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We revisit the notion of slow-roll in the context of general single-field inflation. As a generalization of 
slow-roll dynamics, we consider an inflaton φ in an attractor phase where the time derivative of φ is 
determined by a function of φ, φ̇ = φ̇(φ). In other words, we consider the case when the number of 
e-folds N counted backward in time from the end of inflation is solely a function of φ, N = N(φ). In 
this case, it is found that we need a new independent parameter to properly describe the dynamics of 
the inflaton field in general, in addition to the standard parameters conventionally denoted by ε, η, c2

s
and s. Two illustrative examples are presented to discuss the non-slow-roll dynamics of the inflaton field 
consistent with observations.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The primordial inflation [1] in the very early universe before 
the onset of the standard hot big bang evolution is now the lead-
ing candidate to explain otherwise extremely finely tuned initial 
conditions, such as the horizon and flatness problems. Further-
more, inflation can naturally provide a causal mechanism of pro-
ducing primordial curvature perturbations that should have existed 
on super-horizon scales [2]. These primordial curvature perturba-
tions are predicted to have a nearly scale invariant power spectrum 
and are statistically almost perfectly Gaussian. By recent obser-
vations including the Planck mission, these properties have been 
confirmed with very high accuracy [3–5].

While the inflationary picture itself is more and more sup-
ported and favored by recent observations, constructing a realistic 
and concrete model of inflation in the context of particle physics 
remains an open conundrum [6]. In this situation we should be 
open-minded and consider a wider, more general possibilities for 
inflation than the simplest model where a single, canonically nor-
malized inflaton minimally coupled to Einstein gravity drives in-
flation. Such general theories may well predict verifiable new ob-
servational signatures such as a slight blue tilt for tensor pertur-
bations [7] and suppression of the curvature perturbation on large 
scales [8]. We may have to take these possibilities more seriously, 
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as the simplest possibilities including the m2φ2 model seem to be 
not favored by the new Planck data [5].

A caution is in order when we study such general possibilities. 
We should keep in mind that many notions we have developed 
in the canonical models are not directly applicable to them. For 
example, the moment of horizon crossing which is crucial for stan-
dard single field inflation may not be as important as any other 
instants during inflation. This is because, contrary to the canonical 
model, the curvature perturbation may keep evolving on super-
horizon scales until the end of inflation [9,10] by e.g. the existence 
of other relevant degrees of freedom, which may reflect the sig-
natures of high energy physics [11]. In this article, we revisit the 
term “slow-roll” in the context of k-inflation type general P (X, φ)

theory where X ≡ −gμν∂μφ∂νφ/2 [12].
The article is organized as follows. In Section 2 we extend the 

notion of slow-roll single-field inflation and consider the general, 
attractor phase inflation in the context of P (X, φ) theory. In de-
scribing the dynamics of the inflaton field, we introduce an inde-
pendent new parameter p [see (10)] which identically vanishes in 
the canonical single-field model. The new parameter is slow-roll 
suppressed if the inflaton is slow-rolling. However, in the general 
case of attractor inflation where the inflaton is may not be slow-
rolling, it may become of order unity. In Section 3 we present two 
examples to illustrate the possibility of the non-slow-roll dynamics 
consistent with the current observational constraints. We conclude 
the paper in Section 4.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. General attractor inflation

For P (X, φ) theory, the matter Lagrangian is given by

Sm =
∫

d4x
√−g P (X, φ) . (1)

This is the most general single scalar field action with their lin-
ear derivatives, which includes the standard canonical action P =
X − V and the Dirac–Born–Infeld type action. We assume that the 
inflaton is in an attractor phase, i.e., φ̇ is determined by a function 
of φ, but φ is not necessarily slowly evolving, as discussed in more 
detail below. Thus, in particular, we do not consider non-attractor 
inflation [14] where the dynamics depends both on φ and φ̇ .

With the above Lagrangian, it is known that the spectral index 
of the curvature perturbation is given by [12]

nR − 1 = −2ε − η − s , (2)

as well as the running of the spectral index [13]

αR = −2εη − η̇

H
− ṡ

H
, (3)

where

ε ≡ − Ḣ

H2
= X P X

m2
Pl H

2
,

η ≡ ε̇

Hε
= − Ḧ

H3ε
+ 2ε ,

s ≡ ċs

Hcs
, (4)

with the speed of sound cs given by

c−2
s = 1 + 2X P X X

P X
. (5)

In deriving (2), it is assumed that H and cs are slowly varying. 
The constrained value of nR − 1 = 0.968 ± 0.006 [5] demands ε , 
η and s are all small, barring accidental cancellation among them. 
This situation is usually referred to as the “slow-roll” approxima-
tion. It is however quite misleading because the smallness of these 
parameters does not necessarily mean the inflaton is slowly evolv-
ing. This becomes more transparent if we consider the equation of 
motion for φ, which reads [12]

1

a3

d

dt

(
a3 P X φ̇

)
= d

dt
(P X φ̇) + 3H P X φ̇ = Pφ . (6)

In the canonical case where P X = 1, the smallness of ε and η
would imply the smallness of the φ̈ term in comparison with 3Hφ̇

term, which is the usual slow-roll approximation. But the second 
derivative term may not be negligible in the general P (X, φ) the-
ory a priori.

Let us take another point of view by considering the second 
order component of the comoving curvature perturbation R. In 
the context of the δN formalism [9,15] where N = N(φ), for single 
field case we can find (see for detail Appendix A)

δN = R = Rl

[
1 + 1

2
(ε + δ)Rl + · · ·

]
, (7)

where Rl ≡ −Hδφ/φ̇ is the linear component of R with δφ being 
evaluated on flat slices at horizon crossing, and

δ ≡ φ̈

˙ . (8)

Hφ
The notion of “slow-roll”, i.e. slow evolution of the inflaton field 
is thus equivalent to requiring |δ| � 1. Note that (7) is in fact the 
second order gauge transformation [16] and is independent of the 
structure of the matter sector, so should remain valid for P (X, φ)

theory. Only when the kinetic sector is canonical we can use the 
relation Ḣ = −X/m2

Pl and find η = 2(ε + δ), so that the smallness 
of the second order component of R in (7) is guaranteed. However, 
in P (X, φ) theory, Ḣ = −X P X/m2

Pl so that in general we have

η = 2(ε + δ) + p , (9)

where we have introduced a new parameter p defined by

p ≡ Ṗ X

H P X
. (10)

Thus the coefficient in front of the second order component of R
is not necessarily small.

Note that p may be expressed as

p = δ

(
1

c2
s

− 1

)
+ P Xφ

H P X
φ̇ = −3 − δ + Pφ

Hφ̇P X
, (11)

where for the second equality we have used the equation of mo-
tion (6). Equating these two expressions for p, we can eliminate 
H P X and can write p as

p =
(
c−2

s − 1
)
δ + 2(3 + δ)q

1 − 2q
where q ≡ X P Xφ

Pφ

. (12)

This is another useful formula. Since p is expressed in terms of the 
cross derivative P Xφ , we can see the qualitative dependence of p
on how close the theory is to the canonical form where P Xφ = 0. 
Explicitly, we can express p as

p ≈
{ (

c−2
s − 1

)
δ +O(q) for |q| � 1

−3 − δ +O(q−1) for |q| � 1
. (13)

Thus on general ground we expect that when P (X, φ) is highly 
non-canonical, we may have |q| � 1, and the slow-roll dynamics 
of the inflaton field is not guaranteed. In fact if |q| � 1, combined 
with (9), it is required that the non-slow-rollness must be as large 
as δ ≈ 3 with ε and η being kept small.

Before closing this section, let us reconsider the curvature per-
turbation expanded to second order (7) in the context of non-
Gaussianity. Conventionally a local non-Gaussianity is represented 
by the non-linear parameter fNL [17] which appears in the expan-
sion as

R = Rl + 3

5
fNLR2

l + · · · . (14)

For the canonical case, using (9), (7) reads

R = Rl + η

4
R2

l + · · · , (15)

which implies

fNL = 5

12
η . (16)

This is in fact a half of the consistency relation for the squeezed 
limit of the bispectrum [18]. The remaining half 5ε/6 comes from 
the intrinsic non-Gaussianity of Rl , which we have not taken into 
account here. See Appendix B for detail. However, given that for 
most inflationary models ε � 1, (16) contributes more importantly 
to fNL.

Now, following the same step, from (9) we obtain for P (X, φ)

theory,

fNL = 5 (
η − p )

. (17)

12 2
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One might expect from (2) that p could be expressed in terms of cs

or s at an attractor stage where N = N(φ) in a universal manner.1

However, actually it seems there is no universal relation between 
p and cs or s. That is, essentially p is an independent parameter 
of the P (X, φ) theory. In the following, let us see this point more 
clearly in two simple examples.

3. Slow-roll versus non-slow-roll dynamics: examples

If we assume the slow-roll dynamics of the inflaton, i.e. |δ| � 1, 
from (9) we have to additionally require

|p| � 1 , (18)

given the smallness of η. However this is an extra assumption not 
constrained by the current observations on nR , and in principle 
can be abandoned, à la general slow-roll [20] where the hierarchy 
between slow-roll parameters is not assumed. In this case |δ| =
O(1) can be canceled by p ∼ −δ, keeping small η so that there 
is no conflict with observations. Below we present two opposite 
examples: A trivial case where |δ| � 1 and a non-trivial case where 
|δ| =O(1).

3.1. Trivial example

In simple cases, η and δ go together, i.e. when one is small, so 
is the other. As a very simple example in this category, consider

P (X, φ) = K (X) − V (φ) . (19)

This gives P Xφ = 0, so p is very simple and is related to δ from 
(11) as

p =
(

1

c2
s

− 1

)
δ = 2X K X X

K X
δ , (20)

where for the second equality we have used the expression for the 
speed of sound:

c−2
s = 1 + 2X K X X

K X
. (21)

Thus unless c2
s � 1, which is highly constrained from bounds on 

fNL by Planck [4,5], we have p = O(δ). Namely |η| � 1 demands 
|δ| � 1, ensuring slow-roll dynamics. Notice that if K ∝ Xn (n 
= 1), 
cs is constant and s = 0, hence the spectral index formula (2) as 
well as the running (3) are identical to the canonical case. But even 
in this case fNL is different from the canonical case (16) because of 
the non-vanishing new term (20), though this difference is rather 
irrelevant since we still have | fNL| � 1.

3.2. Non-trivial example

As a non-trivial example where |η| � 1 and |δ| � 1, let us con-
sider

P (X, φ) = F (φ)K (X) − V (φ)

with K (X) = X0

1 + γ

[(
X

X0
+ 1

)1+γ

− 1

]
, (22)

where X0 is an arbitrary normalization. Note that K ∝ Xγ +1 for 
X � X0 while K ∝ X for X � X0. Thus the system reduces to the 

1 Note that in general fNL can be comparable to or larger than O(1) at a non-
attractor stage, breaking the consistency relation, even for canonical models [14], 
along with other possible peculiar signatures [19].
canonical form when X � X0 by appropriately redefining the in-
flaton field.

Taking the derivatives of (22), we find

P X = F (φ)K X with K X =
(

X

X0
+ 1

)γ

, (23)

P X X = F (φ)K X X with K X X = γ

X0

(
X

X0
+ 1

)γ −1

, (24)

and from (5),

c−2
s = 1 + 2X K X X

K X
= 1 + 2γ

(X/X0 + 1)γ −1 X/X0

(X/X0 + 1)γ
. (25)

Note that for X � X0, we have a simple result,

c−2
s ≈ 1 + 2γ . (26)

Note also that with γ being a constant, s ≈ 0 in this limit.
In the following, let us concentrate on this regime. To make the 

analysis simpler, we assume the time dependence of φ as

φ ∼ eαN , (27)

where we are interested in the case when α is not small, α �
O(1). The consistency of this assumption will be discussed later. 
Accordingly we find

φ̇ = αHφ ,

X = α2 H2

2
φ2 ,

dX

dN
= 2(α − ε)X . (28)

What we want to see is whether |δ| � 1 while |η| � 1 is possi-
ble. For this purpose, let us express η in the form,

η = 2ε + 1

F

dF

dN
+ 1

X K X

d(X K X )

dN
, (29)

where we have used (9) and (10). Note that δ is expressed as

δ = 1

2

Ẋ

H X
= 1

2X

dX

dN
= α − ε . (30)

We see that given ε � 1 the last two terms in (29) should nearly 
cancel each other to ensure small η.

With (27) and X � X0, we find

1

X K X

d(X K X )

dN
≈ 2(α − ε)(1 + γ ) . (31)

Now let us set

1

F

dF

dN
= −2(α − ε)(1 + γ ) + ξ . (32)

For the last two terms in (29) to nearly cancel each other, we must 
have |ξ | � 1. This implies

F ≈ F0

(
φ

φ0

)−2(1+γ )

, (33)

where we have ignored the corrections of O(ε).
In the limit X � X0, ε is given by

ε ≈ F X1+γ

m2 H2 Xγ ≈ F0α
2(1+γ )

21+γ

φ
2(γ +1)

0 H2γ

m2 Xγ . (34)

Pl 0 Pl 0



J.-O. Gong, M. Sasaki / Physics Letters B 747 (2015) 390–394 393
Thus by appropriately choosing the normalization constants, we 
can readily make ε � 1. Turning to the equation of motion for φ, 
(6), we obtain

F0

Xγ
0

(αH)2(1+γ )

2γ

[
3 + 1 + 2γ

2(1 + γ )
ξ

]
dN

dφ
= −Vφ . (35)

Then, ignoring ξ as well as the time variation of H , we can recover 
the advocated behavior (27) with a logarithmic potential,

V (φ) = V 0 + V 1 log

(
φ

φ0

)
, (36)

upon appropriately choosing V 1.
Notice that even for X � X0 where we can make simplifica-

tions, p is not related to the speed of sound cs (26). Instead we 
find

p = Ḟ

H F
+ K̇ X

H K X
≈ −2α(1 + γ ) + 2αγ ≈ −2δ , (37)

where for the last equality we have used α ≈ δ. We see that γ ≈(
c−2

s − 1
)
/2 disappears from the final result, implying that p is 

related to neither cs nor s. From (9) we find

η = 2(ε + δ) + p ≈ 2(ε + δ) − 2δ ≈ 2ε � 1 , (38)

as required, so that there is no conflict with the observational con-
straints on nR . Further, in this regime the running is αR ≈ −8ε2

which can be well accommodated within the current observational 
bounds. On the other hand we find

fNL = 5

12

(
η − p

2

)
≈ 5

12
(η + δ) ≈ 5

12
α �O(1) . (39)

Note that we have

X P Xφ

Pφ

≈ −α(1 + γ )

3 − α
, (40)

so that upon choosing α ≈ δ ≈ 3 the dynamics of the inflaton be-
comes maximally non-slow-roll, corresponding the general case of 
|q| � 1 given in (13).

4. Conclusion

We have reconsidered the notion of slow-roll in the context of 
general P (X, φ) theory in terms of the parameters by which ob-
servable quantities are described. While in the standard single-field 
inflation the attractor phase corresponds to the slow-roll regime, 
they are not equivalent in general. Accordingly we have found that 
we need a new, independent parameter p defined by (10) to prop-
erly describe the dynamics of the inflaton field. We have presented 
two illustrative examples in order to clarify the role of the new pa-
rameter in the non-slow-roll dynamics of the inflaton field. In one 
of the examples, we have shown that we may indeed have a highly 
non-slow-roll stage of inflation without violating the current ob-
servational constraints. In other words, in near-future observations 
where the precision and accuracy will become much better, this 
new parameter can be used to perform a new observational test to 
constrain viable models of inflation.
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Appendix A. Non-linear R on attractor

On totally general ground, once the trajectory is in an attractor 
phase we can write

R = δN = ∂N

∂φ
δφ + 1

2

∂2N

∂φ2
δφ2 + · · · , (41)

where R is the comoving curvature perturbation evaluated at 
some final time, and δφ is the field fluctuation on the initial flat 
slice. We can find the expansion coefficients explicitly as follows.

First, we note dN = −Hdt where the minus sign is due to the 
fact that N(φ) is defined as the number of e-folds counted back-
ward in time from the end of inflation to an initial time when the 
value of the inflation field was φ. Therefore we have

∂N

∂φ
= dt

dφ

∂N

∂t
= − H

φ̇
. (42)

Once we have the first coefficient, it is straightforward to compute 
the other ones. The second order coefficient is

∂

∂φ

(
∂N

∂φ

)
= 1

φ̇

d

dt

(
∂N

∂φ

)
= − Ḣ

φ̇2
+ Hφ̈

φ̇3
. (43)

Plugging these coefficients into (41), we find

R = − H

φ̇
δφ + 1

2

(
− Ḣ

φ̇2
+ Hφ̈

φ̇3

)
δφ2 + · · ·

= − H

φ̇
δφ + 1

2

(
− Ḣ

H2
+ φ̈

Hφ̇

)(
− H

φ̇
δφ

)2

+ · · · . (44)

Note that we have not assumed any particular form for the matter 
sector. Thus, using the definitions of ε in (4) and δ in (8) in the 
main text, and identifying Rl ≡ −Hδφ/φ̇, (44) becomes

R = Rl

[
1 + 1

2
(ε + δ)Rl + · · ·

]
. (45)

This is (7) used in the main text.

Appendix B. Intrinsic non-Gaussianity of R

We consider the cubic order action of δφ on flat slices [18],

S3 =
∫

d4xa3
[
− φ̇

4m2
Pl H

δφ ˙δφ2 − φ̇

4m2
Pl H

δφ
(�[δφ])2

a2

− ˙δφ δφ,iχ,i

a2
+ · · ·

]
, (46)

where we have only presented the leading order terms in slow-roll, 
and χ is the scalar component of the shift vector given by

1

a2
�[χ ] = ε

d

dt

(
− H

φ̇
δφ

)

= − φ̇

2m2
Pl H

˙δφ + higher order in slow-roll . (47)

Using the Bunch–Davies mode function in the de Sitter approxima-
tion with the conformal time τ = −1/(aH),
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δφk(τ ) = − φ̇

H
Rk(τ ) = − φ̇

H

iH√
4εk3mPl

(1 + ikτ ) e−ikτ , (48)

we find the three-point correlation function of δφ from (46) as〈
δφk1δφk2δφk3

〉 ≡ (2π)3δ(3)(k1 + k2 + k3)Bδφ(k1,k2,k3)

= (2π)3δ(3)(k1 + k2 + k3)
−H4

√
2εmPl

1

(k1k2k3)3

ε

4

×
[
−k3

1 + k3
2 + k3

3

2
+ k1

(
k2

2 + k2
3

) + 2 perm

2

+ 4
(
k2

1k2
2 + 2 perm

)
k1 + k2 + k3

]
. (49)

Since δφ = −(φ̇/H)R at leading order, the intrinsic bispectrum 
for the comoving curvature perturbation is given by

BR(k1,k2,k3) = − H3

φ̇3
Bδφ(k1,k2,k3)

= H4

16εm4
Pl

1

(k1k2k3)3

[
−k3

1 + k3
2 + k3

3

2

+ k1
(
k2

2 + k2
3

) + 2 perm

2

+ 4
(
k2

1k2
2 + 2 perm

)
k1 + k2 + k3

]
. (50)

Taking the squeezed limit, say, k3 → 0, one can read off the non-
linear parameter fNL and find

fNL = 5

6
ε . (51)

Thus, we see that using the δN formalism alone, we cannot fully 
find the consistency relation. From the beginning the δN formalism 
captures only the super-horizon evolution, which gives a half of 
the consistency relation fNL = 5η/12. The remaining half, fNL =
5ε/6, is due to the intrinsic non-Gaussianity, which we can find 
from the cubic order action.

References

[1] K. Sato, Mon. Not. R. Astron. Soc. 195 (1981) 467;
A.H. Guth, Phys. Rev. D 23 (1981) 347;
A.D. Linde, Phys. Lett. B 108 (1982) 389;
A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48 (1982) 1220.
[2] See e.g., M. Sasaki, Inflation and birth of cosmological perturbations, 
arXiv:1210.7880 [astro-ph.CO], 2014;
M. Sasaki, in: J. Bicak, T. Ledvinka (Eds.), General Relativity, Cosmology and 
Astrophysics Perspectives 100 Years After Einstein’s Stay in Prague, in: Funda-
mental Theories of Physics, vol. 177, Springer, Switzerland, 2014.

[3] R. Adam, et al., Planck Collaboration, arXiv:1502.01582 [astro-ph.CO];
P.A.R. Ade, et al., Planck Collaboration, arXiv:1502.01589 [astro-ph.CO].

[4] P.A.R. Ade, et al., Planck Collaboration, arXiv:1502.01592 [astro-ph.CO].
[5] P.A.R. Ade, et al., Planck Collaboration, arXiv:1502.02114 [astro-ph.CO].
[6] See e.g. D.H. Lyth, A. Riotto, Phys. Rep. 314 (1999) 1, arXiv:hep-ph/9807278.
[7] T. Kobayashi, M. Yamaguchi, J. Yokoyama, Phys. Rev. Lett. 105 (2010) 231302, 

arXiv:1008.0603 [hep-th];
D. Cannone, G. Tasinato, D. Wands, J. Cosmol. Astropart. Phys. 1501 (01) (2015) 
029, arXiv:1409.6568 [astro-ph.CO];
Y.F. Cai, J.O. Gong, S. Pi, E.N. Saridakis, S.Y. Wu, arXiv:1412.7241 [hep-th].

[8] J. White, Y.l. Zhang, M. Sasaki, Phys. Rev. D 90 (8) (2014) 083517, arXiv:
1407.5816 [astro-ph.CO].

[9] M. Sasaki, T. Tanaka, Prog. Theor. Phys. 99 (1998) 763, arXiv:gr-qc/9801017.
[10] C. Gordon, D. Wands, B.A. Bassett, R. Maartens, Phys. Rev. D 63 (2001) 023506, 

arXiv:astro-ph/0009131.
[11] A.J. Tolley, M. Wyman, Phys. Rev. D 81 (2010) 043502, arXiv:0910.1853 

[hep-th];
A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, Phys. Rev. D 84 
(2011) 043502, arXiv:1005.3848 [hep-th];
A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, J. Cosmol. As-
tropart. Phys. 1101 (2011) 030, arXiv:1010.3693 [hep-ph];
A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, J. High Energy 
Phys. 1205 (2012) 066, arXiv:1201.6342 [hep-th].

[12] C. Armendariz-Picon, T. Damour, V.F. Mukhanov, Phys. Lett. B 458 (1999) 209, 
arXiv:hep-th/9904075;
J. Garriga, V.F. Mukhanov, Phys. Lett. B 458 (1999) 219, arXiv:hep-th/9904176.

[13] L. Lorenz, J. Martin, C. Ringeval, Phys. Rev. D 78 (2008) 083513, arXiv:0807.3037 
[astro-ph].

[14] M.H. Namjoo, H. Firouzjahi, M. Sasaki, Europhys. Lett. 101 (2013) 39001, 
arXiv:1210.3692 [astro-ph.CO];
X. Chen, H. Firouzjahi, M.H. Namjoo, M. Sasaki, Europhys. Lett. 102 (2013) 
59001, arXiv:1301.5699 [hep-th];
X. Chen, H. Firouzjahi, M.H. Namjoo, M. Sasaki, J. Cosmol. Astropart. Phys. 1309 
(2013) 012, arXiv:1306.2901 [hep-th];
X. Chen, H. Firouzjahi, E. Komatsu, M.H. Namjoo, M. Sasaki, J. Cosmol. As-
tropart. Phys. 1312 (2013) 039, arXiv:1308.5341 [astro-ph.CO];
S. Mooij, G.A. Palma, A.E. Romano, arXiv:1502.03458 [astro-ph.CO].

[15] A.A. Starobinsky, JETP Lett. 42 (1985) 152, Pis’ma Zh. Eksp. Teor. Fiz. 42 (1985) 
124;
M. Sasaki, E.D. Stewart, Prog. Theor. Phys. 95 (1996) 71, arXiv:astro-ph/
9507001;
J.-O. Gong, E.D. Stewart, Phys. Lett. B 538 (2002) 213, arXiv:astro-ph/0202098.

[16] H. Noh, J.c. Hwang, Phys. Rev. D 69 (2004) 104011, arXiv:astro-ph/0305123.
[17] E. Komatsu, D.N. Spergel, Phys. Rev. D 63 (2001) 063002, arXiv:astro-ph/

0005036.
[18] J.M. Maldacena, J. High Energy Phys. 0305 (2003) 013, arXiv:astro-ph/0210603.
[19] See e.g. J.O. Gong, J. Cosmol. Astropart. Phys. 1407 (2014) 022, arXiv:1403.5163 

[astro-ph.CO].
[20] E.D. Stewart, Phys. Rev. D 65 (2002) 103508, arXiv:astro-ph/0110322;

J. Choe, J.O. Gong, E.D. Stewart, J. Cosmol. Astropart. Phys. 0407 (2004) 012, 
arXiv:hep-ph/0405155.

http://refhub.elsevier.com/S0370-2693(15)00445-1/bib696E666C6174696F6Es1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib696E666C6174696F6Es2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib696E666C6174696F6Es3
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib696E666C6174696F6Es4
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib536173616B693A323031327373s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib536173616B693A323031327373s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib536173616B693A323031327373s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib536173616B693A323031327373s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib536173616B693A323031327373s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib706C616E636B32303135s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib706C616E636B32303135s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4164653A32303135617661s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4164653A323031356F6A61s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4C7974683A31393938786Es1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib626C756574656E736F72s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib626C756574656E736F72s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib626C756574656E736F72s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib626C756574656E736F72s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib626C756574656E736F72s3
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib57686974653A32303134617561s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib57686974653A32303134617561s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib536173616B693A313939387567s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib476F72646F6E3A323030306876s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib476F72646F6E3A323030306876s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6865617679s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6865617679s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6865617679s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6865617679s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6865617679s3
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6865617679s3
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6865617679s4
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6865617679s4
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6B2D696E66s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6B2D696E66s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6B2D696E66s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4C6F72656E7A3A323030386574s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4C6F72656E7A3A323030386574s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s3
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s3
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s4
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s4
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib6E6F6E2D617474726163746F72s5
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib64656C74614E31s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib64656C74614E31s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib64656C74614E31s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib64656C74614E31s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib64656C74614E31s3
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4E6F683A323030346263s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4B6F6D617473753A32303031726As1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4B6F6D617473753A32303031726As1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib4D616C646163656E613A323030327672s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib476F6E673A32303134716761s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib476F6E673A32303134716761s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib677372s1
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib677372s2
http://refhub.elsevier.com/S0370-2693(15)00445-1/bib677372s2

	A new parameter in attractor single-ﬁeld inﬂation
	1 Introduction
	2 General attractor inﬂation
	3 Slow-roll versus non-slow-roll dynamics: examples
	3.1 Trivial example
	3.2 Non-trivial example

	4 Conclusion
	Acknowledgements
	Appendix A Non-linear R on attractor
	Appendix B Intrinsic non-Gaussianity of R
	References


