which can be
constructed as a perturbation of the heat semigroup. In addition, the
estimates hold

jjSðtÞjjj14jjjjj1 ð04t51Þ if d ¼ 0; ðA:2Þ

jj½SðtÞj�xjj14
Cffiffi

t
p jjjjj1 ð05t41Þ: ðA:3Þ

The first estimate is the maximum principle, the second follows from
estimates for fundamental solutions in [9]. The semigroup can be extended
to act on X ; and the extension will also be denoted by SðtÞ: The extension
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still satisfies the estimates above. It is only strongly continuous for t > 0; but
this is irrelevant for the purposes of this paper.

Let us next examine the behavior of this semigroup in subspaces of X0

that are defined by means of weight functions. Let w : R ! ½1;1Þ be
smooth, with wð�1Þ ¼ 1; and with the first three derivatives of x /
log wðxÞ bounded. Set Xw ¼ fy 2 X j y � w 2 Xg with the norm jjyjj1;w ¼
jjw � yjj1: There is a natural bijection R : Xw ! X ; Ry ¼ wy; inducing the
(formal) conjugate S̃ðtÞ ¼ RSðtÞR�1 of SðtÞ which again acts on X : A
straightforward computation shows that the restriction of S̃ðtÞ to X0 has an
infinitesimal generator �L̃ of the same form as L: The estimates in [9] apply
to this more general case and imply that S̃ðtÞ acts on X0 as a C0-semigroup.
Thus SðtÞ acts on each Xw with estimates jjSðtÞyjj1;w4CeMtjjyjj1;w for
04t51 and jj½SðtÞy�xjj1;w4

C ffiffi
t

p jjyjj1;w for 05t41: The constants C and M

now depend also on w: The same notation for SðtÞ will be used, whether it
acts on X or on Xw:

Now let r; k > 0 and consider specifically the spaces Xr and Xk that
correspond to the weight functions wðxÞ ¼ coshðrxÞ and wðxÞ ¼ ð1 þ x2Þk=2

(as in Section 1). The work in [4, 15] implies that for sufficiently small r there
exists e ¼ eðrÞ > 0 and C > 0 such that for all j 2 Xr and all t50

jjSðtÞjjj1;r4Ce�etjjjjj1;r: ðA:4Þ

Theorem 2.2 and (A.2) then imply that for all j 2 Xk and all 05m5k

jjSðtÞjjj1;m4C1ð1 þ tÞm�k jjjjj1;k: ðA:5Þ

Using (A.3), it also follows that for all t > 0

jj½SðtÞj�xjj1;m4NðtÞC1ð1 þ tÞm�k jjjjj1;k ðA:6Þ

with NðtÞ ¼ maxf1; t�1=2g: Finally, since ½SðtÞj�x satisfies a parabolic
equation of the same form as (A.1), the estimates hold for 05t41

jj½SðtÞj�xjj1;k4CNðtÞjj½j�xjj1;k and jj½SðtÞj�xjj14Cjj½j�xjj1: ðA:7Þ

APPENDIX B. LINEARIZATION OF GENERALIZED KORTEWEG–
DE VRIES–BURGERS EQUATIONS

This appendix collects properties of solutions of the equation

ut þ uxxx � auxx þ cux þ du ¼ 0 ðx 2 R; t > 0Þ ðB:1Þ
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which are used in the main part of the paper. Here a > 0; and c and d are
suitable smooth coefficient functions. Proofs will only be indicated.

If c ¼ d ¼ 0; the spatial Fourier transform ûð�; tÞ of the solution u of (B.1)
is given by

ûðx; tÞ ¼ eðix
3�ax2Þtûðx; 0Þ: ðB:2Þ

This defines a contraction semigroup S0ðtÞt50 in L2: Moreover, for r5a=3;
S0 maps L2;r into itself, since Fourier transforms of functions in L2;r have
analytic extensions into the strip fz j jIðzÞj5r g that are square integrable on
its boundary and since the multiplier in (B.2) is bounded by Ce�ða�3rÞjRðxÞj2t

on any such strip. Thus S0; restricted to any such L2;r; also generates a C0

semigroup there. In addition, since the multiplier x2teðix
3�ax2Þt is similarly

bounded, there are the estimates for all t

jj½S0ðtÞj�xxjj24
C

t
jjjjj2 and jj½S0ðtÞj�xxjj2;r4

C

t
jjjjj2;r ðB:3Þ

and from standard calculus estimates

jj½S0ðtÞj�xjj24
Cffiffi

t
p jjjjj2 and jj½S0ðtÞj�xjj2;r4

Cffiffi
t

p jjjjj2;r: ðB:4Þ

By Theorem 2.1, S0 therefore maps each L2;k into itself and satisfies similar
estimates for 05k51:

By a standard perturbation argument, one obtains existence and
uniqueness of solutions of (B.1) for general coefficients c; d that are
bounded together with their first and second derivatives. The resulting
semigroup SðtÞt50 maps L2; L2;r ðr51=3Þ; L2;k ð05k51Þ into itself, and
the estimates hold

jjSðtÞjjj2;k4Cjjjjj2;k; ðB:5aÞ

jj½SðtÞj�xjj2;k4
Cffiffi

t
p jjjjj2;k; ðB:5bÞ

jj½SðtÞj�xxjj2;k4
C

t
jjjjj2;k: ðB:5cÞ

Next note that for differentiable initial data uð�; 0Þ; the derivative ux also
satisfies an equation of the form (B.1). Thus there is also the estimate

jj½SðtÞj�xjj24Cjjjxjj2 ð05t41Þ: ðB:6Þ
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Finally, the estimates

jjSðtÞjjj4;k4Ct�1=8jjjjj2;k ð05t41Þ; ðB:7aÞ

jj½SðtÞj�xjj4;k4Ct�5=8jjjjj2;k ð05t41Þ ðB:7bÞ

for all j 2 L2;k follows from (B.5a–c) and the calculus inequality jjvjj44;k4
Cjjvjj32;kðjjvjj2;k þ jjvxjj2;kÞ:

Let us next turn to estimates for SðtÞ for large t; in the special case where
d ¼ 0: Consider a general weight function w > 0 with the properties

jw0j4kw; jw00j þ jw000j4C with k5a=3; C > 0:

A calculation shows that for uð�; tÞ ¼ SðtÞj with j 2 L2;r; r5a=3; and t > 0

0 ¼
d

dt

Z
w2u2 þ

Z
u2

xð3jw
0j2 þ 2aw2Þ �

Z
u2ðaðw2Þ00 þ ðw2Þ000 þ ðcw2Þ0Þ: ðB:8Þ

Consider first the case w ¼ 1: Then this identity implies

d

dt

Z
u24

Z
c0u2: ðB:9Þ

Therefore if c040; then

jjSðtÞjjj24jjjjj2 ðB:10Þ

as was observed in [14]. Next fix the assumptions

c0ðxÞ50 ðx 2 RÞ; lim
x!�1

cðxÞ ¼ cL > 0 > cR ¼ lim
x!þ1

cðxÞ: ðB:11Þ

Under these assumptions, for all sufficiently small r > 0 there are C; g > 0
such that

jjSðtÞjjj2;r4Ce�gtjjjjj2;r: ðB:12Þ

Indeed, consider the weights wðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðrðx � x0ÞÞ

p
where x0 is such that

cðx0Þ ¼ 0: From (B.8) one then obtains

d

dt

Z
w2u24

Z
Frw2u2; ðB:13Þ

where

FrðxÞ ¼ ar2 þ c0ðxÞ þ ðrcðxÞ þ r3Þ tanh rðx � x0Þ:
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Let us show that for all sufficiently small r > 0; Fr5� g50 on R: Set
2A ¼ minðcL;�cRÞ: If M is sufficiently large (depending on A) and r25A;
then for jx � x0j > M

FrðxÞ4ar2 þ ðr2 � AÞr tanh rM4� g0r
2

for some g0 > 0: If now jx � x0j4M; then

FrðxÞ4ar2 þ Crþ sup
jx�x0 j4M

c0ðxÞ4� g1

provided r is decreased further. Then (B.13) implies d
dt

R
w2u24� g

R
w2u2;

and (B.12) follows. Theorem 2.1 and (B.5) now imply that for all j 2 L2;k

and 05m5k; t > 0

jjSðtÞjjj2;m4Cð1 þ tÞm�k jjjjj2;k; ðB:14aÞ

jj½SðtÞj�xjj2;m4Cð1 þ tÞm�kN0ðtÞjjjjj2;k ðB:14bÞ

with N0ðtÞ ¼ maxð1; t�1=2Þ: Finally, note that (B.7) and (B.13) imply

jjSðtÞfjj4;m4Ctm�k jjfjj2;k; ðB:15aÞ

jj½SðtÞf�xjj4;m4Ctm�k jjfjj2;k ðB:15bÞ

for t51; for all 05m5k:

APPENDIX C. AN INTEGRAL ESTIMATE

Lemma C.1. Let 05a5b with b > 1: Let M : ð0;1Þ ! R be bounded on

½1;1Þ and integrable on ð0; 1Þ: Then there exists a constant C ¼ Ca;b such that

for all t50 Z t

0

Mðt � sÞð1 þ t � sÞ�að1 þ sÞ�b ds4Ct�a:

Proof. Split the integral:Z t

0

Mðt � sÞð1 þ t � sÞ�að1 þ sÞ�b ds4C

Z t

0

ð1 þ t � sÞ�að1 þ sÞ�b ds

þ
Z 1

0

MðsÞð1 þ sÞ�að1 þ t � sÞ�b ds:
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The second integral is clearly bounded by Cð1 þ tÞ�b: The first integral
becomesZ t

0

ð1 þ t � sÞ�að1 þ sÞ�b ds ¼
Z t=2

0

ð1 þ t � sÞ�að1 þ sÞ�b ds

þ
Z t

t=2

ð1 þ t � sÞ�að1 þ sÞ�b ds:

If a; b > 1; one estimates further

� � �4ðb� 1Þ�1ð1 þ t=2Þ�a þ ða� 1Þð1 þ t=2Þ�b4Cð1 þ tÞ�a:

If a515b; the same estimate yields

� � �4ðb� 1Þ�1ð1 þ t=2Þ�a þ ð1 � aÞð1 þ tÞ1�að1 þ t=2Þ�b4Cð1 þ tÞ�a:

Finally if a ¼ 15b; then the modified estimate holds

� � �4ðb� 1Þ�1ð1 þ t=2Þ�1 þ logð1 þ t=2Þð1 þ t=2Þ�b4Cð1 þ tÞ�1:

This proves the lemma. A closer look at the proof shows that the exponent a
on the right-hand side cannot be improved.
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