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Abstract 

A new family of parallel V-stable methods for second kind Volterra integral equations are proposed. The methods 
belong to the class of Volterra Runge-Kutta methods and can be applied provided that some not very restrictive 
conditions on the integral equation kernel are satisfied. 
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I. Introduction 

One of the main problems in constructing second kind Volterra integral equations (VIEs) 
solvers is to get methods with good stability properties. The literature contains a number  
of contributions to stabiity analysis of numerical methods for VIEs which vary according 
to the choice of the Volterra equation adopted as a test equation. A test equation that has, so 
far, received particular emphasis is the well known linear convolution equation: 

~t t y(t) = 1 + [2 + #(t  - s ) ]y ( s )ds  (1.1) 
o 

with 2 and/~ real parameters satisfying 

2 < 0, /~ ~< 0. (1.1') 

Related to (1.1), the best stability property one can require of a numerical method is Vo-stability 
(see e.g. [2, p. 438] or [3]), but  until 1993 very few Vo-stable methods have been proposed in 
the literature [7, 9, 12, 13, 14] and it was in r l ]  that the first Vo-stable method of order exceeding 
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one was obtained. In 1993 in ['5] we have proposed a test equation which is a slight generalization 
of (1.1) where 2 is allowed to assume complex values: 

y ( t )  = 1 + [-4 + - s ) ] y ( s ) d s ,  O, O. (1.2) 
0 

For this test equation we have given the following definitions: 

Definition 1.1. A numerical method is said to be stable (strongly) in the point (h2, h2/t) of the set 
Q:= {(h,~, h2/t): Re(2)~< 0, /~ ~< 0} if for such values the numerical solution y, is bounded 
(lim,_~ ~ y, = 0). Then the (strong) stability region of the method is defined by the set S _ Q where 
the method is (strongly) stable. 

Definition 1.2. The method will be called (strongly) V-stable if its (strong) stability region S co- 
incides with Q 

Of course in the case Im(h2) = 0 the strong V-stability coincides with V0-stability. 
The aim of this paper is to exploit the potential of parallel computers to construct methods 

with a reasonable sequential computational cost, which are highly stable with respect 
to (1.2). 

In [4] we introduced the parallel iterated Voltera Runge-Kut ta  (PIVRK) methods with the goal 
of taking advantage of parallel architectures in solving the implicit relations for the stage values of 
a classical Volterra Runge-Kut ta  methods. This was done by solving such set of equations by an 
iteration scheme. By means of an appropriate choice of the iteration parameters the stage vector 
equations can be uncoupled and solved in parallel. Moreover in [-2, 4] we found that the stability 
regions of such parallel methods, though large, have the drawback to present a gap near the vertical 
axis (see Fig. 1 for example). 

In [5], together with the definition of V-stability, we have given a technique for constructing 
V-stable methods, called transformed methods, of any order, which can be applied to any second 
kind Volterra integral equation, whose kernel satisfies some mild conditions. In particular we 
have constructed V-stable transformed Volterra Runge-Kut ta  (TVRK) methods whose computa- 
tional cost is at most doubled with respect to the traditional Pouzet Volterra Runge-Kut ta  
methods. 

Now the natural purpose of this paper is to merge the results of [-4, 5] and to construct parallel 
methods having better stability characteristics than the above-mentioned PIVRK and cost less 
than the TVRK methods. 

In particular in Section 2, we derive the method satisfying these requisites, simply by con- 
structing the transform of some PIVRK methods and in Section 3 we give their stability func- 
tions and prove the V-stability of a large number of methods belonging to this family whose 
order ranges from 2 to 8. Finally in Section 4 we report the results of some numerical experi- 
ments in order to compare the performance of the proposed methods with the PIVRK 
ones. 
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2. The methods 

Let us consider the second kind Volterra integral equat ion 

y(t) = 9 ( t )  + k( t , s ,y(s) )ds ,  t e[ to ,  T ]  (2.1) 
0 

where 9 and k are given cont inuous  functions on [to, T ] and S x R, respectively, with S := {(t, s): 
to ~< s ~< t ~< T}. Moreover  let us assume, as in [5], that  kernels k(t, s, y) can be split accord- 
ing to 

k(t, s, y) = ka (t, s, y) + k2(t, s, y) - k2(s, s, y) (2.2) 

where the derivative of k2 with respect to t exists. We observe that  the hypothesis  (2.2) is not  very 
restrictive since for example for any kernel k(t, s, y) being differentiable w.r.t, t, we may  define 
kl := k(s, s, y) and kz := k(t, s, y). Another  example are kernels of the form A ( t , s , y ) +  
B ( s , y ) [ f ( t ) - f ( s ) ]  with f differentiable (note that  in this case k itself does not  need to be 
differentiable). 

The parallel transformed Volterra Runoe-Kut ta  (PTVRK) methods  arise from the s-stage parallel 
iterated Pouzet  Runge -Ku t t a  (PIPVRK) methods  (original methods): 

Y,+ I = F,(t ,+ l) + h ~ b~k(t,+ l, t, + cjh, Y~)  (2.3a') 
j = l  

y~i+ 1 _ hdik(t, + c~h, t, + c~h, Y~+ 1) = F(t ,  + c~h) 

+ h ~ (aij - 61jd~)k(t, + cih, t, + cjh, Y,~) v = O, ... ,m, i = 1, ... ,s, (2.3b) 
j = l  

n-1 ~.~ 
F~(t) = 9(0 + h ~ b~k(t, tr + cjh, Yg).  (2.3c) 

r = 0 j = l  

We recall that  such methods,  that  we int roduced in [4], are called P I P V R K I  when (2.3a') is used 
and P I P V R K 2  if the underlying VRK method  @ is stiffly accurate (i.e., Cs = 1, b~ = asi, i = 1 , . . . ,  s) 
and y, + 1 is simply determined by 

Y,+ 1 = yms. (2.3a") 

By applying the t ransformat ion in t roduced in [5] to (2.3) we get 

y ,+ ,  = F,~(tm+x) + h ~ b~[kl( t ,+, ,  t, + cjh, Y~)  + U,~], (2.4') 
j = l  

y v + l )  v+ l ]  _,jg~.+ ~ -- hdj[k l ( t .  + cih, t. + cih , _ , j  , + U.~ 

= FX,(t. + cjh) + h ~ (ajk -- 6jkdk)[k~(t, + cjh, t, + Ckh, Y,~k) + U~k], v >>- O, j = 1, ... ,S, 
k=l 

(2.4b) 
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~k~ 
U~; 1 -- hd.~'~ (t~ + c;h, t, + cjh, y.~+ l) J & 

= F2.(t,, + cjh) + h ~ (aik -- C~jkdk)~(t, + cjh, t. + Ckh, Y~), 
k = l  

y o  = F~(t~ + c~h), U. ° = F2(t. + cjh), j = l . . . .  ,s, 

F~(t) = g(t) + h ~ bk[k,(t, t~ + Ckh, Y~) + U~] 
l = O k = l  

v > ~ O , j = l , . . . , s ,  

n-1 ~ b ~k2 t 
F~(t) = h 2 k--~-( , t, + Ckh, r~). 

/ = 0  k = l  

Then by eliminating U,j from (2.4b) we get the following formulation of the PTVRK method: 

1 m Yn+l = Fn(tn+l)  + h b j [ k l ( t n + l ,  tn + cjh, Y~) + U n j ] ,  (2.5a') 
j = l  

Un jm = hd.~kE & + cjh, t. + cjh, Y~) + F2(t, + cjh) + h i (air -- (~jkdk) 
k = l  

63k2 t x - ~  ( ,  + c~h, t, + Ckh, Y ~ -  1), j = 1 . . . . .  s, 

Y.~+~ - hdjk~(t. + cjh, t. + cjh, Y.~+~) - h2d2~-~(t. + cjh, t. + cjh, Y~+t)j = ~ ( y ~ j ,  y,vj- 1), 

~(Y~J, Y.V t) 

s ± 
= FI (t~ + cjh) + h 2 2 v ajkF,(t, + Ckh) + h (a)k -- gjkdk)kl(t, + cjh, t. + Ckh, Y,k) 

k = l  k = l  

+ - + c h, + c h, ro ) 
k = l  

+ h2dj i (ajk -- g j kda)~( t~  + cih, t, + Ckh, Y,~) 
k = l  

+ h2 i ~ (ajk -- 6~kdk)(ak, -- gk~d~)~t(t, + Ckh, t, + c,h, Y,~-1), v >i 1, j = 1, ... ,s, 
k = l r = l  

~(yO., yd~)  = F~(t. + c~h) + h i (ajk -- (3ikdk)[kl(t. + c~h, t. + Ckh, Y°k) + F2(t. + Ckh)], 
k = l  

y o =  F](t~ + cjh), j =  1,. . . ,s ,  

n - l ~  
F](t) = O(t) + h ~, bk[kt(t, h + Ckh, Y~) + g~],  

l=Ok=l 

~-1 i b ~k2 t F2(t) = h ~ k--~-( , h + Ckh, YI~). 
l = O k = l  
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Also in this case 

Y,+ 1 = Y~ (2.5a") 

if the VRK method ~ is stiffly accurate. Analogous to the PIPVRK methods, if (2.5a') is used, then 
the method will be referred to as PTVRK1, otherwise as PTVRK2. 

As we already proved in [6], the order p of the PTVRK methods, for every D = diag(di), is 
given by 

p = min{p*, m + 1} in the PTVRK1 case, 

p = min { p*, m} in the PTVRK2 case 

where p* is the order of the ~ VRK method. 
We observe that, in spite of its involved form, the PTVRK method is of course suitable for 

implementation on multi-processor machines, since at each iteration the components Y,~ can be 
computed in parallel. Therefore, if we compare the PTVRK methods (2.5) with the V-stable TVRK 
methods [5], we note that their computational cost is considerably reduced because, instead of 
solving a system of s implicit equation at each step, we have to solve, m times, one implicit equation. 
Moreover it is worth to observe (see also [11]) that in the case of a VIEs system, the j th processor 
has to solve a sequence of m implicit system in each of which the decomposition of the matrix 

I - -  h d . b k l  2 2 ~2k2 ; Oy - h  d j o - ~ y  

is required and therefore, if the diagonal matrix D has equal entries, then the processors need the 
same LU decomposed matrix. 

On the other hand, compared with the original P IPVRK methods (2.3), the PTVRK methods 
require much more effort per step, but they present nicer stability region as will be shown in the 
following section. Since the stability regions are full along the vertical axis, the methods are also 
suitable for solving oscillating problems. 

3. V-stable PTVRK methods 

In the previous section we have constructed the PTVRK methods as the transform of the 
PTVRK. Such methods arise as the Volterra analogues of some parallel methods for ordinary 
differential equations, which are called PDIRK methods [5, 6-1. In this section we show how the 
stability properties of the PTVRK methods are strictly related to the ones of the ODE PDIRK 
methods. To this purpose we give the following definition. 

Definition 3.1. A PTVRK and a PDIRK method are said to be correspondent  if they are 
characterized by the same coefficients c, b, A, D. 

Moreover  the following notations are useful in the next theorem: 

R = h x ( I - h x D ) - l ( A  - - D ) ~ C  =×s, / = ( 1 , 1 , . . . , 1 ) T ~  =, e* = (0 ,0 , . . . , 1 )TE~  =, 

.['1 (Z) = 1 + zb T [ R "  + (I --  R r') (I --  zA)  - ~ ] e ~ C, 
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fz(z) = e*T[R " + (I -- Rm)(I -- zA ) -1 ]e~  C, (3.1) 

A = hZ p . 

Now, we derive the following theorem. 

Theorem 3.2. The (strong) stability region o f  the P T V R K 1  and P T V R K 2  methods is the set 
S:=  {(h2, hZ#): Re(2) ~< 0, # ~ 0} such that [fa(z)[ ~< 1 and [f2(z)[ ~< 1 (Ifl(z)[ < 1, [fz(z)[ < 1) 
respectively, where z(h2, hep) runs through the spectrum of  the matrix A(h2, h21~). 

Proof. Let us consider the me thod  in the form (2.4) and apply it to the test equat ion (1.2). It can be 
easily seen that  this is equivalent to applying (2.3) to the system 

y(t) = 1 + f l  [2y(s) + u(s)] ds, 

u(t) = fl  y(s) ds. 

Thus the P T V R K  method  is (strongly) stable for the value (2,/z) whenever the eigenvalues x of the 
matrix 

belong to the (strong) stability region of the me thod  (2.3) w.r.t, the basic test equat ion 

1 + x f l y ( s ) d s ,  Re(x) ~< 0. (3.2) y(t) 

Therefore, in order  to study the stability of the P T V R K  methods  we have to apply (2.3) to (3.2). We 
obtain 

Yn+x = Yn + hxbTy2 or Yn+a = e*Ty,  m, 

Y y  = Rmy ° + (I - R")(I  - R)- lRlYne,  yO = yne 

with R1 = (I - hxD)-1. Then, since (I - R)-1R1 = (I - hxA)-1  and setting z = hx, there results 

Yn+l=f l (Z)yn or yn+t=fz(Z)yn 

where z runs th rough the set of eigenvalues of A. []  

F r o m  this theorem we immediately obtain 

Corollary 3.3. I f  the corresponding P D I R K  method is A-stable then the P T V R K  method is V-stable. 

We observe that  the last result could be directly deduced from Theorem 2.1 in [-5]. By means of 
Corollary 3.3 we can assure, for example, the V-stability of the following P T V R K  methods  of order 



A. Vecchio /Journal of Computational and Applied Mathematics 71 (1996)225-236 231 

p ranging from 2 to 8. In fact the corresponding O D E  P D I R K  methods are proved to be A-stable 

in [10, 11]. 
We report  the coefficients of the matrix D of such V-stable methods, but we refrain to report the 

coefficients A, b and c since they are standard and can be found in literature or in [10]. In the 

following Is is the s by s identity matrix. 

P T V R K 1 - G a u s s - s  = 2-p = 4-m = 3 D = (1.0685790213)I2 [11]. 

P T V R K 1 - R a d a u  I IA-s  = 2-p = 3-m = 2 

P T V R K 2 - R a d a u  I IA-s  = 2-p = 3-m = 3 

P T V R K 2 - R a d a u  IIA-s  = 3-p = 5-m = 5 

0.32039049 

D = diag~0.13997017~ [10]. 

\0.37167618] 

P T V R K 2 - R a d a u  I IA-s  = 4 -p  = 7-m = 7 

0.32049937 

|0.08915379 

D = diag,0.18173957 

\0.23336280 

[10]. 

P T V R K 1 - L o b a t t o  I I IA-s  = 2-p 

P T V R K 2 - L o b a t t o  I I IA-s  = 2-p 

P T V R K 1 - L o b a t t o  I I IA-s  = 3-p 

P T V R K 2 - L o b a t t o  I I IA-s  = 3-p 

= 2 - m =  1 

= 2-m = 2 

= 4 - m =  3 

= 4 - m  = 4  

= 6-m = 6  

D = ((3 + x/3)/6)I2 [11]. 

D = (0.43586650)12 [11]. 

D = (1/2)I2 [-11]. 

D = (1 + w/~)I2 [11]. 

D = (1.0685790213)13 

D = (0.5728160625)13 

D = (0.3341423671)14 

(3.3) 

[11]. 

[11]. 

[11]. 

[-11]. 
P T V R K 2 - L o b a t t o  I I IA-s  = 4 -p  

P T V R K 2 - L o b a t t o  I I IA-s  = 5-p  = 8-m = 8 D = (0.2343731596)15 

We underline that most of the matrix D, above reported, are computed in [11] with the aim of 
obtaining A-stable P D I R K  methods with constant diagonal matrix. Such characteristic, as we 
mentioned in the previous section, is convenient for the L U  decomposit ion of the matrix connected 
to the implicit relation appearing in the method. The matrices D which are not constant are 
determined with the purpose of minimizing the spectral radius of a matrix related to the iteration 
process of the O D E  P D I R K  method (see [10] for details). 

In order to better compare the stability properties of the P T V R K  and the original P I V R K  
methods we report  the plot of the stability region in the plane {Re(h2) ~< 0 h2/~ ~< 0} of one of the 
previous methods. Of  course the plot of the P T V R K  is full, since the method is V-stable (see Fig. 1). 

Moreover  we consider the P T V R K  method based on the 3-stage Gauss coefficients and we 
construct a matrix D in order to have an highly stable methods with order p = 6 and requiring only 
m = 5 iteration per step. We observe that, even if the corresponding P D I R K  method cannot be 
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-6 

-8 

-1o 

- 1 2  

R a d a u  I I A  - s = 4 

P T V R K 2  - m = 7 

x x x x x x x x x x x x x x x x x x x 

o x x x ,. ,~ 'x x ~. x ~, x '~ x ~, x :, x ~. ,, 
-2 x x × X x x x x x X x X x x x x x X x 

x ~ x x x x x x x x x ~x x x x ~ .x x x 

-4 x x x x x x x x x x x x x x X x X. ~ X _  
x x x X x X x X x X x X x X x X x ~ x 

x x x x x ~ x X x ~ x x x x x x x x x 

: x ~ x x x :x x x x x x x .x x x x x x x 

: x x x x x X x x x X x X x x x x x x x _ 

x x x X x X x ~t x ~t x x x x x x x x x 

.... x x x x x x X x ~ x . . x  x x x _ 

: x x x X x ~ x X x X x ~ x ~ x x x x x 

: x X x X x x x X x x x ~ x ~ x x x X x 

x x x x x ~ x X x X x ~ x ~ x x x X x 
x x x x x x x x x x x 7( x ~ x 3( x x x 

-14 . . . . . . . . . . . . . . . . . . . . . . .  : . . . .  
x x x x X x x x x x x x x x x x x x x x 

- 1 6  _ x .  x x x X x X x x x x x )t x x x x x X x 

x X x X x ~ x ~ x X x X x x x x x X x 

x X x x x x x x x x x x x x x x x R x 

-20 x ~t x ~ x ~ x ~ x ~ x ~ x ~ x ~t x ~ x 

-2 -I .8 -I .6 -1.4 -1.2 -1 -0.8 -0,6 -0.4 -0,2 0 

h * l a m b d a  

P I P V ~ 2 -  m = 7 

x x x x x x x x x x x x x x x x x x x  

x ~ x x x ~  x ~ x ~ x x x x x ~ x ~ x 

x ~ . x  .x x . . x  x ~ x ~ x ~ x x x ~ x ~ x 
X ~ x x x ~ x x x ~ x x X X X ~ X X X  

x ~. x x x !x x ~ x ~ x ~ x x x ix x X x 
x ~ x x x x x X x x x ~ x x x ~ x X x 

x ~ x x X X x x x x x x x x x x x x x 

x X x x x x x X x x x X x X x X x x x 

x ~ X x x ~ x ~ x ~ x x x x x x x x x 

x x x x x x x x x x x x x ~ x x x x x  

x x x x x x x x x x x x x x x x x x x  

x x x x x x x x x x x x x x x x x x x  

X .x .  x , . x . . x . . ~  x ~ x X x ~ . . x ,  X. x X x x 

x ~ x X x ~ x X x X x X x x x x x 

x ~ x x . . x  ~ X x x x x x X x x x 
X ~ x X ~ X ~ X ~ X X X X X X X  

x x x ix x x x ix x !× X ix × !x . . . . . . . . . .  
x x x x x ~ x ~ x ~ x x 

X X X X X ~ X X X X X  

X X X X X X X ~ X  

x ~ x ~ x ~ x ~  

-2 - 1 . 8 - 1 . 6 - 1 . 4 - 1 . 2  -'1 - 0 . 8 - 0 . 6  ~ . 4  ~ . 2  

h*lambda  

Fig. 1 

P T V R K 1  - m = 5  

x x x x x x x x x x x x x x x x x 

0 i x ~ x 'x x 'x x ~ x 'x x ~ x ~ x ~ x 

-5 - X ~t x x x X x ~ x x x ~ x X . x  x 

x :x x x x x x ;x x x x ~ x x x x x 

-10 • X ~ x X x ~ x .x x x x 

X ~ X X X X X X X X X X X X X A X 

-15 x x x x x x x X x x x ~ x x . x . . x  

x X x x x X x x x x x ~ x x x X x 

-20 : x X x x x X X X x ~ .x ~ x x X X x 
x ~ x x x x x x x x x ~ x x x ~ X  
x ~ x x x ~ x x x x x x x x x X x 

g, -25 . . . . .  
• x k x X x x x x x X x x x x x x x 

-30 x x x x x X ~ x X . x  X . ~ .  

x ~ x X X ~ t x x x x x x x X x ~ x 

- 3 5  . . . . . . . .  x x ~ ~ x x x x x 
x ~x x ~ x ~. x ,x x x x x x x x x x 

-40-  ~. . .X x IX x ~ x .  x x ~ x x x X x x x _ 
.X ~( X ~X x ;( X :X X ,X X X X X X X X 

-45 . . . .  ~ x ~ x ~ x ~ X ~ x x .X X x ~ X . . . .  
x ~ x k x k x x x x x X x X x ~ x 

-50 i x ~t x ~ x ~ x ~ x ~ x ~ x ~ x ~ x 

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 

G a u s s  - s = 3 

P I P V ~  I - m = 5  

x x x x x x x x x x x x x x x x  

- 5  

- 1 ( ]  . . . . . . . . . . . . . . . . . . . . . .  

-15 

-2C 

g -25 

-3(3 

-35 

-4C - 

-45 -. - 

-50 ' ' ' 

x x x x x x x x x x x x x x  

x x x x x x x x x x ~ . x  

x x x x x x x x x x x  

x x x x x x x x x  

x x x x x ~  

. . . . . . . . . . . . .  x x X x . . . . . . . .  

x x  

x 

-50 -45 -40 -35 -30 -25 

t l*lambda h*lambda  

i i i i 

-20 -15 -10 -5 

Fig. 2 

A- s tab le  for a n y  c h o i c e  o f  D,  as can  be verif ied by  the  e x p r e s s i o n  o f  the  s tabi l i ty  f u n c t i o n  fx (z) in 
(3.1), the  f o l l o w i n g  P T V R K  m e t h o d  has  a sat i s factory  stabi l i ty  region.  T h e n  w e  report  the  matr ix  
D o f  this  m e t h o d  t o g e t h e r  wi th  its s tabi l i ty  plot .  F o r  the  sake  o f  c o m p a r i s o n  w e  a l so  report  the  p lo t  
o f  the  s tabi l i ty  reg ion  o f  the  or ig ina l  P I P V R K  (see Fig.  2). 

P T V R K 1 - G a u s s - s  = 3 - p  = 6 - m  = 5, 
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0.235721241 

D =diag,0 .12554113 , 

\0.37296599 

We can observe that the stability region of the P T V R K  method is larger than the other one and 
this suggests us to apply this method also in the case where the corresponding P D I R K  method is 
not A-stable. 

This fact can be explained by considering the P T V R K  method as an "iterated version" of 
a TVRK method instead of the "transformed version" of an iterated method. In other words, let us 
consider the TVRK method [5], which in the case of the Gauss coefficients is V-stable. 

Y.+I = F*(tn+~, t.) + h i bi[kl(t.  + cih, t. + cih, Y.i) + F*(t.  + c~h, t~)] 
i = 1  

~=1 i=1 alj-~k2(tn + clh, t. + cjh, Y~j), (3.4) 

Yni = f * ( t .  + c~h, t~) + h ~ a~[kl(tn + c~h, t. + cjh, Ynj) + f~(t~ + cjh, t~)] 
j = l  

+ h 2 a~j ajk-~kE(t~ + c~h, t~ + Ckh, Y~k), i = 1 .. . .  ,S, (3.4') 
j = l  k = l  

n - 1  s 

F*(t, t,) = g(t) + h Y' ~ bi[kl(t, tl -b cih, Yli) nt- F*(tt q- cih, tl)] 
/ = 0  i = 1  

+ h  i 0 j=l aij-~k2(tl + cih, h + cjh, Yli), 

F*(t, tn) = h ~ kE(t, tz + cih, Yu). 
/ = 0  i = l  

The P T V R K  method (2.5) can be obtained from (3.4) by solving (3.4') by a special diagonal iteration 
scheme. According to this point of view we observe that in the case of the P T V R K  3-stage Gauss 
method, we are dealing with an "iterated version" of a V-stable method and so good stability 
properties can be expected. 

4. Numerical experiments 

In order to illustrate the advantages and disadvantages of PTVRK methods we have applied it 
to a system of VIEs obtained by discretizing in space a partial integral equation of the following 
type: 

;o v(x, t) = v(x, O) + p(x, t) + k(t, s)vxx(x, s)ds, 0 ~ < x ~ < l ,  t~ [0, T] ,  

v(x, O) -- Vo(X), 0 ~< x < 1, v(O, t) = v(1, t) -- O, (4.1) 
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with 

; ;o k(t, s) = G(z - s)dz,  p(x,  t) = f ( x ,  s)ds  

and G, f and Vo are given. 
Equat ions of this type, a l though they do not  arise directly from practical problems, are obtained 

by the usual approach of integrating with respect to time some Volterra integro-differential 
equat ions which are c o m m o n  in mathemat ica l  viscoelasticity pertaining materials with memory  
([8, p. 10, Example 2.7]). Physically, indeed, v(x, t) is the displacement at t ime t of point  x on a one- 
dimensional  rod located at 0 ~ x ~< 1. The function G is the linear stress relaxation modulus  and 
the function p is related to the initial external force. 

Since in the most  c o m m o n  practical case G(t, s) is a decreasing exponential  function of (t - s), 
(see, e.g., [15]), we have assumed 

G(t, s) = ae -~(t-s) 

then we have chosen Vo and p so that  the true solution is 

v(x, t) = sin(nx)e-  1. 

With these choices our test partial VIE has the following expression: 

v ( x , t ) = p * ( x , t ) + - f i  [ 1 - e - e ( t - S ) ] v x x ( x , s ) d s ,  O~<x~<l ,  t e [ o , r ] ,  (4.2) 

with 

E e p*(x,  t ) =  sin(nx) e -t  + n a ~ - f l ( ~  1) f l -  1 + " 

Thus  we semidiscretize with respect to x by defining the equidistant grid xi = iA, i = O, . . . ,  N with 
A = 1IN and by choosing the second order approximat ion  

vxx(xl, t) ~ v(xi+ 1, t) -- 2v(xi,  t) + v(x i -1 ,  t) 
A2 (4.3) 

Finally by setting v(xi,  t) = vi(t), p*(xi ,  t) = p*(t) our test system becomes 

V(t) = P(t) + Jo k(t, s) FV( s )ds ,  

where 

V(t) = [vl ( t ) , . . . ,  vN- l(t)] T, P(t) = [p~(t), . . . ,  p } - ,  (t)] T, 

- - 2  1 0 0 ... 0 \ 

1 - - 2  1 0 . .-  0 

0 0 0 ... i 2 

(~ [~N-- I x N - -  1 

k(t, s) = ~ [1 - e -~('-s)] e R, 
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In the following experiments we have fixed N = 10, fl = 2 and we have applied the P T V R K  method  
(3.3) and the related original P I V R K  with different values of ~ by using the splitting we ment ioned  
in Section 2: 

k l ( t ,  s) = k ( s ,  s) = O, k z ( t , s )  = k ( t ,  s) = 211 - e-Z('-s)]. (4.4) 

The numerical  experiments have been performed on a small t ransputer  network (3 transputers  with 
2MBytes of memory).  

In the following table the computa t ional  t ime required by the methods  for obtaining the same 
accuracy are listed. Since the methods  are applied with fixed stepsize, the h value reported in the 
table is about  the largest one for obtaining the absolute error of size 10-17 in the final point  of the 
integration range [-0, 40]. 

Table 1 

a P I V R K  P T V R K  

h time h time 

0.1 0.25 ~ 3 min  0.25 ~ 6 min  
1 0.1 ~ 20 min 0.25 ~ 6 min  

10 0.03 ~ 210 min 0.1 ,w 40 min  

Of course it is to be noted that  both  the methods  are very expensive, compared  with the size of 
the system (N = 10), but  it is due to the "smallness" of the computer  at our  disposal. 

F r o m  these results we can easily observe that  in the cases of VIEs system which does not  present 
stability problems (e = 0.1) the t ransformed me thod  is not convenient  since it requires double 
computa t iona l  labour  compared  with the P I V R K  method.  On the other hand  for e = 1 and e = 10 
such me thod  requires a severe stepsize restriction due to stability problem (in both  the cases the 
choice h = 0.25 causes an overflow in the numerical  solution) while the P T V R K  method  allows 
a large stepsize and therefore, in spite of its theoretical higher computa t ional  cost, it results to be 
more  convenient.  

Of  course the splitting (4.4) is not  unique, but from our experience the results obtained by 
choosing different splitting leads to the same conclusions. Obviously a "dummy"  splitting must  be 
avoided, i.e., k 2(S, s, y) ~ 0 since in this case the P T V R K  methods  in some sense "includes" the 
original P I V R K  method  itself. 

5. Concluding remarks 

By applying a technique we proposed  in [-5] to the class of P I V R K  methods  that  we in t roduced 
in [-4] we construct  a new family of s-stage V-stable iterated methods.  The price we pay for this 
improvement  in the stability characteristics of the me thod  is of course an increased computa t ional  
effort per i teration (about s 2 function evaluation more) and the requirement  of the splitting (2.2) for 
the kernel of the integral equation. 
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