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We study how the presence of a background magnetic field, of intensity compatible with current
observation constraints, affects the linear evolution of cosmological density perturbations at scales below
the Hubble radius. The magnetic field provides an additional pressure that can prevent the growth of a
given perturbation; however, the magnetic pressure is confined only to the plane orthogonal the field. As
a result, the “Jeans length” of the system not only depends on the wavelength of the fluctuation but also
on its direction, and the perturbative evolution is anisotropic. We derive this result analytically and back
it up with direct numerical integration of the relevant ideal magnetohydrodynamics equations during
the matter-dominated era. Before recombination, the kinetic pressure dominates and the perturbations
evolve in the standard way, whereas after that time magnetic pressure dominates and we observe the
anisotropic evolution. We quantify this effect by estimating the eccentricity ε of a Gaussian perturbation
in the coordinate space that was spherically symmetric at recombination. For a perturbations at the
sub-galactic scale, we find that ε = 0.7 at z = 10 taking the background magnetic field of order
10−9 gauss.

© 2012 Elsevier B.V. Open access under CC BY license.
1. General remarks

Our theoretical knowledge of the Universe is based on the Stan-
dard Cosmological Model, that provides a convenient framework
to satisfactorily explain the majority of cosmological observations,
like the anisotropy pattern of the cosmic microwave background
(CMB) [1–3], the large-scale structure of the Universe [4–6], the
Hubble diagram of distant type Ia supernovae [7–9] and the abun-
dances of light elements [10].

The Standard Cosmological Model relies on the assumption that
the Universe, at least at large scales, is highly homogeneous and
isotropic, and its geometry is thus described by the Robertson–
Walker metric. In fact, the distribution of luminous red galaxies
shows that the present Universe is homogeneous on scales greater
than ∼ 100 Mpc [11], while the isotropy of the CMB itself (which
has a black-body distribution at T = 2.73 K with temperature fluc-
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tuations of order 10−5 or less) is an indication of the isotropy
of the Universe as a whole and a strong evidence for homo-
geneity at the time of hydrogen recombination (nearly 400,000
years after the Big Bang, corresponding to a cosmological redshift
zrec = 1100). On the other hand, below the “homogeneity scale” of
100 Mpc, the distribution of matter is definitely inhomogeneous.
Such a dichotomy between the smoothness in the matter–energy
distribution at z = zrec and the clumpiness of the recent Uni-
verse (for z � 1) below a certain scale is explained by the mech-
anism of gravitational instability: the structures we observe today
have been formed through the growth of tiny density perturba-
tion seeds that, accordingly to the currently accepted model, were
created in the early Universe during a phase of inflationary expan-
sion.

The presence of a large scale (i.e., coherent over a Hub-
ble length), strong magnetic field is forbidden by the observed
isotropy, as it would naturally single out a preferred spatial di-
rection. However, a background and uniform magnetic field could
be present at cosmological scales provided that its intensity is
small enough. In particular, upper limits on the present field in-
tensity of order ∼ 10−9 G have been derived from observations of
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the CMB temperature anisotropies [12,13] and of its temperature-
polarization correlation [14,1].1 Smaller scale fields, on the other
hand, could be as strong as 10−6 G.

The effects of large-scale magnetic fields on the evolution of
cosmological structures have been studied extensively in the liter-
ature (for a complete review, see Ref. [16] and references therein),
where both Newtonian and general relativistic treatments, the
latter often using covariant and gauge-invariant techniques, are
present. It is known that, among others, magnetic fields slow down
(and possibly prevent) the growth of perturbations and can pro-
duce vorticities and shape distortions in the density field [17,18].
In this Letter, our goal is to revisit the issue of the existence of
a “magnetic Jeans length” and of its dependence on the direction
along which the perturbation propagates, other than to give a re-
alistic estimate of its value in a matter-dominated Universe. The
presence of a magnetic Jeans length has been discussed in sev-
eral papers [16–20] both in a Newtonian and in general relativistic
framework (for an analysis of the standard Jeans mechanism in
the presence of dissipative effect see also [21–23]), but some of
the analyses failed to recognize its angular dependence. Here, we
present a neat derivation of the relevant instability scales bases on
the equations of magnetohydrodynamics (MHD) on an expanding
Universe. We discuss a simple generalization of the magnetic Jeans
length suited for two-fluid systems, and clarify some misunder-
standings that are present in the literature. We also show the re-
sults of the numerical integration of the coupled MHD and Poisson
equations. Finally, we numerically study the distortion introduced
in the density field by the anisotropy in the critical length.

The Letter is organized as follows. In Section 2, we character-
ize the Universe as a plasma. In Section 3, we introduce the basic
equations, and in Section 4 we carry out the linearization proce-
dure. We derive the existence of the magnetic Jeans length from
analytical considerations in Section 5, while in Section 6 we show
some numerical results. Finally, we draw our conclusions in Sec-
tion 7.

2. The plasma features of the pre- and post-recombination
Universe

In this section, we aim at characterizing the plasma features of
the cosmological fluid. Between the time of e+e− annihilation (i.e.,
for a temperature2 T � me , corresponding to a redshift z ∼ 109)
and the present (z = 0), the matter–energy content of the Universe
is provided by electrons, protons and neutrons (the three species
being collectively referred to as baryons in the cosmological jar-
gon), photons, neutrinos, and two elusive components dubbed dark
matter and dark energy, that presently account for more than 99%
of the total energy budget of the Universe. However, dark energy
has been subdominant for most of the past history of the Universe
and can be safely neglected at redshifts z > 1. Dark matter and
neutrinos interact only gravitationally with the other components
and can be neglected as long as the plasma properties of the fluid
are concerned.

The cosmological baryon-to-photon ratio is extremely small and
equal to nb/nγ � 6.1 × 10−10, where nγ and nb are the photon
and baryon number densities, respectively. Both nb and nγ scale
with redshift as (1+ z)3; their present values are nb(z = 0) � 2.5×
10−7 cm−3 and nγ (z = 0) � 410 cm−3. Most of the baryons in the
Universe are in the form of 1H nuclei (i.e., isolated protons) so

1 It has been argued (see, e.g., [15]) that the limits obtained from the CMB tem-
perature data can be significantly relaxed in the presence of free-streaming neutri-
nos. However this does not affect the limits from the polarization.

2 All throughout the paper, we use natural units with c = h̄ = kB = 1.
that, for simplicity, in the following we assume nb = np (np being
the proton number density). Furthermore, np is also equal to the
electron number density ne = np , because of the charge neutrality
of the Universe.

We study separately the properties of the cosmological fluid be-
fore and after the time of hydrogen recombination occurring at
z = zrec = 1100 (T � 0.25 eV). For z > zrec, the protons and elec-
trons are free and thus one deals with a fully ionized plasma. In
this regime, photons and baryons are tightly coupled due to Thom-
son scattering, and share a common temperature T (z) = Tγ (z) =
T 0
γ (1 + z), where the present photon temperature T 0

γ = 2.73 K.
After recombination (z < zrec), most of the electrons and protons
exist in the form of neutral hydrogen atoms, and only a small
residual ionized fraction xe = 2.5 × 10−4 survives, making the fluid
a weakly ionized plasma. In this regime, the photon temperature
still scales as (1 + z), while that of baryons evolves in the same
way only until z = 100, due to residual scatterings that keep them
in thermal equilibrium with photons; after that time, their tem-
perature decreases faster, as (1 + z)2. The baryonic fluid remains
neutral until the time of reionization, when the UV radiation pro-
duced by the first stars ionizes again the hydrogen present in
the cosmological medium. This is likely to have happened around
z � 10, however the precise details of the reionization history are
still largely unknown, and for this reason we limit our analysis to
redshifts z > 10.

In the following, we will assume the presence of a background
homogeneous magnetic field B(z), whose contribution to the total
energy density of the Universe can be considered negligible. We
recall that the field intensity B(z) scales as (1 + z)2 and, unless
otherwise stated, we take its value at the present time to be B(z =
0) = 10−9 G.

2.1. The pre-recombination Universe

A fundamental quantity characterizing a plasma is the Debye
length λD , namely the length over which electrons screen out
electric fields in a plasma. It defines the length scale over which
a system can consistently considered to be a plasma. The Debye
length of a hydrogen plasma at temperature T is

λD =
√

T

4πnee2
� (6.9 cm)

√
T /K

ne/cm−3
, (1)

where e is the proton charge. Using T = Tγ and the values given
above, one gets

λD(z) = 2.3 × 104 cm

(1 + z)
. (2)

The redshift dependence of λD implies that the comoving Debye
length λ̄D ≡ λD(1 + z) is constant during the cosmological evolu-
tion and equal to λ̄D � 2 × 104 cm.

Plasma effects can be important in a system when its phys-
ical dimension L is much larger than the Debye length. For the
Universe, the relevant length is the Hubble radius L = lH ≡ H−1,
where H is the Hubble parameter. This length represents the
maximum scale at which microphysical processes can operate in
order to establish the thermodynamical equilibrium. Today, lH �
1028 cm; during the matter-dominated era lH ∝ (1 + z)−3/2, while
in the radiation-dominated era lH ∝ (1 + z)−2. From the analysis of
both these scales, it is evident that lH � λD turns out in the period
considered here. Moreover, under the same hypotheses, the bary-
onic matter MD within a Debye sphere is also constant and given
by

MD = 4
πmpnbλ

3
D � 10−50M�, (3)
3
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where mp is the proton mass. This “Debye mass” clearly results
to be much smaller than any other of cosmological interest and
we can conclude that the cosmological fluid can be considered as
neutral at all relevant scales.

Another meaningful index is the so-called plasma parame-
ter ND , i.e., the number of particles within a Debye sphere:

ND = 4

3
πnbλ

3
D . (4)

The dependence of λD and np on the redshift z implies that also
ND is a constant. In particular, since ND � 107 � 1, the cosmolog-
ical fluid results to be a weakly coupled plasma.

In order to provide a complete characterization of the cosmo-
logical plasma, we now turn our attention to the plasma dissi-
pative properties, starting from the plasma resistivity η. For an
electron–proton plasma, this is given by η = meνei/nee2, where me

is the electron mass and νei is the electron–ion collision frequency.
For the case under consideration, νei is well approximated by the
electron–electron collision frequency νee [24], i.e.,

νei � νee � (
2.91 × 10−6 s−1)( ne

cm−3

)(
T

eV

)−3/2

ln ΛC , (5)

where ln ΛC is the Coulomb logarithm, introduced to quantify the
effects that small-angle-diffusion collisions have in the Coulomb
scattering. A simply estimate of ΛC in a plasma is given by ΛC �
12π ND , so that for the cosmological fluid, the Coulomb logarithm
is � 20. Substituting Eq. (5) into the expression for the resistivity
given above, we get

η(z) � 1.6 ×
(

1 + z

1 + zrec

)−3/2

	 cm. (6)

Close to recombination, the cosmological plasma has an electric
resistivity equal to η(zrec) � 1.6 	 cm, i.e., a conductivity � 0.6
siemens cm−1, a value typical of a semiconductor [in Gaussian
units, η(zrec) = 1.8 × 10−12 s].

Let us now turn our attention to the viscous properties of the
plasma. The shear viscosity coefficient of matter strongly coupled
with radiation can be expressed as [25,26]

ηv = 4

15
aSBT 4τ , (7)

where aSB � 5.7 × 10−8 W K−4 m−2 is the Stefan–Boltzmann con-
stant, while τ denotes the mean collision time between particles
and can be estimated as τ � (nγ σT v)−1 (here, v � c and we have
introduced σT � 6.6 × 10−29 m2 as the cross section for Thom-
son scattering). For a photon gas at equilibrium at temperature T ,
nγ � 2.0 × 107(T /K)3 m−3 and then

ηv(T ) � 1.2 × 10−4
(

T

K

)
kg

m s
. (8)

The resistivity and viscosity coefficients enter the MHD equa-
tions through the following diffusion coefficients η̄ ≡ η/4π and
η̄v ≡ ηv/ρ , where ρ is the density of the fluid. Taking ρ = ρb =
mpnb � 4.2 × 10−28(1 + z)3 kg m−3 and using T = T 0

γ (1 + z), we
get

η̄v � (
6.4 × 1017 m2 s−1)( 1 + z

1 + zrec

)−2

, (9)

η̄ � (
1.3 × 104 m2 s−1)( 1 + z

1 + zrec

)−3/2

. (10)

The relative magnitude of the viscous and magnetic diffusion rates
can be parameterized through the magnetic Prandtl number Prm ≡
η̄v/η̄. Using the expression above for η̄v and η̄, we obtain
Prm � 5.0 × 1013
(

1 + z

1 + zrec

)−1/2

, (11)

so that Prm � 1, i.e., viscous diffusion is more important than
resistive diffusion, at recombination and indeed always at the red-
shifts under consideration.

Having discussed the relative importance of viscosity- and
resistivity-driven dissipative effects, we now analyze at which
scales these effects are relevant. In a magnetized plasma, a use-
ful parameter is the Lundquist number S ≡ Lv A/η, where L is a
typical length scale and v A = (B/4πρ)1/2 is the Alfvén velocity.
The Lundquist number is basically the ratio between the resistive
diffusion timescale τr = L2/η̄ and the Alfvén crossing timescale
τA = L/v A . Assuming B(z = 0) = 10−9 G and ρ = ρb , we obtain
v A � 1.2 × 105 m/s[(1 + z)/(1 + zrec)]1/2 and thus

S = τr

τA
= 2.8 × 1023

(
L

Mpc

)(
1 + z

1 + zrec

)2

. (12)

We also compare τA with the viscous diffusion timescale defined
as τv = L2/η̄v . The ratio S v ≡ τv/τA can be thought as a viscous
analogous to the Lundquist number:

S v = τv

τA
= 5.7 × 109

(
L

Mpc

)(
1 + z

1 + zrec

)2

. (13)

The baryonic mass (at the average background density) contained
in a sphere of radius equal to the length where S ∼ 1 can be calcu-
lated to be ∼ 10−51M�[(1 + z)/(1 + zrec)]−3, while the analogous
quantity for S v is ∼ 10−10 M�[(1 + z)/(1 + zrec)]−9/2. Both mass
scales are well below the values of cosmological relevance at the
redshifts of interest.

The discussion above shows how the following hierarchy among
the relevant time scales holds for all mass range and redshifts of
interest:

τA 	 τv 	 τr, (14)

meaning that viscosity always dominates over resistivity, and that
both dissipative effects can indeed be neglected when studying the
propagation of Alfvén waves.

2.2. The post-recombination Universe

After the time of recombination zrec = 1100, the cosmological
plasma exists in a weakly ionized state, the neutral and ionized
components having densities ρn � ρb and ρi = xeρb 	 ρn , respec-
tively. We take the residual ionization fraction xe constant and
equal to 2.5 × 10−4 in the range zrec > z > 10. The results of the
previous subsection can be generalized to show that the hierarchy
(14) holds also in this regime.

In spite of the small value of the ionization fraction, the mag-
netic field could still affect the dynamics of the whole system in
view of the interactions between neutral and charged particles. In
particular, the magnetic forces acting on the charged particles can
be communicated to the neutrals through collisions. However, if
the coupling is not tight enough, the neutrals feel the magnetic
field but drift with respect to the ions in a process termed ambipo-
lar diffusion. Its relevance at a given length scale L is quantified by
the ambipolar Reynolds number Ramb [27–30]

Ramb(L) ≡ vγinxeρn

v2
A

L = L

Lamb
, (15)

where γin = 1.9 × 10−9 cm3 s−1 [31] is the ion-neutral drag coef-
ficient due to collisions between the two species, v2 = B2/4πρn
A
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Fig. 1. Mass contained (at the background baryon density) within the scale Lamb
defined in Eq. (16) as a function of redshift z. Above line, the condition τamb > τA

holds.

is the Alfvén velocity in the tightly coupled limit, v is the char-
acteristic velocity of the fluid, and Lamb is the ambipolar length,
i.e., the scale where Ramb = 1. The ambipolar Reynolds number is
just the ratio between the ambipolar diffusion timescale τamb =
L2/(τni v2

A) = τ 2
A/τni (where τni = (γρi)

−1 is the neutral collision
timescale) and some characteristic timescale τ = L/v .

If Ramb 	 1, the neutrals are uncoupled from the plasma. On
the contrary, when Ramb � 1 the dynamics of the two compo-
nents can be described through ordinary single-fluid MHD with an
additional dissipative term [29]. This term becomes progressively
less important as Ramb grows and can be neglected in the limit
Ramb � 1, or L � Lamb.

Assuming that the evolution of the fluid is driven by Alfvénic
phenomena, i.e., v ∼ v A , the ambipolar length is given by

Lamb = (1.2 Mpc)(1 + z)−5/2, (16)

and Ramb = τamb/τA . Thus, Ramb � 1 if and only if the tight-
coupling condition τni 	 τ = τA is satisfied.

It is straightforward to check that for 1100 > z > 10, it is always
Ramb > 1 at scales larger than a few tens of comoving kiloparsecs,
meaning that the following hierarchy holds:

τni 	 τA 	 τamb, (17)

so that the ions and neutrals are tightly coupled and ambipolar
diffusion can be safely neglected. In order to better illustrate this
point, in Fig. 1 we plot the mass contained in a sphere of radius
Lamb at the background baryon density as a function of redshift. It
is evident that, in the redshift range considered, Ramb � 1 for all
scales M � 106 M� .

In this regime, we can therefore neglect the dissipative term
mentioned above and use single-fluid ideal MHD. We conclude
that ambipolar diffusion does not affect the dynamics of the cos-
mological plasma after recombination.

3. Basic equations

In this section, we derive the basic equations describing the
linear evolution of instabilities in the cosmological fluid, mod-
eled as a magnetized plasma. In this respect, we underline that
the full investigation of the perturbative dynamics of the Universe
would require a general-relativistic treatment, in order to correlate
the matter and geometrical fluctuations.3 However, as long as one

3 For a complete derivation of the Vlasov theory on curved spacetime, see
Ref. [32].
is interested in scales much smaller than the Hubble radius, i.e.,
L 	 H−1, a Newtonian treatment provides a consistent description
of the dynamics. Nonetheless, in this scenario the expansion of the
Universe can be accounted as the bulk background motion of the
fluid [25,33,34].

The starting point of our treatment is the Eulerian set of equa-
tions governing the fluid motion, on which one can develop a per-
turbative theory by adding small fluctuations to the unperturbed
cosmological background solution. The zeroth-order dynamics is
derived by considering a flat homogeneous and isotropic Universe
whose energy density is dominated by non-relativistic matter, and
correctly describes the expansion of the Universe. We assume that
a background magnetic field is present, whose contribution to the
total energy density of the Universe can be considered negligible.

Let us now start by briefly recalling the basic equations of non-
relativistic, ideal and single fluid MHD, which govern the plasma
motion. The mass conservation and the Newtonian gravitational
field are described by the continuity and Poisson equations, the
single-fluid dynamics is described by the Euler equation in pres-
ence of a magnetic field B and, finally, the electromagnetic inter-
action can be summarized by the frozen-in and the Gauss laws.
Such equations read

∂tρ + ∇ · ρv = 0, (18a)

∇2Φ − 4πGρ = 0, (18b)

ρ∂t v + ρ(v · ∇)v + ∇P + ρ∇Φ − (∇ × B) × B/4π = 0, (18c)

∂t B − ∇ × (v × B) = 0, (18d)

∇ · B = 0, (18e)

respectively, where ρ is the mass density, v is the velocity field,
Φ is the gravitational potential and G is Newton constant. This
system constitutes the base of our perturbative approach.

To derive the zeroth-order dynamics, we assume the usual
Robertson–Walker metric, i.e., ds2 = dt2 − a2(t)d�2, where a =
a(t) represents the cosmological scale factor, and a perfect fluid
energy–momentum tensor as the matter source of the gravitational
field, i.e., Tμ

ν = diag[ρ0,−P0,−P0,−P0], with ρ0 = ρ0(t). In this
scheme, the behavior of the mass density with time is obtained
from the energy–momentum conservation law T ν

0;ν = 0 and from
the Friedmann equation, i.e.,

ρ̇0 + 3H(ρ0 + P0) = 0, (19)

ȧ2 +K − 8

3
πGρ0a2 = 0, (20)

respectively (the dot (˙) denotes the total derivative with respect
to synchronous time). Here H = ȧ/a is the Hubble parameter and
K = const. is the curvature factor.

Setting the matter-dominated Universe equation of state (EoS)
P0 ∼ 0 (P0 	 ρ0) in Eq. (19), the zeroth-order solution of the sys-
tem (18) turns out to be

ρ0 = ρ̄

a3
, v0 = Hr,

B0 = B̄0

a2
, ∇Φ0 = 4

3
πGρ0r, (21)

where ρ̄ and B̄0 are dimensional constants, r (r = |r|) denotes the
radial coordinate vector and, of course, a(t) satisfies Eq. (20). We
observe how this non-stationary solution characterizing the back-
ground dynamics is not affected by the so-called “Jeans swindle”
proper of the static solution [25,33,34].

To obtain now the explicit time dependence of the unperturbed
quantities involved in the model, we restrict the analysis to the flat
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case, i.e., K = 0. From the Friedmann equation (20) and using the
solution for ρ0, one readily obtains

a = (6πGρ̄)1/3t2/3, (22a)

ρ0 = 1

6πGt2
. (22b)

Finally, we recall that the adiabatic sound speed is defined by vs =√
∂ P/∂ρ . For a general specific heat ratio γ , we assume that the

pressure varies as P = Kργ , so that the speed of sound is given by

v2
s = γ Kρ

γ −1
0 = γ K

(6πG)γ −1
t−2γ +2. (22c)

4. Perturbation scheme

In order to analyze the implications that the physics of an
ideal magnetized plasma can have on the structure formation, we
will follow the standard perturbation approach. In this respect, we
consider small perturbations around the zeroth-order cosmological
solution derived above, i.e., we write ρ = ρ0 + ρ1 (with ρ1 	 ρ0)
and similarly for the other quantities P , v , Φ and B . Substituting
the perturbed quantities in Eqs. (18) and keeping only terms up to
first order, one gets

∂tρ1 + 3Hρ1 + H(r · ∇)ρ1 + ρ0∇ · v1 = 0, (23a)

∇2Φ1 − 4πGρ1 = 0, (23b)

∂t v1 + H v1 + H(r · ∇)v1 + v2
s ∇ρ1/ρ0

+ ∇Φ1 − (∇ × B1) × B0/(4πρ0) = 0, (23c)

∂t B1 + 2H B1 + H(r · ∇)B1

+ B0(∇ · v1) − (B0 · ∇)v1 = 0, (23d)

∇ · B1 = 0, (23e)

where, as already discussed, the pressure and density perturba-
tions have been related through the adiabatic sound speed, i.e.,
P1 = v2

s ρ1. We are assuming that B2
0/4πρ0 = v2

A 	 1, where B0 =
|B0|, in order to preserve the isotropy of the background flow.

In the following, we replace B1 with the dimensionless mag-
netic fluctuation b1 ≡ B1/B0. Moreover, the analysis of the system
above can be simplified by Fourier-transforming the spatial depen-
dence of the involved quantities, i.e., using perturbations in the
form of plane waves, taking

φ1(r, t) = φ̃1(t)eik·r, (24)

with φ1 = {ρ1, v1,Φ1, B1} and k is the physical wavenumber scal-
ing as 1/a(t). It is convenient to consider also the comoving
wavenumber q = ak, that stays constant during the expansion.
The evolution for a given harmonic can be obtained by the equa-
tions in real space with the substitutions φ1 → φ̃1, ∇ → ik and
∂t → ∂t − iH(k · r). In the following, for the sake of simplicity, we
will drop the tilde over the Fourier transformed variables. Then,
the system (23) reduces to (hats denote unit vectors):

ρ̇1 + 3Hρ1 + iρ0(k · v1) = 0, (25a)

v̇1 + H v1 + i

[
v2

s

ρ0
− 4πG

k2

]
ρ1k + iv2

A B̂0 × (k × b1) = 0, (25b)

ḃ1 + i B̂0(k · v1) − i(B̂0 · k)v1 = 0, (25c)

where we have already eliminated Φ1 by means of the Poisson
equation in k-space, i.e., k2Φ1 = −4πGρ1. It is understood that
the constraint k · b1 = 0 always hold.
Decomposing now v1 in its components v‖
1 and v⊥

1 parallel and

orthogonal to the direction of q respectively, i.e., v1 = v‖
1q̂ + v⊥

1
(where v⊥

1 · q̂ = 0), and introducing the following scalar vari-
ables:

δ ≡ ρ1/ρ0, θ ≡ i(k · v1) = ikv‖
1, (26a)

b̄ ≡ (b1 · B̂0), v̄ ≡ ik
(

v⊥
1 · B̂0

)
, (26b)

we finally get a further simplified system:

δ̇ + θ = 0, (27a)

θ̇ + 2Hθ − ω2
0δ − ω2

Ab̄ = 0, (27b)

˙̄b + (
1 − μ2)θ − μv̄ = 0, (27c)

˙̄v + 2H v̄ + μω2
Ab̄ = 0, (27d)

where we have defined

μ ≡ B̂0 · q̂, ω2
A ≡ v2

Ak2, ω2
0 ≡ v2

s k2 − 4πGρ0, (28)

and, of course, 0 �μ� 1. We stress that ω2
0 is not positive definite.

5. Evolution of the density contrast and conditions for collapse

The form (27) of the evolution equations has the advantage that
it clearly expresses the relationship between the physical quan-
tities involved, other that being very well suited for numerical
integration. Some further analytical insight can however be gained
by reducing it to an unique higher-order equation for the vari-
able δ(t).

Considering the case of a matter-dominated Universe, and us-
ing the explicit time dependence of the quantities involved in the
model in that case, i.e., Eqs. (22), with some algebra one can derive
the following fourth-order differential equation for δ(t):

9t4δ(4) + 60t3δ(3) + [
9Λ2 + 76 + 9Λ1t−2ν

]
t2δ(2)

+ [
(12Λ2 + 8) + 12Λ1(1 − 3ν)t−2ν

]
tδ(1)

+ [−6Λ2μ
2 + 3Λ1

(
3Λ2μ

2 + 12ν2 − 2ν
)
t−2ν

]
δ = 0, (29)

where δ(�) denotes the �th derivative of δ with respect to time,
and we have defined the following constants:

ν ≡ γ − 4/3, Λ1 = v2
s k2t2γ −2/3, Λ2 = ω2

At2. (30)

We recall that γ is the specific-heat ratio (P ∼ ργ ) and that γ �
4/3, i.e., ν � 0.

The most general solution of Eq. (29) for δ is found to be the
superposition of four independent solutions δi (i = 1, . . . ,4), given
by:

δi = Ait
xi

2F3

[
(a1i,a2i); (b1i,b2i,b3i);−Λ1t−2ν

4ν2

]
, (31)

where pFq[(a1, . . . ,ap); (b1, . . . ,bq); z] denotes the generalized hy-
pergeometric function of argument z, the Ai ’s are arbitrary integra-
tion constants and

x1 = (−1 + √
Δ−)/6, x2 = (−1 − √

Δ−)/6, (32a)

x3 = (−1 + √
Δ+)/6, x4 = (−1 − √

Δ+)/6, (32b)

Δ± = 13 − 18Λ2 ± 6
√

(3Λ2 − 2)2 + 24μ2Λ2. (32c)

The constant coefficients a and b depend, in general, on ν , Λ2, μ
and we report their complete expressions in Appendix A.
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We are now interested in discussing the asymptotic behav-
ior of the hypergeometric functions in the limit of very small
or very large argument, i.e., Λ1/4ν2t2ν � 1 or 	 1. As in the
non-magnetic case discussed in Ref. [25], we restrict the analy-
sis to the range 0 � ν � 1/3, i.e., treating the standard regime
4/3 � γ � 5/3.

From the asymptotic expansion of the F functions in the case
of large argument, i.e., Λ1/4ν2t2ν � 1, the density contrast always
shows a damped oscillating behavior with time. In fact, in this
regime it always exists at least one asymptotic solution propor-
tional to positive power of the argument Λ1/4ν2t2ν , which results
to be the leading term of the solution superposition. In this case,
δ decreases with time.

On the other hand, in the limit Λ1/4ν2t2ν → 0, the asymptotic
expansion of the solutions (31), can be written as

δi ∼ txi +O
(
Λ1/4ν2t2ν

)
. (33)

In order for the gravitational collapse to occur, at least one of the
modes has to be growing, i.e., xi > 0. It is fairly easy to show that
x1, x2 and x4 are always negative, whereas the sign of x3 depends
on μ and Λ2. In particular, when μ �= 0, we obtain x3 > 0 irre-
gardless of the value of Λ2, while when μ = 0, x3 is positive if
Λ2 < 2/3. This means that, on the plane orthogonal to the mag-
netic field (μ = 0), a new stability condition arise if the magnetic
field is strong enough.

The threshold value related to Λ1 that should discriminates the
two regimes of growing and decreasing density contrast can be set
as Λ1 = 1 [25]. Remembering that ρ0 = 1/6πGt2, such condition
rewrites in terms of the wave number as

k ≷ k J ≡
√

24πGν2ρ0

v2
s

, (34)

which is substantially the same as the usual Jeans condition for
gravitational instability. In fact, in the non-magnetic case (to which
our analysis reduces for ωA = 0), this is the only criterion that
separates the growing and the decaying modes [25].

In a similar way, the new threshold Λ2 = 2/3 yields to the fol-
lowing condition

k ≷ kA ≡
√

4πGρ0

v2
A

=
√

16π2Gρ2
0

B2
0

. (35)

Summarizing, we find that the presence of a background mag-
netic field introduces an anisotropy in the stability criterion. While
outside the plane orthogonal to B0, the stability of the perturba-
tions is dictated only by the standard Jeans condition k ≷ k J , on
that plane the unstable modes are those for which the conditions
k < k J and k < kA both hold.4 In other words, if kA < k J (basically
equivalent to v A > vs), there are Jeans-unstable modes (those in
the window kA < k < k J ) that, in the orthogonal plane, are sta-
bilized by the magnetic pressure. The window of stable modes
gets wider for larger values of the ambient magnetic field, as ex-
pected. We underline that these results are qualitatively the same
as those obtained for a static and uniform background [35]. A sim-
ilar analysis was carried on by the authors of Ref. [17] obtaining
a similar results. However, their derivation contained a mistake
when separating the real and imaginary components of the evo-
lution equations [25]. For this reason they find a second-order

4 It is easy to verify how the physical meaning of the condition is that the

timescale for gravitational collapse τc ∼ L/vc ∼ √
L3/GM ∼ √

1/Gρ0 is much
shorter than both the acoustic and Alfvén timescales τs ∼ L/vs ∼ 1/kvs and τA ∼
L/v A ∼ 1/kv A .
differential equation instead than the fourth-order one discussed
here.

6. Numerical analysis

In the previous section, we have gained an important insight on
the effect of a background magnetic field on the evolution of den-
sity perturbations. We now show some results obtained through
the direct numerical integration of the differential system (27).

6.1. Preliminaries

We will focus on the period of the cosmological evolution that
goes from the onset of matter domination (z � 3000) to the time
of reionization (z � 10). We start from matter domination because,
before that time, the growth of density perturbation was slowed
down and practically frozen by the rapid expansion of the Uni-
verse. In the matter-dominated Universe, a ∝ t2/3 and H = 2/3t .
We can ignore the presence of a dark energy component since this
is sub-dominant until very recent times. The time period that we
consider can be divided into two distinct phases, i.e., before and
after the recombination of hydrogen occurring at zrec = 1100. Be-
fore recombination, the baryons are completely ionized and they
are tightly coupled to photons, at least at scales larger than the
comoving photon mean free path λγ � 1.8[(1 + z)/(1 + zrec)]−2.
At these scales, the total pressure of the fluid is given by radiation
pressure. After recombination, most of the protons and electrons
are in the form of neutral hydrogen atoms, leaving a small ion-
ized fraction xe � 2.5 × 10−4. At the scales of interest, the neutral
and ionized components are tightly coupled by collisions (see Sec-
tion 2.2) and can be treated as a single fluid. However, photons are
now free streaming so that the baryon pressure is given just by ki-
netic pressure, dropping down by several orders of magnitude with
respect to its pre-recombination value.

In view of this, we take the speed of sound of the cosmological
fluid before and after recombination to be [25]

v2
s

∣∣
z>zrec

= 1

3

kB Tbσ

mp + kB Tbσ
, v2

s

∣∣
z<zrec

= 5

3

kB Tb

mp
, (36)

respectively, where σ = 4aSBT 3/3nbkB � 1.5 × 109 is the specific
entropy. We recall that Tb = Tγ = Tγ |z=0(1 + z) for z > 100, while
afterwards Tb ∝ (1+ z)2. The expression above for the sound speed
is rigorously valid only for scales corresponding to baryonic masses
� 1011M� , that stay above the photon mean free path until the
time of recombination. At smaller scales, baryons lose the radia-
tion support before recombination, roughly when the given scale
goes below the photon mean free path, and it is at this time that
the switch between the two expressions in Eq. (36) should take
place. In the following, we shall consider masses nearly as small
as 108M� , for which the photon decoupling effectively takes place
at z � 3000 (very close to the time of matter–radiation equality).
However, we choose to switch between the two expressions for
the sound speed at z = zrec irregardless of scale and shall com-
ment later on how we expect this choice to affect our results.

Following the discussion in Section 2.2, the Alfvén velocity is
taken to be

v A =
√

B2
0

4πρb
, (37)

where ρb should always be intended as the total baryon density,
both before and after recombination.

A plot of the Alfvén and sound speeds as functions of redshift is
shown in the upper panel of Fig. 2. The sudden drop in the sound
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Fig. 2. Top panel: Alfvén (red solid line) and sound (blue dashed line) speed as func-
tions of redshift, for B0(z = 0) = 10−9 G. The discontinuity at z = 1100 corresponds
to the recombination on neutral hydrogen. Bottom panel: magnetic (red solid line)
and standard (blue dashed line) Jeans mass as a function of redshift. The mass con-
tained inside the Hubble radius (black dotted line) is also shown for comparison.
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this Letter.)

speed at recombination is due to the sharp decrease of baryon
pressure after photon decoupling.

In a detailed model, the presence of different uncoupled com-
ponents making up the matter content of the Universe should
be taken into account. In fact, most of the matter (∼ 80%) is in
the form of cold dark matter (CDM), interacting with the baryon-
photon fluid only through the gravitational force. Thus, a proper
treatment should rely on a two-fluid description. In the follow-
ing, we shall ignore perturbations in the CDM component, however
we argue that we can still draw meaningful conclusions about
the perturbations in the baryonic component. In fact, in the pre-
recombination era, the large radiation pressure prevents baryons
to fall into the potential wells created by CDM; this is known to
be true in the non-magnetic case but we expect it to hold also in
the case under consideration since, as seen in the last section, the
magnetic field only acts to increase stability. Thus in this regime
the CDM and baryon perturbations are effectively decoupled. Af-
ter recombination, the baryon density perturbations will take some
time to catch up with those in the CDM component and we expect
our treatment will rigorously remain valid for some time.

Before showing the results of the numerical integration, we il-
lustrate in the lower panel Fig. 2 the evolution of the standard
Jeans wavenumber (34) and of its “magnetic” counterpart (35). In
order to take out the change in k J and kA due to the expansion,
we follow the convention to express the results in terms of the
mass contained inside the corresponding length scales 1/k J ,A . In
particular, we consider the total baryonic mass (irrespective of the
ionization state), contained inside a sphere of radius 2π/k J ,A . It
can be seen that the window of modes that are made stable by the
magnetic field, i.e., those between the red dashed and the black
solid line, spans, right after recombination, five orders of magni-
tude in mass.

As noted in the introduction, the existence of a magnetic Jeans
length has been studied previously and all expressions for the crit-
ical wavenumber agree, apart from numerical factors, with expres-
sion (35). However, the numerical estimates of this and associated
quantities that are found in the literature sometimes differ from
our results. The reason seems to be that often the density ρ0
that appears in Eq. (35) is taken to be the present critical density
ρc � 9 × 10−27 kg m−3. This yields at the present time a mag-
netic Jeans length λA ∼ 1/kA ∼ 10 kpc for B0(z = 0) = 10−9 G
and λA ∼ 1 Mpc for 10−7G.5 Using instead the baryon density for
ρ0 will yield values of λA a factor ρc/ρb = Ω−1

b � 20 larger, i.e.,
λA ∼ 0.2(20) Mpc for B0(z = 0) = 10−9 (10−7) G. This amounts to
a factor 203 � 104 difference in the corresponding mass scale.6

6.2. Results

We now discuss the results of the direct numerical integration
of Eqs. (27). The initial conditions for the integration have been
chosen using the fact that power-law solutions for δ can be found
in the limit t → 0. There are four distinct solutions of this kind,
but only one corresponds to a growing mode. We have matched
the initial conditions to the asymptotic growing solution at the
initial time of integration. The latter has been chosen so that all
the modes of interest were outside the horizon at that time. Even
if the initial time falls in what would be the radiation-dominated
era, nevertheless we always consider a matter-dominated Universe.
All results have been normalized to the initial value of the density
contrast.

In Fig. 3, we show the evolution of the density contrast for
three different wavenumbers k = (17,1.7,0.36) Mpc−1 (normal-
ized at the present time), i.e., for the following baryonic masses
M = (1.7 × 108,1.7 × 1011,1.7 × 1013)M� . These masses roughly
correspond to the scale of a dwarf galaxy, of a galaxy and of a
galaxy cluster respectively. For each mode, we show the evolu-
tion in both the direction parallel to the background magnetic field
(μ = 1) and orthogonally to that direction (μ = 0). In all cases, the
perturbation is initially growing but then starts to oscillate once
the Jeans mass (that is growing) becomes larger than the mass of
the perturbation. This happens earlier for smaller scales. In this
phase the magnetic pressure does not play any role, as the much
larger radiation pressure is actually providing the force that pre-
vents the collapse. In fact, there is no difference in the evolution
parallel and orthogonal to the field, as the radiation pressure is
isotropic. The situation changes dramatically after recombination,
when the baryon pressure drops and only the magnetic pressure

5 The latter value has also been said to be of the order of the scale of a galaxy
cluster, while in effect it is closer to the scale of a galaxy, as it can be seen by
the fact that the mass enclosed inside a sphere of 1 Mpc radius at the critical den-
sity is ∼ 1011 M� . The reason why a galaxy is much smaller than 1 Mpc is that it
has detached from the Hubble flow and undergone non-linear evolution, so that its
density is much larger than the cosmological average [33].

6 The discussion so far has ignored the gravitational action of dark matter; this
can be roughly taken into account by using the total matter density ρm at the nu-
merator of Eq. (35), while keeping the same expression for v A . This makes the value
of λA roughly twice smaller than in the case in which only baryons are considered,
i.e., λA ∼ 0.1(10) Mpc for B0(z = 0) = 10−9(10−7) G.
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Fig. 3. Evolution of the dimensionless density perturbation δ with redshift, for B0(z = 0) = 10−9 G. The three panels show three different mass scales roughly corresponding,
from left to right, to the dwarf galaxy, galaxy, and cluster scales. In each panel, we show the evolution of perturbations orthogonal (red solid line) and parallel (blue dashed
line) to the background magnetic field. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 4. Equal density contours of an initially spherically symmetric Gaussian perturbation at the scale of a dwarf galaxy in the x–y plane, at different times. The contours
correspond to (0.1,0.2, . . . ,0.9) times the central density. The background magnetic field is directed along the y axis and B0(z = 0) = 10−9 G.
can possibly oppose the growth, at least in the plane orthogonal
to the field. Thus, perturbations in the direction of the field can
grow unhindered, while the perturbations that are orthogonal can
be stabilized. As it can be seen from Fig. 3, this is what happens
for perturbations at the dwarf galaxy scale: at z = 10, the relative
growth of parallel perturbations with respect to orthogonal ones
is of order 100. For perturbations at the galactic scale and larger,
instead, the evolution is basically the same in all directions. This
can be understood by looking at the lower panel of Fig. 2, from
which it is clear that the pressure induced by a magnetic field of
10−9 G can only stabilize perturbations with mass � 1010 M� .

We recall that we have neglected the fact that, at the dwarf
galaxy scale, the support of radiation pressure is not lost at re-
combination but some time before (see previous subsection). From
the discussion above, it is clear that, had we taken into account
this fact, the evolution of orthogonal and parallel perturbations
would have begun to differentiate earlier. This goes in the direc-
tion of enhancing the anisotropic growth of perturbation and the
“squeezing” effect studied in the following.

The fact that, after recombination, the evolution of the density
contrast in the presence of a magnetic field changes for different
directions leads to the reasonable expectation that some degree of
anisotropy will be generated even in initially symmetric structures.
In order to show this, we consider a Gaussian density fluctuation
with standard deviation σ in coordinate space at recombination:

δ(x, trec) = δ(x = 0, trec)e
− |x|2

2σ2 , (38)
where the x are comoving coordinates centered at the maxi-
mum of the perturbation. After Fourier-transforming, we sepa-
rately evolve the different harmonics in momentum space using
Eqs. (27) and we finally transform back to obtain the perturba-
tion in coordinate space at a later time. In Fig. 4 we show, for
a background magnetic field directed along the y axis and with
a present intensity of 1 nG, the evolution of a perturbation with
σ = 0.05 kpc at recombination (so that the 3σ region encloses a
mass M � 1.5 × 108 M� at the mean baryonic density, i.e., roughly
the mass of a dwarf galaxy). In particular, we show equal density
contours at z = 1000,100 and 10. It is evident from the figure how
the perturbation becomes progressively squeezed along the direc-
tion orthogonal to the magnetic field.

In order to quantify the anisotropy in the perturbation, we con-
sider the isodensity contour corresponding to half the value at the
peak and calculate its eccentricity ε = √

1 − b2/a2, where a and b
are the lengths of the semi-major and semi-minor axis of the con-
tour, respectively. In Fig. 5, we show how the eccentricity changes
with redshift; for the parameters used above, we get ε � 0.7 at
z = 10.

7. Conclusions

We have studied the effect of a background magnetic field
on the linear evolution of cosmological density perturbations at
scales well below the Hubble length, where a Newtonian treat-
ment can be used, focusing on the matter-dominated era. The
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Fig. 5. Left panel: Eccentricity ε of a Gaussian perturbation at the scale of a dwarf galaxy as a function of redshift. The background magnetic field increases by a factor 10
with each curve, starting from B0(z = 0) = 10−11 G (bottom curve) up to B0 = 10−8 G (top curve). Right panel: the same as the left panel, but for a perturbation at the
galactic scale.
conditions that allow for the growth of small density perturba-
tions have been clearly stated. In particular, we have found that
in the plane orthogonal to the ambient magnetic field, a new
critical length appears, related to the presence of the magnetic
pressure, while everywhere else outside that plane the stability
is dictated by the standard Jeans criterion. This is also confirmed
through a direct numerical integration of the relevant MHD equa-
tions during the matter-dominated era, and this effect is shown
to be possibly important after recombination, when the magnetic
pressure of baryons is much larger than their the kinetic pressure.
Finally, it has been shown how the dependence of the critical scale
on the angle between the perturbation wavevector and the mag-
netic field could lead to a sizable anisotropy in the perturbations
at sub-galactic scales at the onset of non-linearity.

Our analysis has relied on some approximations: in particular,
we have ignored the gravitational effects of dark matter perturba-
tions. We have argued that this approximation limit the validity of
our treatment to some time after recombination. We defer a more
detailed and fully general relativistic analysis, also taking into ac-
count the different fluid components, to a future work.
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Appendix A. Hypergeometric coefficients

In following, we write the complete form of the coefficients of
the hypergeometric function of Eq. (31). They read:

a1(1
2) = 1 ∓ √

Δ−/12ν −
√

1 − 36μ2Λ2/12ν, (A.1a)

a1(3 ) = 1 ∓ √
Δ+/12ν −

√
1 − 36μ2Λ2/12ν, (A.1b)
4

a2(1
2) = 1 ∓ √

Δ−/12ν +
√

1 − 36μ2Λ2/12ν, (A.1c)

a2(3
4) = 1 ∓ √

Δ+/12ν +
√

1 − 36μ2Λ2/12ν, (A.1d)

and

b1(1
2) = 1 ∓ √

Δ−/6ν, (A.2a)

b2(1
2) = 1 ∓ √

Δ−/12ν − √
Δ+/12ν, (A.2b)

b3(1
2) = 1 ∓ √

Δ−/12ν + √
Δ+/12ν, (A.2c)

b1(3) = 1 − √
Δ+/6ν, (A.2d)

b2(3) = 1 − √
Δ−/12ν − √

Δ+/12ν, (A.2e)

b3(3) = 1 + √
Δ−/12ν − √

Δ+/12ν, (A.2f)

b1(4) = 1 − √
Δ−/12ν + √

Δ+/12ν, (A.2g)

b2(4) = 1 + √
Δ−/12ν + √

Δ+/12ν, (A.2h)

b3(4) = 1 + √
Δ+/6ν. (A.2i)
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