On polynomial-time Turing and many–one completeness in PSPACE*

Osamu Watanabe
Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

Shouwen Tang
Beijing Computer Institute, Beijing 100044, People's Republic of China

Communicated by J. Diaz
Received May 1990
Revised June 1990

Abstract

Meyer and Paterson (1979) investigated \leq^p_m-reducibility of PSPACE-complete sets to sparse sets. We point out that their observation indicates the difference between the powers of \leq^p_T and \leq^p_m-reducibilities, and establish a machinery that uses this difference for separating \leq^p_T-completeness from \leq^p_m-completeness in PSPACE. By using this machinery, we show the difference between \leq^p_T- and \leq^p_m-completeness notions in PSPACE from each of the following assumptions, (i) a randomized completeness notion differs from a deterministic one in PSPACE, and (ii) PSPACE has a “dense” set, almost every element of which is “hard” to produce by any polynomial-time computation.

1. Introduction

The notion of completeness describes the idea of being most intractable in a given complexity class. For example, a set is called NP-complete in general if every set in NP is polynomial-time deterministically reducible to the set and the set itself is in NP. Cook [7] formalized this notion considering polynomial-time Turing reductions (\leq^T_T-reductions), reductions via polynomial-time deterministic oracle Turing machines. He

* A part of this research was performed while the authors were visiting the Department of Mathematics, University of California, Santa Barbara, and was supported in part by the National Science Foundation under grants CCR-8611980.
showed that SAT is NP-complete by \leq^p_T-reductions. Karp [11] pointed out that the NP-completeness of SAT is provable by using much simpler reductions, i.e. polynomial-time many-one reductions (\leq^p_m)-reductions, reductions via polynomial-time deterministically computable functions. Since then, we have been able to prove all the NP-completeness results by using only \leq^p_m-reductions. This fact leads us to ask whether \leq^p_T-reducibility provides a stronger completeness notion than \leq^p_m-reducibility. This question is investigated in this paper.

It is known that \leq^p_T-completeness indeed differs from \leq^p_m-completeness in higher complexity classes such as E [13, 22] and NE [21] (where $E \equiv \bigcup_{c>0} \text{DTIME}(2^{cn})$ and $\text{NE} \equiv \bigcup_{c>0} \text{NTIME}(2^{cn})$). It is shown [14] that Turing reductions are polynomially faster than many-one reductions in the class of \leq^p_m-complete sets in NP. Nevertheless, nothing, except trivial observations, has been reported concerning the difference between polynomial-time Turing and many-one completeness in polynomial complexity classes. For example, we know by definition that if $\text{NP} \neq \Delta^p_2$, then SAT is \leq^p_T-complete but not \leq^p_m-complete in Δ^p_2. On the other hand, we know no such results for NP, Σ^p_1 and PSPACE. Here we investigate the difference in PSPACE.

We consider two assumptions of different sorts, from each of which we prove the difference between \leq^p_T- and \leq^p_m-completeness in PSPACE. In this paper, the separation will mean the separation of \leq^p_T-completeness from \leq^p_m-completeness in PSPACE. Although we often omit “polynomial-time”, all the reductions, reducibilities and completeness notions discussed in this paper should be regarded as polynomial-time.

The first separation result is proved from an assumption concerning the difference between randomized and deterministic completeness notions.

Adleman and Manders [1] introduced one notion of “polynomial-time randomized reducibility”, and showed that a problem not known to be NP-complete under deterministic reducibility is complete under this reducibility. (Some other examples have been reported in [2, 20, 19].) Here we ask whether the difference between randomized and deterministic completeness implies the difference between \leq^p_T- and \leq^p_m-completeness, and present an affirmative answer in PSPACE. That is, we show that the difference between \leq^p_{BPP}- and \leq^p_m-completeness in PSPACE implies the separation. Note that \leq^p_{BPP}-reducibility is the most general randomized reducibility and that \leq^p_m-reducibility is the most restrictive deterministic reducibility. Hence, our result shows that we have the separation from any other type of difference between polynomial-time randomized and deterministic completeness in PSPACE.

The second separation result is shown from an assumption concerning the existence of a dense set in PSPACE whose elements are hard to produce.

In order to measure density of a given set, we introduce the concept of length-density. A set is called length-dense if for some polynomial p and all $n > 0$, it has at least one element x such that $n \leq |x| \leq p(n)$. We use the generalized Kolmogorov complexity [10] for measuring hardness of producing a given string. We consider the following condition (K) (see Section 4 for the precise statement): there exists a length-dense set in
Polynomial-time completeness in \textit{PSPACE}

most every element of which has "high" generalized Kolmogorov complexity. We show that (K) implies the separation.

Although condition (K) is rather technical, we will see that it has an interesting interpretation, which yields its sufficient conditions. We show that condition (K) is closely related to notions concerning "almost everywhere complexity" for "problems of computing function values". For "decision problems", the concept of \textit{polynomial complexity core} has been used to study almost everywhere complexity (see e.g. [6]). We generalize this concept for "problems of computing function values"; that is, we introduce the \textit{polynomially hard domain}, which corresponds to the polynomial complexity core, in order to discuss almost everywhere complexity of computing functions. It is shown that (K) is equivalent to the existence of a polynomial space computable function whose output length is polynomially bounded and that has a length-dense polynomially hard domain in \textit{PSPACE}. From this interpretation, we can prove that each of the following two conditions implies (K): (i) \text{DTIME}(t) \subseteq \text{PSPACE} for some super-polynomial running time \(t\), and (ii) there exists a one-way function that satisfies "desired" requirements for cryptosystems (see Section 4.3 for the precise statement). Thus, each of these two conditions also implies the separation.

Sparse sets have received considerable attention in structural complexity theory; in particular, several observations have been reported concerning polynomial-time reducibility to sparse sets [16, 17, 23]. We use one such observation for proving our separation results. Let \(U\) be any \(\leq_{m}^{p}\) complete set in \textit{PSPACE}. Meyer and Paterson [17] proved that for every sparse set \(S\), \(U \leq_{m}^{P} S\) implies \(U \in P\). A relativized version of their argument proves that for every set \(C\) and sparse set \(S\), \(U \leq_{m}^{P} C \oplus S\) implies \(U \leq_{m}^{P} C\). This indicates the difference between the power of \(\leq_{m}^{P}\)- and \(\leq_{m}^{p}\)-reducibilities; that is, an easily separable sparse part (i.e. \(S\)) of a \(\leq_{m}^{p}\)-complete set (i.e. \(C \oplus S\)) can be deleted when \(\leq_{m}^{P}\)-reductions are used in place of \(\leq_{m}^{p}\)-reductions. Indeed, from this observation, we have the following key lemma:

Key Lemma. If there exists a set \(C\) in \textit{PSPACE} and a sparse set \(S\) in \textit{PSPACE} such that \(U \leq_{m}^{P} C\) and \(U \leq_{m}^{P} C \oplus S\), then \(\leq_{m}^{P}\)-completeness differs from \(\leq_{m}^{p}\)-completeness in \textit{PSPACE}.

We show that each assumption stated above yields \(C\) and \(S\) satisfying this lemma.

2. Preliminaries

In this paper we use the alphabet \(\Sigma = \{0, 1\}\). By a \textit{language} we mean a subset of \(\Sigma^{*}\). Nonnegative integers are embedded into \(\Sigma^{*}\) by a binary encoding. We denote by \(|x|\) the length of a string \(x\), and by \(|X|\) the cardinality of \(X\). Let \(A \subseteq_{m}^{n}\), \(A =_{m}^{n}\) and \(A \subseteq_{m}^{*}\) denote \(\{x \in A : |x| \leq n\}\), \(\{x \in A : |x| = n\}\) and \(\{x \in A : |x| \leq m\}\), respectively. For any sets \(A\) and \(B\), \(A \oplus B\) is defined as \(\{0x, 1y : x \in A, y \in B\}\). We use \(A^{c}\) to denote the complement
of A, i.e. $\Sigma^* - A$. We consider a standard one-to-one pairing function from $\Sigma^* \times \Sigma^*$ to Σ^*; for inputs x and y, we denote the output of the pairing function by $\langle x, y \rangle$. Without loss of generality, we can assume that our pairing function is polynomial-time invertible and that for some constant c_0, $\forall x, y \left[|\langle x, y \rangle| \leq c_0(|x| + |y|) \right]$. A measure function is a total function from nonnegative integers to nonnegative integers. In what follows, by a function we mean a (not necessarily total) function from Σ^* to Σ^* unless otherwise indicated. We use $\text{Dom}(f)$ to denote the domain of a function f.

We follow standard definitions and notations of computational complexity theory (see e.g. [5]). Out computational model is the standard multitape Turing machine acceptor and transducer. An acceptor is deterministic, nondeterministic, or randomized (i.e. probabilistic with bounded error probability); on the other hand, a transducer is always deterministic. An acceptor is denoted by M, and a transducer is denoted by N. Let $L(M)$ denote the set of strings accepted by M. For any string x, we say that N on x yields an output y if N on input x enters an accepting state with y on its output tape. We use N to denote the function computed by N; that is, for every x, $N(x)$ is the output that N yields on input x. Note that $N(x)$ is undefined if N on x never enters an accepting state. A function f is called polynomial-time computable (polynomial-space computable) if f is computed by some polynomial-time bounded (polynomial-space bounded) transducer N. The above definitions are relativized in a usual way. Let $L(M, A)$ denote the set of strings accepted by an oracle machine M relative to A. For any set A, let $P(A)$ denote the class of languages accepted by polynomial-time bounded deterministic oracle machines relative to A; $\text{NP}(A)$ and $\text{BPP}(A)$ are defined similarly.

Definition 2.1. Let A and B be any sets of strings.

1. A is \leq_P^m-reducible to B ($A \leq^m_P B$) if there exists a polynomial-time computable total function f such that $x \in A$ iff $f(x) \in B$.
2. A is \leq^{F}_P-reducible to B ($A \leq^{\text{F}}_P B$) if $A \in \text{P}(B)$.
3. A is \leq^{FPP}_P-reducible to B ($A \leq^{\text{FPP}}_P B$) if $A \in \text{BPP}(B)$.

Remark. We also use a relativized version of (1). For any sets A, B, and C, A is $\leq^{\text{P(C)}}_m$-reducible to B ($A \leq^{\text{P(C)}}_m B$) if there exists a total function f, which is polynomial-time computable relative to C, such that $x \in A$ iff $f(x) \in B$.

In order to simplify statements, we will abuse the notation of reducibilities in the following way: for any class of languages \mathcal{C} and any reduction type \leq^p, we write $\mathcal{C} \leq^p_A$ if every set in \mathcal{C} is \leq^p_A-reducible to A. A set A is called \leq^p-hard for \mathcal{C} if $\mathcal{C} \leq^p_A$, and B is called \leq^p-complete in \mathcal{C} if B is \leq^p-hard for \mathcal{C} and $B \in \mathcal{C}$.

For any $n \geq 0$, let $\text{first}(A; n)$ denote the smallest element of A of length n by the lexicographic ordering. Note that $\text{first}(A; n)$ is undefined if A has no element of length
n. We define a prefix set of A, $Pref(A)$, and a first set of A, $First(A)$, as follows:

$$
Pref(A) = \{ \langle 0^n, w \rangle : w \text{ is a prefix of some } x \in A = \phi \}; \text{ and }
$$

$$
First(A) = \{ \text{first}(A; n) : n \geq 0 \}.
$$

We often consider a set $Pref(First(A))$ because, for each n, one can easily produce one element of A^n (if it exists) relative to $Pref(First(A))$. That is, there is an oracle transducer that produces, for a given 0^n, the first element of A^n within polynomial time relative to $Pref(First(A))$.

In order to simplify statements, we use the following abbreviations: for any set A and any predicate R,

$$
\forall^* x \in A[R(x)] \iff [R(x) \text{ for all but finitely many elements in } A]; \text{ and }
$$

$$
\exists^* x \in A[R(x)] \iff [R(x) \text{ for infinitely many elements in } A].
$$

3. Key lemma and the first separation result

In this section we establish a machinery for proving the separation, i.e. the difference between \leq_F- and \leq_L-completeness in PSPACE. Then we prove the first main result: we show that the difference between \leq_F^{pp}- and \leq_L-completeness implies the separation.

We first recall the following well-known properties of PSPACE.

Proposition 3.1.

(1) PSPACE is closed under complementation. That is, for any set $A \in \text{PSPACE}$, $A^c \in \text{PSPACE}$.

(2) PSPACE is closed under NP()-operation. That is, for any set $A \in \text{PSPACE}$, $\text{NP}(A) \subseteq \text{PSPACE}$.

(3) There is a self-reducible \leq_L-complete set in PSPACE (see e.g. [12, 17]).

We will see that the following theorem provides a useful tool – Lemma 3.4 – for distinguishing \leq_F^{pp}-completeness from \leq_L-completeness.

Theorem 3.2 (A relativized version of the theorem by Meyer and Paterson [17]). Let A be any self-reducible set. For any sparse set S and any set B, if $A \leq^{(B)}_m S$ and $A^c \leq^{(B)}_m S$, then $A \in \text{P}(B)$.

Proof. Meyer and Paterson [17, Theorem 3] proved that for every self-reducible set L, if both L and L^c are \leq_m-reducible to some sparse set, then L is in P. It is easy to see
that their proof can be relativized as stated in the theorem. The detail is left to the
interested reader. □

Corollary 3.3. For any sparse set \(S \) and any set \(C \), if \(\text{PSPACE} \leq_m^p C \oplus S \), then \(\text{PSPACE} \leq^p C \).

Proof. We use the properties stated in Proposition 3.1. Let \(A \) be a self-reducible \(\leq^p_m \)-complete set in \(\text{PSPACE} \). Since both \(A \) and \(\overline{A} \) are in \(\text{PSPACE} \), they are \(\leq^p_m \)-reducible to \(C \oplus S \); thus, \(A, \overline{A} \leq^p_m(C)S \). (Here we are assuming without loss of generality that \(S \) is nonempty.) Then Theorem 3.2 shows that \(A \in \text{PSPACE} \), i.e. \(A \leq^p C \). □

This corollary suggests the difference between the power of \(\leq^p_1 \) and \(\leq^p_m \)-reducibilities; that is, an easily separable sparse part (i.e. \(S \)) of a \(\leq^p_m \)-complete set (i.e. \(C \oplus S \)) can be deleted while a \(\leq^p_m \)-reduction is replaced with a \(\leq^p_1 \)-reduction. Our key lemma, stated below, makes use of this difference.

Lemma 3.4. Suppose that there exists a set \(C \) and a sparse set \(S \) such that

(i) both \(C \) and \(S \) are in \(\text{PSPACE} \);

(ii) \(C \) is not \(\leq^p_m \)-hard for \(\text{PSPACE} \); and

(iii) \(C \oplus S \) is \(\leq^p_1 \)-hard for \(\text{PSPACE} \).

Then there exists a \(\leq^p_1 \)-complete set in \(\text{PSPACE} \) that is not \(\leq^p_m \)-complete in \(\text{PSPACE} \).

Proof. Let \(C \) and \(S \) be sets satisfying (i) (iii). Suppose that \(C \) is \(\leq^p_1 \)-hard for \(\text{PSPACE} \); then we are done since it is clear that \(C \) satisfies our purpose. Now suppose that \(C \) is not \(\leq^p_1 \)-hard for \(\text{PSPACE} \). We show that \(C \oplus S \) is the desired set. Note that \(C \oplus S \) is \(\leq^p_1 \)-complete in \(\text{PSPACE} \) [from (i) and (iii)]. On the other hand, if \(C \oplus S \) is \(\leq^p_m \)-hard for \(\text{PSPACE} \), then it follows from Corollary 3.3 that \(C \) is \(\leq^p_1 \)-hard for \(\text{PSPACE} \); a contradiction. Hence, \(C \oplus S \) is not \(\leq^p_m \)-hard (so, not \(\leq^p_m \)-complete) for \(\text{PSPACE} \). □

Now we apply this lemma to obtain the first separation result.

As mentioned in Section 1, we have some candidates that may witness the difference between randomized and deterministic completeness notions. Thus, the question of interest is whether such difference between randomized and deterministic completeness implies the difference between \(\leq^p_1 \) and \(\leq^p_m \)-completeness. The following theorem provides an affirmative answer to this question in \(\text{PSPACE} \).

Theorem 3.5. Consider \(\text{PSPACE} \). Assume that there exists a \(\leq_{\text{BPP}} \)-complete set that is not \(\leq^p_m \)-complete. Then there exists a \(\leq^p_1 \)-complete set that is not \(\leq^p_m \)-complete.

Remark. Note that \(\leq^p_m \)-completeness is the strongest deterministic completeness and that \(\leq_{\text{BPP}} \)-completeness is the weakest randomized completeness. Thus, for example,
every set that is \(\leq_{T}^{P} \)-complete but not \(\leq_{m}^{P} \)-complete in PSPACE also witnesses the difference between \(\leq_{T}^{BPP} \) and \(\leq_{m}^{P} \)-completeness notions in PSPACE. [Here the \(\leq_{T}^{R} \)-reducibility is defined as follows: \(A \leq_{T}^{R} B \) if \(A \in R(B) \).] Therefore, the above theorem gives an affirmative answer to our question considering the most general case.

Proof. Let \(C \) be a set satisfying the assumption; namely, \(C \in \text{PSPACE}, \text{PSPACE} \leq_{T}^{BPP} C \) and \(\text{PSPACE} \nleq_{m}^{P} C \). In order to use Lemma 3.4, it suffices to show a sparse set \(S \) in \(\text{PSPACE} \) such that \(\text{PSPACE} \leq_{T}^{C \oplus S} \).

Let \(U \) be any \(\leq_{m}^{P} \)-complete set in \(\text{PSPACE} \). Clearly, \(U \in \text{BPP}(C) \) since \(U \in \text{PSPACE} \) and \(\text{PSPACE} \leq_{T}^{C} \). Hence, it follows from Lemma 3.6 that there exists a sparse set \(S \) in \(\text{PSPACE} \) such that \(U \in \text{P}(C \oplus S) \). Therefore, \(\text{PSPACE} \leq_{T}^{C \oplus S} \).

Lemma 3.6. Let \(A \) and \(B \) be any sets in \(\text{PSPACE} \) such that \(A \in \text{BPP}(B) \). Then there exists a sparse set \(S \) in \(\text{PSPACE} \) such that \(A \in \text{P}(B \oplus S) \).

Proof. It is well known (see e.g. [5]) that for every set \(L \) in \(\text{BPP} \), there exists a tally set \(T \) such that \(L \in \text{P}(T) \). Considering its relativization, we obtain that for every set \(L \) in \(\text{BPP}(B) \), there exists a tally set \(T \) such that \(L \in \text{P}(B \oplus T) \). Thus, there exists a tally set \(T \) such that \(A \in \text{P}(B \oplus T) \). Let \(M \) be a polynomial-time deterministic oracle machine such that \(A = L(M, B \oplus T) \). Let \(p_{M} \) be a polynomial time bound of \(M \), where we can assume that \(p_{M} \) is an increasing function. Note that \(M \) on input \(x \) does not query a string of length \(> p_{M}(\|x\|) \).

We consider the following encoding of tally sets over \(\{0, 1\}^{*} \). For any \(\tau \in \{0, 1\}^{*} \), let \(T_{\tau} \) denote the following tally set: \(T_{\tau} = \{0^{i} \in \{0, 1\}^{*} : \text{the } \tau \text{-th bit of } \tau \text{ is } 1\} \). Thus, for every tally set \(T \) and \(m \geq 0 \), there exists a string \(\tau \in \{0, 1\}^{*} \) that encodes \(T \in \{0, 1\}^{m} \), i.e. \(T_{\tau} = T \in \{0, 1\}^{m} \).

Since \(A = L(M, B \oplus T) \) for some tally set \(T \), we have

\[
(*) \quad \forall n \geq 0, \exists \tau \in \{0, 1\}^{p_{M}(n)}, \forall x \in \Xi^{*} [x \in A \iff x \in L(M, B \oplus T_{\tau})].
\]

Define \(W = \bigcup_{n \geq 0} \{ \tau \in \{0, 1\}^{p_{M}(n)} : \tau \text{ satisfies } (*) \text{ w.r.t. } n \} \). Note that both \(A \) and \(B \) are in \(\text{PSPACE} \); hence, it follows from Proposition 3.1 (1) and (2) that a polynomial space bounded machine can check \((*) \) for every \(\tau \). Thus, \(W \) is in \(\text{PSPACE} \).

Now define \(S = \text{Pref}(\text{First}(W)) \). Clearly, \(S \) is sparse, and it follows from Proposition 3.1 (1) and (2) that \(S \) is in \(\text{PSPACE} \). By a binary search relative to \(S \), one can easily produce a string \(\tau \) of length \(p_{M}(n) + 1 \) satisfying \((*) \). This proves that \(A \in \text{P}(B \oplus S) \).

4. The second separation result

In this section we show the separation, i.e. the difference between \(\leq_{T}^{P} \)- and \(\leq_{m}^{P} \)-completeness in \(\text{PSPACE} \), from an assumption concerning the existence of a “dense” set in \(\text{PSPACE} \) whose elements are “hard” to produce.
In order to measure the difficulty of producing a string, we use the concept of generalized Kolmogorov complexity [10]. Let \(N_u \) denote some standard universal Turing transducer that can simulate any universal Turing machine efficiently; more precisely, \(N_u \) is a machine that satisfies Fact 1 in [10]. For any measure functions \(\delta \) and \(t \), a generalized Kolmogorov complexity class \(K[\delta, t] \) is defined as follows:

\[
K[\delta, t] = \{ y : \exists x : |x| \leq \delta(|y|) \left[N_u \text{ on input } x \text{ yields } y \text{ within } t(|y|) \text{ steps} \right] \}.
\]

That is, \(K[\delta, t] \) is the set of strings \(y \) generated by \(N_u \) from a string of length \(\leq \delta(|y|) \) within \(t(|y|) \) steps.

Our assumption is stated precisely as the following condition (K):

(K) There exists a set \(X \) in \(\text{PSPACE} \) such that

(i) \(\exists d > 0, \forall p: \text{polynomial } \forall^* x \in X \left[x \notin K[n^d, p(n)] \right] \), and

(ii) \(\exists q: \text{polynomial}, \forall n \geq 0, \exists x [n \leq |x| \leq q(n) \land x \in X] \).

In the next section we prove the separation from this condition. The above two properties (i) and (ii) will be referred as (K-i) and (K-ii) in the later discussions.

Although condition (K) is stated in a rather technical way, we can explain its meaning and its possibility in a more intuitive way. In Section 4.2, we introduce the notion of “polynomially hard domain”, which is used to express the “almost everywhere hard part” for computing a given function. Then we show a close connection between (K) and the existence of a function with a polynomially hard domain. From this observation, condition (K) is restated as follows: there exists a polynomial-time–space computable honest function whose domain has a length-dense “hard part” (i.e. polynomially hard domain) that is \(\text{PSPACE} \) recognizable. In Section 4.3 we study the possibility that (K) holds, and show the following two sufficient conditions for (K):

(i) \(\text{DTIME}(t) \subseteq \text{PSPACE} \) for some super-polynomial running time \(t \), and

(ii) there exists a one-way function that satisfies “desired” requirements for cryptosystems.

4.1. Proof of the second separation result

We prove that condition (K) implies the separation. In the proof, we make use of the following two lemmas.

Lemma 4.1. Suppose that condition (K) holds. Then there exists a set \(Y \) such that

(i) \(Y \) is a sparse set in \(\text{PSPACE} \);

(ii) \(Y \) satisfies (K), and

(iii) \(\text{Pref}(Y) \) is in \(\text{PSPACE} \) – \(P \).

Proof. Let \(X \) be a set witnessing condition (K). Define \(Y = \text{First}(X) \); we show that \(Y \) is the desired set. It is clear that \(Y (= \text{First}(X)) \) inherits the property (K-i) and (K-ii) of \(X \); thus, \(Y \) satisfies (ii). From Proposition 3.1, we have that both \(Y \) and \(\text{Pref}(Y) \) are in \(\text{PSPACE} \). Now it suffices to prove that \(\text{Pref}(Y) \notin P \). Suppose otherwise; then it is easy
Polynomial-time completeness in PSPACE

207
to see that \(Y \subseteq K[d \log n + d, n^d + c] \) for some \(d > 0 \) and \(c > 0 \). (See also e.g. [4].) This contradicts the property (K-i) of \(Y \). \(\square \)

Lemma 4.2. Condition (K) implies that no \(\leq P_{m} \)-complete set in PSPACE is \(\leq P_{ct} \)-reducible to a sparse set.

Proof. By Lemma 4.1(iii), (K) implies \(P \neq \text{PSPACE} \). On the other hand, Ukkonen [18] proved that \(P \neq \text{PSPACE} \) implies that no \(\leq P_{m} \)-complete set in PSPACE is \(\leq P_{ct} \)-reducible to a sparse set. Thus, we have the lemma. \(\square \)

Theorem 4.3. Condition (K) implies that \(\leq P_{T} \)-completeness differs from \(\leq P_{m} \)-completeness in PSPACE.

Proof. Suppose that condition (K) holds. Then from Lemma 4.1, there is a sparse set \(Y \) in PSPACE having property (K-i) and (K-ii); let \(d \) and \(q \), respectively, be a constant and a polynomial witnessing that \(Y \) satisfies (K-i) and (K-ii).

Let \(U \) denote a standard \(\leq P_{m} \)-complete set in PSPACE. Define \(C \) by

\[
C = \{ \langle x, y \rangle : (i) m \leq |y| \leq q(m), \text{ where } m = 2|x|^{1/d}, \text{ and } (ii) x \in U \land y \in Y \}.
\]

(Note: The coefficient "2" used here is not essential. It can be any real number \(r > 1 \).) Then it is easy to show that \(C \) is in PSPACE. Note that for every \(x \), there is some \(y \), in \(Y \) such that \(m \leq |y| \leq q(m) \), where \(m = 2|x|^{1/d} \); thus, \(x \in U \iff \langle x, y \rangle \in C \). That is, if for each \(x \), one can find such \(y \), in polynomial time, then a standard complete set \(U \) is reducible to \(C \), which is possible if \(\text{Pref}(Y) \) is provided. Hence, \(C \oplus \text{Pref}(Y) \) is \(\leq P_{T} \)-hard (so \(\leq P_{T} \)-complete) for PSPACE.

Note that \(\text{Pref}(Y) \) is sparse since \(Y \) is sparse. Therefore, the theorem follows from the claim below and Lemma 3.4. \(\square \)

Claim. The set \(C \) is not \(\leq P_{m} \)-hard for PSPACE.

Proof. Assume to the contrary that \(C \) is \(\leq P_{m} \)-hard for PSPACE; then \(U \) is \(\leq P_{m} \)-reducible to \(C \). We will show that then \(U \) is \(\leq P_{ct} \)-reducible to the sparse set \(Y \), contradicting Lemma 4.2.

Let \(f \) be a \(\leq P_{m} \)-reduction from \(U \) to \(C \). Without loss of generality, we can assume that for every \(z \in \Sigma^* \), \(f(z) \) is of the form \(\langle x, y \rangle \) for some \(x \) and \(y \). Let \(f_z \) be a function that maps every \(z \) to the second component of \(f(z) \).

For any \(z \in \Sigma^* \), let \(x_z \) and \(y_z \) be strings such that \(f(z) = \langle x_z, y_z \rangle \). We first show that \(\forall z \in \Sigma^* \), \(|x_z| < |z| \). Suppose otherwise; i.e. \(\exists z \in U \mid |z| \leq |x_z| \). Note that \(z \in U \) implies \(\langle x_z, y_z \rangle \in C \) and that \(\langle x_z, y_z \rangle \in C \) implies \(2|x_z|^{1/d} \leq |y_z| \land y_z \in Y \). Thus, we have

\[
\exists z \in U \mid (2|x_z|^{1/d} \leq (2|x_z|)^{1/d} \leq |y_z| \land y_z (= f_z(z)) \in Y).
\]
Hence,
\[\exists \infty y \in Y \exists z \left[|z| \leq \tfrac{1}{2} |y|^d \land y = f_2(z) \right]. \]

Here note that \(f_2 \) is polynomial-time computable; thus, it follows from the above that some polynomial \(p \) exists such that \(\exists \infty y \in Y \left[y \in \mathbb{K} \left[n^2, p(n) \right] \right] \). This contradicts our assumption that the constant \(d \) witnesses the property (K-i) of \(Y \). Therefore, there exists some \(c_0 > 0 \) such that

\[\forall z \in U \left[|z| \geq c_0 \Rightarrow |x_z| < |z| \right]. \]

Now consider any string \(x_0 \), and let \(n = |x_0| \). Define sequences \(x_1, x_2, \ldots, x_{n-1} \) and \(y_1, y_2, \ldots, y_{n-1} \) by \(\langle x_{i+1}, y_{i+1} \rangle = f(x_i) \). (Note that these sequences are polynomial-time computable from \(x_0 \).) Then for any \(k \), \(1 \leq k < n \), we have the following relation:

\[x_0 \in U \iff f(x_0) = \langle x_1, y_1 \rangle \in C \]

\[\iff R_1(x_1, y_1) \land y_1 \in Y \land x_1 \in U \]

\[\iff R_1(x_1, y_1) \land y_1 \in Y \land f(x_1) = \langle x_2, y_2 \rangle \in C \]

\[\iff R_1(x_1, y_1) \land y_1 \in Y \]

\[\land R_1(x_2, y_2) \land y_2 \in Y \land x_2 \in U \]

\[\iff \cdots \]

\[\iff R_1(x_1, y_1) \land y_1 \in Y \]

\[\land R_1(x_2, y_2) \land y_2 \in Y \]

\[\cdots \]

\[\land R_1(x_k, y_k) \land y_k \in Y \land x_k \in U \]

(where by \(R_1(x, y) \) we mean that \(x \) and \(y \) satisfy (i) in the definition of \(C \)). Thus, for every \(k \), \(1 \leq k < n \), we have

\[\exists \infty y \in Y \exists z \left[|z| \leq \tfrac{1}{2} |y|^d \land y = f_2(z) \right]. \]

Assume that \(x_0 \) is in \(U \). Then from (*3) every \(x_i \) is in \(U \); hence, from (*2) we have \(|x_0| > |x_1| > |x_2| \cdots \) until \(|x_{k_0}| < c_0 \) for some \(k_0 \). Here note that \(k_0 < n \). Thus,

\[x_0 \in U \iff \exists k_0, 1 \leq k_0 < n \left[|x_{k_0}| < c_0 \right]. \]

Now from (*3) and (*4), we can conclude that \(x_0 \in U \) if and only if (a) \(\land \) (b) \(\land \) (c) \(\land \) (d) for the following (a), (b), (c) and (b):

\[\exists k_0, 1 \leq k_0 < n \left[|x_{k_0}| < c_0 \right], \quad \bigwedge_{1 \leq i \leq k_0} R_1(x_i, y_i), \]

\[x_{k_0} \in U, \quad \bigwedge_{1 \leq i \leq k_0} y_i \in Y. \]
Note that (a) and (b) are polynomial-time decidable, (c) is polynomial-time decidable if \(|x_{k_0}| < c_0\) and (d) is decidable by asking conjunctive queries to \(Y\). Therefore, \(U\) is \(P_{\text{til}}\) reducible to \(Y\). A contradiction.

\[\square\]

4.2. Characterization of (K)

One may notice a similarity between property (K-i) and “immunity” notions, notions that have been used to express the idea of “almost everywhere hardness” (see e.g. [6]). However, ordinary immunity notions are considered for “decision problems”, whereas we will discuss “problems of computing values of a function”. Thus, we first introduce a concept that is appropriate for our purpose. It should be mentioned here that our approach is an alternative to the one in [9] where almost everywhere complexity of functions is also discussed.

Lynch [15] introduced the concept of polynomial complexity core, which closely relates immunity notions [6]. For any set \(A\), an infinite set \(C\) is called a polynomial complexity core of \(A\) if it satisfies the following:

\[\forall p: \text{polynomial}, \forall M: \text{deterministic machine that accepts } A, \forall x \in C [M\text{'s running time on } x \text{ exceeds } p(|x|) \text{ steps}].\]

Here we define a similar concept for “problems of computing functions”.

For any measure function \(\delta\), we say that \(N\) \(\delta\)-computes \(f\) if \(\forall x \in \Sigma^*, \exists z: |z| \leq \delta(|x|) [N(\langle x, z \rangle) = f(x)]\). A function \(f\) is called \(\delta\)-computable if \(f\) is \(\delta\)-computed by some \(N\).

Note that \(f\) is 0-computable if and only if it is partial recursive.

Definition 4.4. For any function \(f\) and any measure function \(\delta\), an infinite set \(D \subseteq \text{Dom}(f)\) is a \((\delta, \text{poly})\)-hard domain of \(f\) if it satisfies the following:

\[\forall p: \text{polynomial}, \forall N: \text{transducer that } \delta\text{-computes } f, \forall x \in D, \forall z: |z| \leq \delta(|x|) \land N(\langle x, z \rangle) = f(x) \land [N\text{'s running time on } \langle x, z \rangle \text{ exceeds } p(|\langle x, z \rangle|) \text{ steps}].\]

Intuitively, an infinite set \(D \subseteq \text{Dom}(f)\) is a \((\delta, \text{poly})\)-hard domain of \(f\) if for any polynomial \(p\), every transducer needs more than \(p(|\langle x, z \rangle|)\) steps to compute \(f(x)\) for all but finitely many \(x\) in \(D\) even if it is given \(\delta(|x|)\)-bits of additional information. By comparing the above definitions, one can easily see the similarity of “polynomial complexity core” and “\((\delta, \text{poly})\)-hard domain”. Indeed, the latter notion is a generalization of the former one in the following sense.

For any set \(A\), let \(c_A\) denote the characteristic function of \(A\).

Proposition 4.5. For every recursive set \(A\), an infinite set \(C\) is a polynomial complexity core of \(A\) if and only if it is a \((0, \text{poly})\)-hard domain of \(c_A\).

(The proof is immediate from the definition; thus, it is omitted.)
For any function f, a set D is called a \textit{polynomially hard domain} of f if it is a (nd, poly)-hard domain of f for some $d > 0$.

Now we state condition (K) in terms of the difficulty of functions. A function f is called \textit{polynomially honest} (or, \text{honest} in short) if there exists a polynomial p such that \(\forall x \in \text{Dom}(f) \ [|f(x)| \leq p(|x|) \land |x| \leq p(|f(x)|)] \). Intuitively, an honest function increases or decreases length by no more than a polynomial. If f is not honest, then either f or f^{-1} is not polynomial-time computable, because no polynomial time bound is enough even to print out an output. In order to avoid such trivial cases, we will consider only honest functions.

The following relation is immediate from the definition.

\textbf{Proposition 4.6.} \textit{Let f be a recursive and honest function from 0^* to Σ^*. Then for every infinite set $D \subseteq \text{Dom}(f)$, the following two statements are equivalent:}

(i) D is a polynomially hard domain of f; and

(ii) $f(D)$ satisfies (K-i).

\textbf{Proof.} \textit{(i)→(ii):} Let d_1 and d_f be constants such that D is a (nd, poly)-hard domain of f, and $\forall x \in \text{Dom}(f) \ [|f(x)| \leq |x|^{d_f}]$. By way of contradiction, assume that $f(D)$ does not satisfy (K-i). Then there exists p_1 such that $\exists^x y \in f(D) [y \in K[n^{d_1/2d_f}, p_1(n)]];$ in other words, $\exists^x y \in f(D), \exists z : |z| \leq |y|^{d_1/2d_f} \ [N_u \text{ on } z \text{ yields } y \text{ within } p_1(|y|) \text{ steps}]$. Since f is recursive, there exists a transducer N_f that computes f. Now define N_1 as follows

\begin{verbatim}
begin
 input(⟨x, z⟩);
 if |x| ≤ c_1 then obtain f(x) from a finite table and output it;
 if z is an empty string then {
 simulate N_f on x;
 output $N_f(x)$ (if defined)
 }
 else {
 simulate N_u on z, where z = az' for some a ∈ Σ;
 output $N_u(z')$ (if defined)
 }
end,
\end{verbatim}

where c_1 is a constant such that $\forall x \in \text{Dom}(f) \ [|x| > c_1 \Rightarrow |f(x)|^{d_1/2d_f} + 1 \leq |x|^{d_1}]$. Then N_1 n^{d_1}-computes f; furthermore, for some polynomial q, we have

$$\exists^x x \in D, \exists x : |z| \leq |x|^{d_1} \ [N_1 \text{ on } ⟨x, z⟩ \text{ yields } f(x) \text{ within } q(⟨x, z⟩) \text{ steps}].$$

This contradicts the assumption that D is a (n^{d_1}, poly)-hard domain of f.

\textit{(ii)→(i):} Let d_2 be a constant that witnesses (K-i) for $f(D)$, and let d_f be a constant such that $\forall x \in \text{Dom}(f) \ [|x| \leq |f(x)|^{d_f}]$. Suppose by way of contradiction that D is not
a polynomially hard domain of \(f \); thus, there exist a constant \(d_2 \), a polynomial \(q \), and a transducer \(N_f \) such that

\[
\exists x \in D, \exists z: |z| \leq |x|^{d_2/3d_f} \left[N_f \text{ on } \langle x, z \rangle \text{ yields } f(x) \text{ within } q(|\langle x, z \rangle|) \text{ steps} \right].
\]

Recall that \(D \subseteq \text{Dom}(f) \subseteq \{0^*\} \). Hence, there exist infinitely many \(n_1, n_2, \ldots \) and \(z_1, z_2, \ldots \) such that for every \(j \geq 1 \), \(|z_j| \leq n_j^{d_2/3d_f} \) and \(N_f \) on \(\langle 0^{n_j}, z_j \rangle \) yields \(f(0^{n_j}) \) within \(q(|\langle 0^{n_j}, z_j \rangle|) \) steps. For every \(j \geq 1 \), let \(y_j = f(0^{n_j}) \). Then it is easy to define a machine \(N_2 \) and a polynomial \(p_2 \) such that \(N_2 \) on input \(\langle n_j, z_j \rangle \) yields \(y_j \) within \(p_2(|\langle n_j, z_j \rangle|) \) steps for every \(j \geq 1 \). Note that for some constant \(c \) and sufficiently large \(j \), \(|\langle n_j, z_j \rangle| \leq c \left(\log n_j + |z_j| \right) \leq c \left(\log n_j + n_j^{d_2/3d_f} \right) \leq n_j^{d_2/3d_f} \), since we are using a binary encoding of integers and assuming that \(\forall x, y \left[|\langle x, y \rangle| \leq c_0 \left(|x| + |y| \right) \right] \). Thus, for infinitely many \(j \), \(N_2 \) outputs \(y_j \in f(D) \) from an input of length \(\leq n_j^{d_2/3d_f} \leq |y_j|^{d_2/2} \) within polynomial time. Here, without loss of generality, we can assume that our universal machine \(N_2 \) can simulate \(N_2 \) within polynomial time relative to \(N_2 \)’s running time if the code of \(N_2 \), whose length is a certain constant \(d \), is given. Hence, for some polynomial \(p, \exists x \in f(D) \left[y \in K\left[n^{d_2/2 + d}, p(n)\right] \right] \); therefore, \(\exists x \in f(D) \left[y \in K\left[n^{d_2}, p(n)\right] \right] \). This contradicts the assumption on \(d_2 \).

Corollary 4.7. The following three statements are equivalent:

(i) there exists an infinite set in \(\text{PSPACE} \) satisfying \((K-i) \);

(ii) there exists a polynomial-space computable and honest function from \(0^* \) to \(\Sigma^* \) that has an infinite polynomially hard domain in \(\text{PSPACE} \); and

(iii) there exists a polynomial-space computable and honest function from \(\Sigma^* \) to \(\Sigma^* \) that has an infinite polynomially hard domain in \(\text{PSPACE} \).

Proof. (i) \(\rightarrow \) (ii): Let \(X \) be an infinite set in \(\text{PSPACE} \) that satisfies \((K-i) \). Define \(f \) from \(0^* \) to \(\Sigma^* \) as follows: for every \(n \leq 0 \), \(f(0^n) = \text{first}(X; n) \). Define \(D \) as \(\text{Dom}(f) \). Then \(f \) is a polynomial-space computable and honest function, and \(D \) is in \(\text{PSPACE} \). Clearly, \(f(D) \) is \(\text{First}(X) \), thus satisfying \((K-i) \). Hence, it follows from Proposition 4.6 that \(D \) is a polynomially hard domain of \(f \).

(ii) \(\rightarrow \) (iii) and (iii) \(\rightarrow \) (i): Clear and omitted.

Property \((K\text{-ii}) \) simply states that \(X \) has at least one element in \(\Sigma^* \) for some polynomial \(p \) and all \(n \). We name this property “length-dense”. That is, a set \(A \) is called **length-dense** if \(\exists q: \text{polynomial}, \forall n \geq 0, \exists x \left[n \leq |x| \leq q(n) \land x \in A \right] \). Note that the length-density notion is different from ordinary density; for example, there exists a set \(A \) of exponential density, i.e. \(\| A \|_\Sigma^* \geq 2^n \), that is not length-dense at all.

It is clear from the definitions and the above observations that we can restate condition \((K) \) as follows:

\((K) \) There exists a \(\text{PSPACE} \)-computable and honest function \(f \) from \(\Sigma^* \) to \(\Sigma^* \) that has a length-dense polynomially hard domain in \(\text{PSPACE} \).
4.3. Sufficient conditions for (K)

In order to get better understanding of condition (K), we investigate the possibility that (K) holds. We will show two sufficient conditions for (K).

The first one concerns the problem of whether PSPACE possesses “super-polynomial time” computational power. A measure function t is called super-polynomial if $t(n) > n^c + c$ for all constant $c > 0$ and almost all $n > 0$.

Proposition 4.8. If there exists a super-polynomial running time t such that $\text{DTIME}(t) \subseteq \text{PSPACE}$, then (K) holds.

(The idea of the proof is stated in [3]; thus, we omit the proof.)

The next sufficient condition concerns “one-way functions”. In this paper, by a one-way function we mean an honest and one-to-one (not necessarily total) function f such that f is polynomial-time computable and f^{-1} is not polynomial-time computable. In cryptography, for a feasible and secure cryptosystem, we need a one-way function satisfying several requirements. Here, we formally state some of such requirements and define a necessary condition for “desirable” one-way functions. Then we show that the existence of a one-way function satisfying such a condition implies condition (K).

Let g be any polynomial-time computable function. In order to simplify our discussion, we assume that g is total, honest and one-to-one although this assumption is not essential. We claim that every “desirable” one-way function g should at least satisfy the following condition:

\[g^{-1} \text{ has a length-dense polynomially hard domain in PSPACE}. \]

A condition similar to the one above has been discussed in several contexts [9]. We explain our motivation of (*5), taking “public-key cryptosystem (PKCS)” [8] for example. What follows is the theoretical framework of PKCS established by Grollmann and Selman [9]. In a PKCS each participant A of the cryptosystem has one pair of keys (k_1^{A}, k_2^{A}), where k_1^{A} is made known to the public, i.e. the public key, while k_2^{A} is kept secret, i.e. the private key. This pair of keys has to be prepared prior to communication; such a preparation is carried out using some given polynomial-time algorithm G. More specifically, a participant A, who wants to generate his pair of keys, first randomly generates some seed $\langle x^{(A)} \rangle$ and computes (k_1^{A}, k_2^{A}) from $x^{(A)}$ using G, i.e. $\langle k_1^{A}, k_2^{A} \rangle = G(x^{(A)})$. When a transmitter wants to send a message to A, he encrypts the message using A's public key k_1^{A} and send it to A. Then the receiver A uses his private key k_2^{A} to decode the message sent by the transmitter.

Let g be a function mapping every x to the first component of $G(x)$. For the sake of simplicity, we assume that g is total, honest and one-to-one. Since G is polynomial time, g is polynomial-time computable. On the other hand, we do not want g^{-1} to be
polynomial-time computable. If otherwise, one can compute $x^{(A)}$ from public key $k^{(A)}$, thereby deciphering every secret message sent to A. Thus, we require that g is a one-way function. In addition to that, for a feasible and secure cryptosystem, the following properties are desired for g.

(a) Since the public keys are used for a relatively long time, we want them to be "durable". We measure degree of durability by the intractability of computing g^{-1} when some bits of additional information are given. For example, a public key $k^{(A)}$ is regarded as insecure if its seed $x^{(A)} (= g^{-1}(k^{(A)}))$ is easy to compute from $k^{(A)}$ and $|x^{(A)}|^{0.1}$ bits of additional information. Almost all elements of polynomially hard domain of g^{-1} are considered as secure public keys.

(b) Note that every g is easy to invert at infinitely many points. For example, there exists a polynomial-time algorithm that computes g^{-1} for every element of $g(0^*)$. Thus, not all the public keys are secure. Then we need a feasible algorithm that tells us whether a randomly generated seed produces a secure public key or not. We can formalize this notion by a condition that g^{-1} has a polynomially hard domain that is in a low complexity class such as P, NP, or PSPACE.

(c) We need a lot of secure public keys, i.e. we need a polynomially hard domain of high density. For example, it is desirable to have secure public keys at different lengths so that we can easily increase the security by using keys of longer length. We can formalize this requirement by a condition that g^{-1} has a length-dense polynomially hard domain.

Thus, we have proposed condition (\ast5), which summarizes the above requirements (a), (b), and (c).

Note that for every one-way function, its inverse is polynomial-space computable. Thus, the following proposition is immediate from Corollary 4.7.

Proposition 4.9. If there exists a one-to-one, honest and polynomial-time computable function g satisfying (\ast5), then (K) holds.

Now, since each of the above two condition implies (K), and (K) implies the separation, we have the following separation results.

Corollary 4.10.

1. For any super-polynomial running time t, if $\text{DTIME}(t) \subseteq \text{PSPACE}$, then \equiv^P-completeness differs from \equiv^m-completeness in PSPACE.

2. If there exists a one-to-one, length-increasing and polynomial-time computable function g such that g^{-1} has a length-dense polynomially hard domain in PSPACE, then \equiv^P-completeness differs from \equiv^m-completeness in PSPACE.

Remark. A rather simple argument from [22] directly proves (1).
5. Concluding remarks

We have proved the difference between \(\leq_F\)-completeness and \(\leq_m^P\)-completeness in \(\text{PSPACE}\) from several assumptions. Our strategy is to construct a set \(C\) and a sparse set \(S\) in \(\text{PSPACE}\) such that \(C \oplus T\) is \(\leq_F\)-hard for \(\text{PSPACE}\) and \(C\) is not \(\leq_m^P\)-hard for \(\text{PSPACE}\); then the key lemma – Lemma 3.4 – proves the existence of a set that is \(\leq_F\)-complete and is not \(\leq_m^P\)-complete in \(\text{PSPACE}\). Here a question of interest is whether this strategy is useful for proving the difference for other complexity classes such as \(\text{NP}\), \(\Sigma_k^P\), etc. Note that a lemma similar to Lemma 3.4 is provable for every \(\Sigma_k^P\), \(k \geq 1\). On the other hand, we have used the high computational power of \(\text{PSPACE}\) in order to construct sets like \(C\) and \(S\).

Acknowledgment

The authors are grateful to Professor R. Book for his support and encouragement. They thank Professor E. Allender and Professor K. Ko for pointing out errors in an earlier version, and also thank referees for many suggestions that helped us very much to improve the presentation of this paper.

References

Polynomial-time completeness in $PSPACE$

