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a b s t r a c t

Tin, as a constituent of bronze, was central to the technological development of early societies, but
cassiterite (SnO2) deposits were scarce and located distantly from the centres of Mediterranean civili-
zations. As Britain had the largest workable ore deposits in the ancient Western world, this has led to
much historical speculation and myth regarding the long-distance trading of tin from the Bronze Age
onwards. Here we establish the first detailed chronology for tin, along with lead and copper deposition,
into undisturbed ombrotrophic (rain-fed) peat bogs located at Bodmin Moor and Dartmoor in the centre
of the British tin ore fields. Sustained elevated tin deposition is demonstrated clearly, with peaks
occurring at 100e400 and 700e1000 calendar years AD e contemporaneous with the Roman and Anglo-
Saxon periods respectively. While pre-Roman Iron Age tin exploitation undoubtedly took place, it was on
a scale that did not result in convincingly enhanced deposition of the metal. The deposition of lead in the
peat record provides evidence of a pre-Roman metal-based economy in southwest Britain. Emerging in
the 4th century BC, this was centred on copper and lead ore processing that expanded exponentially and
then collapsed upon Roman colonization during the 1st century AD.

� 2011 Elsevier Ltd. Open access under CC BY license.
1. Introduction

With the exception of the Roman use of Spanish deposits
(Penhallurick, 1986), the sourcing of tin throughout much of
antiquity is largely unknown. Isotopic analysis of the Himmels-
scheibe (the Sky disk of Nebra) indicates that tin ores from south-
west (SW) Britain were being utilized perhaps as early as 1600 BC
(Haustein et al., 2010). The recent discovery of tin ingots associated
with a 9e10th century BC shipwreck off Salcombe, Devon, also
suggests that British tin was mined and traded in the Bronze Age
(Archaeology, 2010). Copper ingots found at the wreck are thought
not to be of British origin, even though SW Britain was rich in
copper ore (Dines,1956; Northover,1995). This raises the possibility
that the tin was not of SW British origin.
g).

 license.
The only substantivewritten accounts of early tin exploitation in
Britain are provided by Strabo (63/64 BCe24 AD) and Diodorus
Siculus (90e21 BC), but these were probably compiled from earlier
accounts as the authors are thought not to have visited Britain
(Penhallurick, 1986). Writing around 440 BC, Herodotus was
uncertain about the sources for the tin arriving in the eastern
Mediterranean world, but noted “I cannot speak with certainty,
however, about the marginal regions which lie towards the west, in
Europe. Nor am I certain of the existence of the Cassiterides
Islands, from which we get our tin” (Herodotus, 2003). Upon the
first Roman incursion into Britain (55e54 BC), Julius Caesar was
ignorant regarding the geographical location of British tin lodes,
commenting simply that “tin is found inland” (Caesar, 2003); while
later classical scholars (Pliny the Elder, Tacitus and Solinus) fail to
mention Britain with respect to tin, rather identifying northwest
Spain as a primary source (Hatcher, 1973). Pliny the Elder (AD
23e79) goes as far as identifying the mythical Cassiterides as
a source for tin (Pliny the Elder, 2004), believing they were
“Opposite Celtiberia”, but demonstrating that knowledge on this
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Fig. 1. The locations of Dozmary Pool and Tor Royal Bog relative to base ores of lead, copper and tin in SW Britain (Inset: the study area within the British Isles).
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subject had moved forward little since the time of Herodotus
(2003). The location of the Cassiterides has exercised modern
scholars, with Brittany, the Scilly Isles, St Michael’s Mount, Cornwall
and the SW peninsula of Britain all variously implicated
(Penhallurick, 1986; Cunliffe, 2001). Pliny the Elder quotes a Sicilian
historian Timaeus (w352e256 BC), who as a source is thought to
have used Pytheas of Marssalia’s Concerning the Ocean
(w310e306 BC), and who states that there is an island named
Mictus within six days’ sailing from Britain, where tin is found
(Penhallurick, 1986; Cunliffe, 2001).

Confusion reigns regarding ancient British tin exploitation, and
that of the wider Celtic Atlantic fringe. A chronology for the scale of
British tin production during the prehistoric and early historical
periods is essential for understanding the development and extent
of technology and trading networks throughout Europe and the
Middle East (Penhallurick, 1986; Cunliffe, 2001). Tin has a low
melting point (232 �C) for a metal and this should lead to atmo-
spheric entrainment and subsequent terrestrial deposition of this
element in the same manner as that observed for lead (melting
Table 1
Radiocarbon dates from Tor Royal Bog, Dartmoor, Devon, UK.

Lab code
(SUERC-)

Stratigraphic
position (cm)

Nature of sample C
(

27680 51e50 Sphagnum papillosum
27681 65e64 Sphagnum papillosum 1
27684 71e70 Sphagnum papillosum 1
27685 81e80 Sphagnum papillosum 1
27686 91e90 Sphagnum papillosum 1
27687 95e94 Sphagnum papillosum 1
27688 121e120 Sphagnum papillosum
27689 143e142 Sphagnum papillosum
27690 146e145 Sphagnum papillosum
27694 162e161 Sphagnum papillosum 1
27695 191e190 Sphagnum papillosum 1
27696 204e203 Sphagnum papillosum 1
27697 212e211 Sphagnum papillosum 2
27698 231e230 Sphagnum papillosum 2
27699 235e234 Twig (Ericaceae undiff.) 2
27700 250e249 Sphagnum papillosum 2
27701 281e277 Leaves (Calluna vulgaris &

Erica tetralix)
2

a Conventional radiocarbon years ‘Before Present’ (0 BP corresponds to 1950 AD).
b End points rounded outwards to the nearest 10 calendar years.
c Corrected to standard (d13CVPDB& �25).
point 327 �C) deposition in undisturbed ombrotrophic peat, lake
sediment and ice cores (Kylander et al., 2005; Le Roux et al., 2004;
Rosman et al., 1997; Shotyk et al., 2001). The high boiling points for
both elements (lead 1740 �C; tin 2270 �C) makes it likely that both
metals enter the atmosphere as dusts e oxides, carbonates and
sulphides e produced during smelting (Spear et al., 1998), rather
than directly as vapour. SW Britain is rich in deposits of copper, lead
and silver (extracted from copper and lead through litharge, with
lead also used in litharge of copper). The sources of these elements
utilized in British prehistory, like tin, remains uncertain (Northover,
1995). Here we establish tin, copper and lead depositional fluxes,
along with lead isotopic analysis to characterize sourcing, in
radiocarbon-dated cores from two ombrotrophic peat bogs in the
centre of the SW British ore fields e Tor Royal Bog on Dartmoor in
Devon, and Dozmary Pool on Bodmin Moor in Cornwall (Fig. 1).
Both sites have been subject to previous palaeoenvironmental
investigation (Amesbury et al., 2008; Brown, 1977; West et al.,
1996). Tor Royal has also been characterized with respect to
copper, zinc, arsenic and tin deposition in a dated profile, but
onventional 14C age
yr BP) � 1sa

�2s calibrated
range (cal yr BC/AD)b

d13C & (�0.1)c

950 � 35 1020e1160 AD �26.8
104 � 37 830e1020 AD �25.6
257 � 37 670e870 AD �21.0
534 � 37 430e600 AD �27.0
193 � 35 710e950 AD �25.2
557 � 37 420e580 AD �27.8
620 � 37 1290e1400 AD �24.0
941 � 35 1020e1170 AD �26.0
988 � 37 990e1160 AD �26.2
605 � 35 390e550 AD �26.7
784 � 37 130e340 AD �27.3
993 � 37 BC 90e80 AD �27.4
095 � 52 BC 350e20 AD �26.4
246 � 37 390e200 BC �26.0
134 � 54 360e40 BC �28.8
244 � 37 390e200 BC �28.4
563 � 37 810e550 BC �28.1



Table 2
Radiocarbon dates from Dozmary Pool, Cornwall, UK.

Lab code
(SUERC-)

Stratigraphic
position (cm)

Nature of sample Conventional 14C age
(yr BP) � 1sa

�2s calibrated
range (cal yr BC/AD)b

d13C & (�0.1)c

28800 31e30 Sphagnum magellanicum 229 � 35 1530e1960 AD �20.4
28801 46e45 Sphagnum papillosum 207 � 35 1640e1960 AD �25.3
28802 61e60 Sphagnum papillosum & Sphagnum

Sect. Subsecunda
424 � 35 1420e1620 AD �24.1

28805 81e80 Sphagnum Sect. Cuspidata 382 � 37 1440e1630 AD �25.7
28806 102e100 Sphagnum cuspidatum & Sphagnum

Sect. Cuspidata (cf. S. recurvum)
450 � 35 1460e1640 AD �22.8

28807 121e120 Sphagnum cuspidatum & Sphagnum
Sect. Cuspidata (cf. S. recurvum)

614 � 37 1290e1410 AD �23.9

a Conventional radiocarbon years ‘Before Present’ (0 BP corresponds to 1950 AD).
b End points rounded outwards to the nearest 10 calendar years.
c Corrected to standard (d13CVPDB& �25).
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sampling and dating was not of sufficiently high resolution to
provide robust chronologies, and the sensitivity of themethod used
(Energy Dispersive X-ray Microanalysis) was not appropriate to
adequately quantify the tin (West et al., 1997). The research re-
ported here attends to both these deficiencies.

2. Sites, materials and methods

The SW of England contains the many ore bodies associated
with known and inferred extraction of tin, copper and lead in
prehistoric and later times (see e.g. Penhallurick, 1986; West et al.,
1997; and references therein). Ombrotrophic (rain-fed) mires were
required in order to benefit from their ability to retain regional
signals of atmospheric metal and minerogenic deposition (cf.
Shotyk, 1996; Charman, 2002; Mighall et al., 2002).

2.1. Sites and core collection

An 8 cm diameter Russian corer was used to collect peat cores
from the raised ombrotrophic mire of Tor Royal Bog (Ordnance
Survey grid reference SX 60476 72659), located about 1.5 km
southeast of Princetown, central Dartmoor, and from the
-17
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Fig. 2. Copper (Cu), lead (Pb) and tin (Sn) concentrations plotted against core depth for D
selected for dating.
ombrotrophic mire surrounding Dozmary Pool (SX 19211 74360),
around 21.5 km NW of Liskeard at the southern end of Bodmin
Moor (Fig. 1). Both are designated Sites of Special Scientific Interest
(SSSIs) located at the centre of a regionwith a history of tin mining.
Details of the cores sites and their associated vegetation and stra-
tigraphy may be found in Amesbury et al. (2008) and Brown (1977)
respectively. Cores were stored in a laboratory cold room at 4 �C
until analysis; sub-sampling was at 1 cm contiguous intervals.
2.2. Geochemistry

Elemental concentrations and lead isotope ratios were deter-
mined by high resolution ICP-MS (Element 2, Thermo Scientific,
Bremen, Germany) following a modified aqua regia digest (1:1
concentrated Aristar grade HCl and HNO3, the standard aqua regia
digest is 1:3 HNO3:HCl and themodification increases the solubility
of tin and other elements) using microwave assisted extraction
(MARS, CEM, UK) on oven-dried and ball-milled sub-samples. Full
quality control, including reagent blanks and Certified Reference
Materials CRM (BCR-700) were used.

Total C contents and 13C:12C isotope ratios of the milled and
dried material were determined using a Flash EA 1112 Series
r
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Fig. 3. Age-depth models for (a) Tor Royal (smooth spline) and (b) Dozmary Pool (linear regression) created using clam software (Blaauw, 2010). The dotted lines enclose the 95%
confidence limits based upon 1000 iterations. The solid line represents the weighted mean. The probability distributions of the calibrated dates upon which the model is based are
displayed as hollow silhouettes.
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Elemental Analyser connected via a Conflo III to a DeltaPlus XP
isotope ratio mass spectrometer (all Thermo Finnigan, Bremen,
Germany). Isotope ratios were calculated with respect to a CO2
reference gas injected with every sample and traceable to IAEA
referencematerials USGS40 and USGS41 (both L-glutamic acid). The
C contents of the samples were calculated against NIST standard
reference material 1547 peach leaves which was analysed with
every batch of ten samples.

Bulk densities were calculated by volume displacement per unit
weight of wet peat, using the wet to dry weight conversion factor
(calculated individually for each sample) to express bulk density on
a dry weight basis.
2.3. Radiocarbon dating

Remains of Sphagnum spp. were extracted from core sections for
radiocarbon dating by AMS (accelerator mass spectrometry). Plant
tissues were picked from 500 mm sieve residues following disag-
gregation from the sedimentmatrix in cold 10% NaOH. Radiocarbon
samples were prepared to graphite at the NERC Radiocarbon
Table 3
CRM (BCR-700) recovery from analysis process.

Element Replicate
(mg/g)

Replicate
(mg/g)

Replicate
(mg/g)

Replic
(mg/g)

Mn 442.14 446.46 459.62 442.4
Co 13.32 12.60 12.94 12.9
Cu 30.62 29.20 29.49 28.8
Zn 79.62 76.76 80.13 82.6
As 18.32 18.46 19.07 18.6
Se 0.71 0.35 0.27 0.1
Mo 1.12 1.08 1.18 1.2
Cd 0.23 0.23 0.27 0.2
Sn 4.94 4.94 5.18 5.9
La 54.98 49.10 51.59 58.1
Ce 134.54 125.26 131.89 139.8
Pr 13.94 12.65 13.57 15.0
Sm 10.36 9.48 10.06 11.1
Eu 1.70 1.57 1.65 1.7
Gd 8.36 7.67 8.24 9.2
Pb 46.09 45.22 47.69 54.5
Bi 1.14 1.09 1.16 1.3
Facility, East Kilbride, and measured at the SUERC AMS laboratory
(Tables 1 and 2).

Calibrations were performed using OxCal (Bronk Ramsey, 2009)
and the IntCal09 calibration curve (Reimer et al., 2009). Radio-
carbon dates below 100 cm at Tor Royal present a conformable
series and are consistent with the dates reported for this site in
Amesbury et al. (2008). Results above 100 cm appear significantly
older than expected. The reasons for this are uncertain, but
a similar pattern has been observed for a series of 14C dates on
Sphagnum from Butterburn Flow, a large raised mire in northern
England (Charman and Garnett, 2005). The likely explanations for
the anomalously old dates observed there were given as contami-
nation by inputs of older carbon (SCPs, spheroidal carbonaceous
particles) from industrial emissions, i.e. fossil fuel burning derived
deposition.

Clam software (Blaauw, 2010) was used to construct non-
Bayesian, ‘classical’ age-depth models for each site. Smooth spline
and linear regression models were found to provide the ‘best fit’ for
the dates from Tor Royal and Dozmary Pool, respectively (Fig. 3).
These models allowed the estimation of calendar ages (the cal BC/
AD weighted mean) for all depths throughout each peat core.
ate Average
(mg/g)

SD Certified
(mg/g)

Percentage
recovery (%)

7 447.67 8.20 441.00 101.51
3 12.95 0.29 13.60 95.20
8 29.55 0.76 32.00 92.33
1 79.78 2.40 100.00 79.78
9 18.63 0.33 18.00 103.51
5 0.37 0.24 0.51 72.57
3 1.15 0.07 1.15 100.09
7 0.25 0.02 0.25 100.00
3 5.25 0.47 12.40 42.33
2 53.45 3.94 67.00 79.77
3 132.88 6.06 133.00 99.91
1 13.79 0.98 14.60 94.47
3 10.26 0.69 10.40 98.65
9 1.68 0.09 1.66 100.98
7 8.38 0.66 8.50 98.64
9 48.40 4.25 61.00 79.34
0 1.17 0.09 1.44 81.44
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3. Results and discussion

3.1. General core characteristics

CRM recoveries are reported in Table 3. Recoveries ranged from
79 to 103% with the exception of selenium (73%) and tin (42%). For
tin the microwave digestion procedure is only an operationally
defined ‘extraction’, rather than total elemental analysis. The CRM
is aminerogenic soil as compared to the peats under study here, but
no suitable peat CRMwas available. It is likely that metals are more
readily solubilized bymicrowave extraction from an organic matrix
as compared to aminerogenic one. For total digest of tin, an alkaline
fusionwould be required (Allen,1989), and as the corematerial was
limited and alkaline fusion procedures (as well as open hot block
digestion procedures) are subject to contamination (tin is present
at low concentrations in the core material), the operationally
defined microwave extraction was used. Also, the high salt content
of an alkaline fusion preparation is unsuitable for ICP-MS analysis. It
was assumed that extraction efficiency was similar across the cores
given the uniformity of the peat, discussed later in the manuscript.

Tor Royal is ombrotrophic throughout the sampled profile while
the Dozmary Pool core is only ombrotrophic from a depth of 125 cm
up to the ground surface, as was also reported in a previous study
(Brown, 1977). The transition from minerotrophic to ombrotrophic
peat at Dozmary Pool is reflected by a general decline in metal
concentrations, particularly lead and tin (Fig. 2).
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Concentrations of tin, copper and lead from the Tor Royal and
Dozmary Pool cores are displayed in Fig. 2. AMS 14C dates (Tables 1
and 2) were used to establish a calendar timescale for the
geochemical records (Fig. 3). Ombrotrophic sections of the cores
can be securely dated over connected time periods: for Tor Royal,
from w700 cal. BC to cal. AD 1400; for Dozmary Pool, from cal. AD
w1400 to the present day. Some extrapolated temporal overlap
occurs during the 13th century AD and across this interval tin,
copper and lead concentrations are directly comparable between
the sites (Fig. 4). The geochemical profile for Tor Royal extends back
in time to the Bronze Age (before 700 cal. BC), but that core section
was not dated owing to a lack of persuasive geochemical peaks.
Depositional inputs into each core will be largely reflective of the
geographical position of the sampling site relative to ore processing
activity at any given time (predominant winds are from the SW).

The magnitude of tin, lead and copper concentration at
maximum is similar across the two cores, with lead concentrations
C (%)
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Fig. 6. Percentage carbon regressed against d13C.
being higher at Dozmary Pool but tin and copper higher at Tor
Royal. Peak lead deposition concentrations, corresponding to the
19th century AD for Dozmary Pool (Fig. 4), and by inference for the
same period at Tor Royal, are 360 and 220 mg/kg respectively. This
is comparable in order of magnitude to other sites in the UK where
geochemical records include the Industrial Revolution (cal. AD
w1800) (Le Roux et al., 2004; Cloy et al., 2005). Dozmary Pool also
shows substantial increases in tin and copper deposition associated
with the Industrial Revolution (Figs. 2 and 4), with peaks in metal
concentration also observed at the top of the Tor Royal profile
(Fig. 2). Concentrations of tin and copper in the Dozmary Pool core
closely match documented changes in the timing andmagnitude of
metal production noted in tax records (Hatcher, 1973; Dines, 1956)
(Fig. 4), providing strong evidence that these elements are immo-
bile in the bog, and that the depositional record is a good predictor
of production magnitude.

As only the Tor Royal core is ombrotrophic in the prehistoric
period, the section of the core where this is robustly dated (Fig. 3) is
considered inmore detail with additional carbon (Figs. 5 and 6) and
lead (Fig. 7) isotopic analysis and bulk density calculated (Fig. 5),
along with more comprehensive reporting of multi-element anal-
ysis (Figs. 8 and 9). Percentage carbon ranges from 50 to 54%, with
the lower carbon content predominating at a younger age. The d13C
showed the opposite trend with less d13C observed towards the
upper regions of the dated sections. This negative correlation
between percentage carbon and d13C was confirmed by regression
analysis (Fig. 6). The negative correlation indicates that the heavily
degraded peat (i.e. lower percentage C) is more enriched isotopi-
cally, with each biochemical transformation leading to enrichment.
Furthermore, the carbon content is relatively stable post-AD 250
and pre-AD 1, indicating a shift in C cycling. Peat humification is
associated with drier and warmer climatic periods. Amesbury et al.
(2008) looked specifically at climate change proxies (testate
amoebae and peat humification) for Tor Royal and, although the
resolution of their data was somewhat limited, they concluded that
a shift to a warmer and/or drier phase circa AD 400 occurred, in
agreement with our findings. Bulk density was stable down the
dated section of the core. This constancy, along with the relative
stability of percentage C after AD 200, gives added confidence that
any changes in metal deposition patterns during this period are not
due to changes in peat properties.

A presentation of 18 elements down the entire extent of the Tor
Royal profile (Fig. 8) shows, in the main, dramatic shifts in element
profiles towards the surface, as already discussed above for copper,
lead and tin. The main exception is selenium which is relatively
consistent over the core profile. This can be explained by the fact
that selenium deposition is dominated bymarine sources (Steinnes,
1997). The rare earth elements showa high degree of consistency in
their deposition pattern. Rare earths serve as markers of geogenic
inputs (i.e. dust background) (Shotyk et al., 2001). The peak of rare
earth deposition occurs at 50 cm depth, probably due to massive
dust disturbance in this area around the time of the Industrial
Revolution. The fact that zinc and manganese are most elevated at
the surface is probably because they are relatively mobile and
important plant nutrients, and thus bio-mobilized continuously by
the mire surface flora. Interestingly, manganese shows peaks
(consisting of 2e3 elevated sections of the core) at 200e150 cm,
also matched by cobalt and molybdenum, suggesting as similar
source and possibly related to a specific period of discrete pollution,
such as exploitation of an ore body rich in these elements. This can
be seen more clearly in Fig. 9 where the same 18 elements are
plotted against time on an expanded x-axis scale. The spikes in
manganese, cobalt and lead occur circa. AD 200e300, during the
height of Roman colonization. This plot also shows discrete (i.e. not
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observed for other elements) and sustained rises in lead and tin
concentrations, which will be considered in detail below.
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3.2. Tin deposition

Tin observed in the peat cores must be derived from soil/dust
deposition resulting from farming or mining activity, or from point
or diffuse mining sources. As tin is a rare element with respect to
exploitation, it is assumed that any point mining sources must be
local. To factor out soil/dust contamination as a source, it is
standard practice to normalise the metal of interest, in this case
tin, to a metal of predominantly geogenic source, such as
Lanthanide Group elements (Shotyk et al., 2001). All the Lantha-
nides follow the same deposition pattern (Fig. 9), so gadolinium
was chosen as a reference as it had a high CRM recovery (Table 3).
The tin/gadolinium ratio (Fig. 10) differs little from the tin
concentration plot (Fig. 9), so it can be assumed that where tin
shows distinct elevation, that this is due to excess tin deposition e

i.e. mining sources.
There is no prolonged elevation of tin inputs at Tor Royal before

cal. AD 100, although isolated ‘spikes’ in concentration are evident
(Figs. 2 and 4). These spikes may represent sporadic tin smelting
activity during the pre-Roman period, rather than ‘noise’within the
dataset, as lower and more stable tin levels are recorded for cal. AD
400e700 and 1000e1400. A sustained rise in tin deposition is
observed from wcal. AD 100, declining to a smooth baseline wcal.
AD 400 (the latter date would be close to the time of departure of
the Roman army from Britain). Material evidence for early Roman
exploitation of tin is scarce. Rather, it has been argued that the
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Romans only became interested in British tin following the
exhaustion of supplies from Spanish mines by themiddle of the 3rd
century AD (Hatcher, 1973; Hatcher and Barker, 1974; Penhallurick,
1986). The data presented here suggest that British tin was
continuously exploited earlier in the Roman period than has
previously been surmised and that smelting was located close to
Tor Royal.

From the early 5th century AD onwards, tin inputs into the Tor
Royal sediments remained low for w300 years, a period for which
there is very little other evidence for tin production (Hatcher, 1973;
Gerrard, 2000). Around cal. AD 700 another significant rise in tin
deposition is recorded with influx peakingwcal. AD 900. Tin values
then decline, returning to a baseline by wcal. AD 1100. Although
limited artefactual and environmental evidence has been presented
for Anglo-Saxon age tin exploitation (Gerrard, 2000, pp. 23e24),
authorities are divided regarding the levels of tin exploitation that
occurred during this period (Hatcher, 1973). One view is that
production was intermittent and on a small-scale, yet counter
arguments have been made that tin was much in demand for
tinning (coating with tin) of mirrors, buckles and jewellery, for
lining the inside of copper cooking vessels and armour (such as
a Sutton Hoo iron helmet decorated with tinned bronze plates), for
use in church bells and for the production of small quantities of
pewter, Indeed it appears possible that themetal waswidely traded
throughout Europe, with Britain thought to be the only feasible
source of supply (Hatcher, 1973; Hatcher and Barker, 1974; Gerrard,
2000). The results of our study support the latter view.

The deposition of tin in the Tor Royal coremay also answer some
outstanding questions regarding the lack of documentary records
for tin production in the Anglo-Saxon period. Bede’s Historia
Ecclesiastica (circa AD 731) does not include tin amongst England’s
mineral wealth (Hatcher, 1973), while entries in the Domesday Book
(AD 1086) for Devon and Cornwall list the exploitation bymining of
iron and lead, but tin mines are not recorded. The simplest expla-
nation for the absence of tin in these accounts is that they bookend
the expansion and collapse of tin production during the later half of
the Anglo-Saxon period.
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3.3. Copper and lead deposition

Copper was mined from at least the Iron Age in SW Britain
(Northover, 1995), but no enhanced copper deposition into the
cores is observed until the Industrial Revolution (Fig. 2). The
depositional record for copper is much less informative when
compared to tin or lead, as copper, with its higher melting point
(1083 �C), is less readily entrained atmospherically. Baseline
concentrations of copper within the peat are also somewhat higher
than those for tin and lead (Fig. 2), whichmeans that anthropogenic
inputs above background will only be observable for higher rates of
pollution-derived deposition.

The lead deposition record has a very large (w20-fold) and
sustained increase above background concentrations starting
w300 cal. BC, reaching a maximum at 50 cal. BC, and declining to
a baseline by cal. AD 200 (Figs. 4 and 10). An elevation in Roman
period lead deposition has been seen in core studies (Rosman et al.,
1997; Le Roux et al., 2004; Shotyk et al., 2001; Kylander et al., 2005;
Cloy et al., 2005; Monna et al., 2004). For core study sites distant
from ancient mining sources, it has been argued that Roman period
lead pollution, inferred from both total concentration and lead
isotopes, is due to mining in Spain resulting in continental-wide
pollution, a conclusion which has also been inferred from studies
of Spanish peat cores (Kylander et al., 2005). However, there is
a realization that this scenario may be somewhat simplistic, as
British sources of lead pollution, from lead and copper mining, are
responsible, at least partially, for an elevated Roman period lead
signature (Le Roux et al., 2004). There is a convincing argument that
Spanish mining is not the primary source of the increase in lead
observed during the Roman period for Tor Royal, where the figures
for lead concentrations are as high, or higher, than for other
European sites (Rosman et al., 1997; Le Roux et al., 2004; Shotyk
et al., 2001; Kylander et al., 2005). When the lead concentrations
for Tor Royal are at their highest, the 206/207Pb ratio reaches 1.22
(Fig. 7) e greater than for any other western European galena
(Fig. 11). This is further evidence for local sources dominating the
lead deposition, with copper smelting the most probable
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explanation given that the 206/207Pb ratio in copper ores from SW
Britain ranges from 1.16 to 1.38 (Rohl and Needham 1998). Plots of
lead isotope ratios for the Tor Royal core along with local copper
and galena ore bodies illustrate that during the Iron Age and Roman
periods, lead isotopesmatch those of local copper and lead ores, but
during periods where lead is not elevated (cal AD 400e1050) the
core signature partially lies outside the isotope signatures of local
ore bodies (Fig. 12). Copper-derived lead has also been hypoth-
esised as a source of elevated lead deposition in northern England
(Le Roux et al., 2004). There is strong evidence for the exploitation
of copper from SW Britain during the Iron Age for use in bronze
(Northover, 1995). Copper and lead ores of this provenance have
a high silver content and it may also be possible that these ores
were being exploited for silver coinage during the Iron Age
(Cunliffe, 1987).

The decline of lead deposition to background levels bywcal. AD
200 (Fig. 2) suggests that either the Romans were losing interest in
copper, lead or silver from Devon or Cornwall during the later
stages of occupation, or that the lead deposited into the profile
mainly (or perhaps entirely) resulted from indigenous activity
which ceased soon after the Roman colonization. The collapse of
a metal-based economy in this region is inferred from coin minting,
with SW British pre-Roman Iron Age (‘Celtic’) coinage disappearing
during the 1st century AD (Cunliffe, 1987). The Romans widely
exploited lead deposits throughout England, as far south as the
Mendip Hills in Somerset, but there is no documentary record nor
archaeological evidence for them utilizing deposits of galena in
Devon and Cornwall (Jones andMattingly, 1990). Again, this favours
an argument for predominantly indigenous rather than Roman
base metal mining in the decades following the arrival of the
Romans, given that the Roman colonization west of Exeter was
slight and occurred late in the period (Cunliffe, 1987).

As the history of copper mining in SW Britain can be traced
indirectly through the release of lead from copper ores, the fact that
lead influx into the Tor Royal core only rises above an environ-
mental baseline during the pre-Roman Iron Age and in the modern
industrial era indicates that any copper mining in this region out-
with these periods was not on a substantial scale. Northover (1995)
states that while it is “good sense to assume” that there was British
copper production during the Bronze age, there is “no direct
evidence”, with most copper ingots of this period found in the
south and east of Britain being of Continental European origin. The
archaeology points to an expansion of SW British tin and copper
production during the Iron Age only (Northover, 1995) e

a hypothesis that is also supported by our data.

4. Conclusions

1. Investigations in SW Britain have provided detailed chrono-
logical and geochemical profiles which for the first time enable
us to address with confidence many issues surrounding tin in
antiquity.

2. The first prolonged elevation of tin influx to a peat profile
occurs from wcal AD 100, declining to a smooth baseline wcal
AD 400. Given dating uncertainties, this would seem to corre-
spond well to the period of Roman occupation in Britain and
would conflict with suggestions that the Romans only became
interested in British tin following the exhaustion of supplies
from Spanish mines by the middle of the 3rd century AD.

3. There was a lull in apparent tin production for the period wcal
AD 400e700 which could reflect a collapse in tin production
during the first half of the Anglo-Saxon period. There was then
a re-expansion towcal AD 1100. British tin may well have been
the source of the metal used in wider European trade for this
latter period.
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4. Apart from in the modern industrial era, the lead inputs into
the Tor Royal core only rises above an environmental baseline
during the pre-Roman Iron Age (w300 cal BC), peakingw50 cal
BC and declining to base level around cal AD 200. The decline of
lead suggests that either the Romans were losing interest in
copper, lead or silver from Devon or Cornwall, or that much
lead deposition had derived from indigenous activity which
ceased soon after the Roman colonization e a collapse which is
also seen in the records for coinage.

5. Given the leadecopper relationship, this suggests that any
copper mining in this region outwith these periods was not on
a substantial scale. At their highest, the figures for lead
concentration on Dartmoor for the Romanperiod are as high, or
higher, than for other European sites (including Spain). This is
further evidence for local SW British sources dominating the
lead deposition, with copper smelting the most probable
explanation.

6. Our data may provide the first supportive ‘direct evidence’ for
the expansion of SW British tin and copper production during
the Iron Age.
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