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Abstract

A pro-p group G is a PF-group if it has central series of closed subgroups {Ni}i∈N with trivial intersection

satisfying N1 = G and [Ni,G,p−1. . . ,G] � N
p
i+1. In this paper, we prove that a finitely generated pro-p

group G is a p-saturable group, in the sense of Lazard, if and only if it is a torsion free PF-group. Using
this characterization, we study certain families of subgroups of p-saturable groups. For example, we prove
that any normal subgroup of a p-saturable group contained in the Frattini is again p-saturable.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Lazard, in his seminal paper Groupes analytiques p-adiques [7] from 1965, proved that a
topological group is p-adic analytic if and only if it has an open p-saturable subgroup. In the
case of pro-p groups this means that the open p-saturable subgroup must be of finite index. In
1980s, Lubotzky and Mann reinterpreted Lazard’s work in terms of uniformly powerful groups
replacing the condition of having an open p-saturable subgroup by the condition of having an
open uniformly powerful subgroup (see [1]). These two concepts are strongly related but do not
coincide (although, for some time, it was thought they did): Lazard proved that the pro-p Sylows
of GLn(Zp) and SLn(Zp) with n � p − 2 are p-saturable and Klopsch realized that they are not
uniformly powerful (see [7] and [5]). We recall that a pro-p group G is powerful if [G,G] � Gp
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for p � 3 and [G,G] � G4 for p = 2. A pro-p group is uniformly powerful if it is powerful and
torsion free.

Since the moment powerful groups were introduced by Lubotzky and Mann they have gained
a prominent role in the theory of finite p-groups and pro-p groups. In a way, the concept of
uniformly powerful pro-p groups has successfully replaced the original definition of Lazard.
However, as suggested by Klopsch, there might be a price to pay for using uniformly powerful
pro-p groups: for example, Klopsch in [6] used p-saturable groups to give a positive solution to
a problem posed by Shalev for which the use of uniformly powerful groups was not enough.

As we mentioned above, the concepts of powerful and p-saturable pro-p groups do not coin-
cide. This does not mean that there are not links between both definitions. Uniformly powerful
groups are p-saturable and conversely, if a group G is p-saturable, then Gp is powerful and
therefore uniformly powerful.

More recently (see [2]), a new family of pro-p groups has been defined: a closed normal sub-
group N of a pro-p group G is a PF-embedded in G if there exists a central series of subgroups
{Ni}i∈N starting at N with trivial intersection, and with the property that [Ni,G,p−1. . . ,G] � N

p

i+1.
If G = N we say that G is a PF-group. This new family of subgroups has been successfully used
to study the power structure of pro-p groups. For example, it has been proved in [2] that the tor-
sion elements of a finitely generated pro-p group with the condition γh(p−1)(G) � Gph+1

form
a finite subgroup (this result was already proven for p > 2 by Wilson in [10], but the bounds on
the exponent of the torsion subgroup were not precise enough). One of the most remarkable facts
about PF-embedded subgroups is that have they a very nice power-commutator structure inside
the group. More precisely, if G is a pro-p group and N is a PF-embedded subgroup of G, then
for all positive integer i the following holds

[
Npi

,G
] = [

N,Gpi ] = [N,G]pi

.

The identity above will play a prominent role in the study of p-saturable groups in this paper
(see Proposition 2.1).

The aim of this paper is to describe p-saturable groups in terms of the group structure. Once
we have a nice description of them, we will try to conclude some facts on certain families of
subgroups. We now present the first result of this paper.

Theorem A. Let G be a torsion-free finitely generated pro-p group. Then the following condi-
tions are equivalent:

(1) G is a p-saturable group.
(2) G is a PF-group.
(3) G/Φ(G)p is a PF-group, where Φ(G) is the Frattini subgroup of G.

One of the most remarkable properties about p-saturable groups (or uniformly powerful
groups) is that they have a natural Zp-Lie lattice structure. This construction is, in fact, an isomor-
phism of categories between the category of p-saturable groups and the category of p-saturable
Lie algebras. This isomorphism was already constructed by Lazard in [7, 3.2.6, Chapter 4]. Using
the new characterization of p-saturable groups that we have introduced, it is possible to prove
that this correspondence also works for certain families of subgroups.

Theorem B. Let G = G be a p-saturable group or a p-saturable Lie algebra. Then
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(1) N � G is a PF-embedded subgroup of G if and only if N is a PF-embedded Lie ideal
of G. Even more, [N,G]G = [N ,G]L. (The concept of a PF-embedded Lie subalgebra is
analogous to that of PF-embedded subgroup and it will be introduced in Section 4.)

(2) Let M = M � N = N be a PF-embedded subgroups of G. Then N/M is central in G/M if
and only if N /M is central in G/M.

(3) The lower central series of G and G coincide. In particular G is nilpotent if and only if G is
nilpotent and the nilpotency class of G and G coincide.

(4) The derived series of G and G coincide. In particular G is solvable if and only if G is solvable
and the derived length of G and G coincide.

One can finally prove that most normal subgroups of a p-saturable group are again
p-saturable.

Theorem C. Let G be a p-saturable group and N a closed normal subgroup of G. Then:

(1) If N is contained in Φ(G), N is p-saturable.
(2) N is a Lie subalgebra of G = G if and only if Np = {np | n ∈ N}.

We briefly sketch the structure of the rest of the paper. In Section 2, we recall some results
about PF-groups and general properties about pro-p groups. Sections 3–5 will be devoted to
prove Theorems A, B and C, respectively.

Notation. We use standard notation in group theory. If G is a pro-p group then all subgroups of G

considered will be understood in a topological sense: i.e., when written a subgroup generated by
a subset of G, a verbal subgroup of G, etc., we will always mean the topological closure of the
corresponding abstract subgroup. Commutators will be written using left notation and we will
write [N,k M] to denote the commutator [N,M, . . . ,M] with M appearing k times. Φ(G) will
denote the Frattini subgroup.

During the course of the paper (for example in Section 4), we will deal with sets which have
both group and Lie algebra structure. In order to distinguish both algebraic structures we will
write G,N,M, . . . to denote a group, subgroup, . . . and G,N ,M, . . . to denote a Lie algebra,
Lie subalgebra, Lie ideal, . . . . The commutator in the group will be denoted by [x, y]G and the
Lie product in the Lie algebra by [x, y]L.

2. Some preliminary matters

In this section we recall some properties concerning pro-p groups. We start by giving a few
definitions. Consider G a pro-p group and {Ni}i∈N a decreasing central series of closed normal
subgroups with trivial intersection. Suppose that for all i, [Ni,p−1 G] � N

p

i+1. Then we say that
{Ni}i∈N is a potent filtration of G. For ease of notation we will write {Ni} instead of {Ni}i∈N.

If there is a potent filtration of G starting at a subgroup N , we say that N is PF-embedded
on G. A pro-p group G is a PF-group if G is PF-embedded in G. We summarize the main
properties concerning potent filtrations and PF-embedded subgroups in the following proposi-
tions.

Proposition 2.1. Let G be a pro-p group, N a PF-embedded subgroup and {Ni}i∈N a potent
filtration starting at N . Then:
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(1) N/K is PF-embedded in G/K for every closed normal subgroup K of G.
(2) If g ∈ G and x ∈ Ni , then (xg)p ≡ xpgp (mod N

p

i+1).
(3) {Np

i } and {[Ni,G]} are potent filtrations and Np and [N,G] are PF-embedded subgroups.

(4) Npk = {xpk | x ∈ N}.
(5) For all i, j � 0 [Npi

,Gpj ] = [N,G]pi+j
.

Proof. See Propositions 3.1–3.3, Theorem 3.4 and Corollary 3.5 of [2]. �
In the next proposition we prove that roots can be taken in an unique way in a torsion free

PF-group.

Proposition 2.2. Let G be a pro-p group and N a torsion free PF-embedded subgroup of G.
Then if xpk ∈ Npk

, it follows that x ∈ N . Even more, if x, y ∈ N and xpk = ypk
, then x = y.

Proof. It is enough to prove the proposition for the case k = 1. Consider a potent filtration {Ni}
starting at N . We put x1 = x. By hypothesis x

p

1 = a
p

1 for some a1 ∈ N1. If we put x2 = x1a
−1
1 ,

by part (2) of the previous proposition x
p

2 ∈ N
p

2 . In general, if x
p
i ∈ N

p
i , there exists ai ∈ Ni such

that x
p
i = a

p
i , and then xi+1 = xia

−1
i satisfies that x

p

i+1 ∈ N
p

i+1 and xi+1 ≡ xi (mod Ni).
Therefore we have constructed a Cauchy sequence {xi}i∈N such that x

p
i ∈ N

p
i . Then

(limi→∞ xi)
p = limi→∞ x

p
i = 1. Since N is torsion-free, limi→∞ xi = 1. Since multiplying by

x and taking inverses are continuous operations, hi = xx−1
i is also a Cauchy sequence. But hi is

contained in N (h1 = xx−1
1 = 1 and hi+1 = xx−1

i+1 ≡ xx−1
i mod N ). Hence limi→∞ hi ∈ N and

x = limi→∞ hixi = (limi→∞ hi)(limi→∞ xi) ∈ N .
Consider now x, y ∈ N such that xp = yp . It will be enough to prove that xy−1 ∈ Ni for

all i. We argue by induction on i being the case i = 1 obvious. Suppose that the assumption
holds for all i and let us see it for i + 1. By part (2) of the previous proposition (xy−1)p ≡
xpy−p (mod N

p

i+1). Then (xy−1)p ∈ N
p

i+1 and therefore xy−1 ∈ Ni+1. �
We finish this section giving some general results concerning pro-p groups.

Lemma 2.3. Let G be a pro-p group and N a closed normal subgroup of G. Then:

(1) If M is another closed normal subgroup of G such that N � M[N,G], then N � M .
(2) For every � � 0, [Np,� G] � [N,� G]p[N,(p−1)+� G].

Proof. (1) Since a pro-p group is the inverse limit of finite p-groups we can reduce the proof to
finite p-groups. Now applying the inclusion several times we get that N � M[N,k G]. Now, the
lemma follows from the fact that finite p-groups are nilpotent. The second part of the lemma is
a particular case of Theorem 2.5 of [2]. �
3. The relation between PF-groups and Lazard’s p-saturable groups

Let G be a finitely generated pro-p group. We say that G is p-valued if there exists a map
ω :G → R>0 ∪ {∞}, which we call valuation, such that the following properties hold for all
x, y ∈ G:
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(i) ω(x) > (p − 1)−1,
(ii) ω(x) = ∞ if and only if x = 1,

(iii) ω(xy−1) � min{ω(x),ω(y)},
(iv) ω([x, y]) � ω(x) + ω(y),
(v) ω(xp) = ω(x) + 1.

Clearly, p-valued pro-p groups are torsion-free. If G is p-radical with respect to ω (i.e., if for
every x ∈ G with ω(x) > p(p − 1)−1 there exists y ∈ G such that x = yp), then G is called a
p-saturable pro-p group.

The definition we have given of p-saturable group is not literally the same as Lazard’s defini-
tion, which requires two more conditions, but it is equivalent to it. Lazard uses the valuation ω to
define a topology on G by choosing the subgroups Gν = {g ∈ G | ω(g) � ν}, with ν ∈ R>0, as a
fundamental system of neighborhoods of the identity. Then the two extra conditions that required
are:

(L1) The group G is complete with respect to the topology coming from the valuation.
(L2) The group G has finite rank, i.e., there is a bound on the number of generators needed for

the closed subgroups of G.

In fact, the concept of rank used by Lazard is different, but as Klopsch indicates in [5], it is
equivalent to have finite rank in one sense or the other. The following proposition shows that our
definition implies property (L1).

Proposition 3.1. Let G be a p-valued group. Then the topology of G coming from the valuation
coincides with the topology of G as a pro-p group.

Proof. We know from Theorem 1.17 of [1] that the open subgroups of G in the pro-p topology
are exactly the subgroups of finite index. Now, according to (iv) and (v) of the definition of
valuation, if n = �ν� then γn(p−1)(G)Gpn

is contained in Gν . Consequently Gν has finite index
in G and is open in the pro-p topology. It follows from Proposition 2.1.5(b) of [9] that the
subgroups Gν form a fundamental system of neighborhoods of the identity in the pro-p topology.
Thus the topology coming from the valuation coincides with the pro-p topology. �

The fact that (L2) is also a consequence of our definition is immediate from Theorem 3.4 and
Corollary 3.6 below: a p-saturable group in our sense is in particular a PF-group, and conse-
quently p-adic analytic. As is well known, a p-adic analytic group has finite rank.

After this little digression, let us begin with the preliminaries needed for the proof of The-
orem 3.4. Our next lemma shows that, in order to get a potent filtration beginning at a closed
normal subgroup N , we do not have to worry so much that the subgroups have trivial intersec-
tion: it suffices if one of them already lies in [N,G]Np . This result can also be applied to a
subgroup N which is already known to be PF-embedded in order to obtain a particularly nice
potent filtration whose first term is N .

Lemma 3.2. Let G be a pro-p group and let N be a closed normal subgroup for which there exists
a series of subgroups N = N1 � N2 � · · · � Nt+1 = [N,G]Np satisfying that [Ni,G] � Ni+1

and [Ni,p−1 G] � N
p for 1 � i � t . If we define
i+1
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Mi =
{ [Ns,j G]Np, if i = j t + s � t (p − 1) with 1 � s � t,

M
p

i−t (p−1), if i > t (p − 1),

then {Mi} is a potent filtration of G. In particular N is a PF-embedded subgroup of G.

Proof. It is clear that {Mi} is a decreasing series of closed normal subgroups of G with trivial
intersection. We will prove [Mi,G] � Mi+1 and [Mi,p−1 G] � M

p

i+1 by induction on i.
Suppose first that i � t (p − 1). If we write i = j t + s with 1 � s � t , then Mi =

[Ns,j G]Np . Now we have [Mi,G] = [[Ns,j G]Np,G] � [Ns+1,j G]Np = Mi+1. On the
other hand [Mi,p−1 G] = [[Ns,j G]Np,p−1 G] � [Np

s+1,j G][Np,p−1 G]. We first prove that
[Np

k ,j G] � [Nk,j G]p for 1 � k � t . By part (2) of Lemma 2.3,

[
N

p
k ,j G

]
� [Nk,j G]p[Nk,j+p−1 G] � [Nk,j G]p[

N
p

k+1,j G
]
,

and by repeating this argument,

[
N

p
k ,j G

]
� [Nk,j G]p[

N
p

t+1,j G
]
. (1)

Applying again Lemma 2.3, in this case to [Np

t+1,j G], we get that

[
N

p

t+1,j G
]
� [Nt+1,j G]p[Nt+1,j+p−1 G]
� [Nt+1,j G]p[

Np,j+p−1 G
][N,j+p G] � [Nt+1,j G]p[

Np,j+1 G
]
. (2)

Consequently

[
N

p
k ,j G

]
� [Nk,j G]p[

Np,j+1 G
]
� [Nk,j G]p[N,j+1 G]p[

N
p

t+1,j+1 G
]

� [Nk,j G]p[
N

p
k ,j+1 G

]
,

where the second inclusion follows from (1) with k = 1. Then we conclude from part 1 of
Lemma 2.3 that [Np

k ,j G] � [Nk,j G]p . If we now apply this result to [Np

s+1,j G][Np,p−1 G]
(and also (2) if s = t), it follows that [Mi,p−1 G] � M

p

i+1.
Suppose now that i > t (p − 1). Then Mi = M

p

i−t (p−1), and by the induction hypothesis,

[
M

p

i−t (p−1),G
]
� [Mi−t (p−1),G]p[Mi−t (p−1),p G]
� [Mi−t (p−1),G]p[

M
p

i−t (p−1)+1,G
]
� Mi+1.

Using a similar argument we also obtain [Mi,p−1 G] � M
p

i+1. �
As an easy corollary, we obtain the following criterion for a finitely generated closed normal

subgroup to be PF-embedded.

Corollary 3.3. Let G be a pro-p group and let N be a finitely generated closed normal sub-
group of G. Then N is PF-embedded in G if and only if N/([N,G]Np)p is PF-embedded in
G/([N,G]Np)p .



J. González-Sánchez / Journal of Algebra 315 (2007) 809–823 815
Proof. If N is PF-embedded in G, then we know from part (1) of Proposition 2.1 that
N/([N,G]Np)p is PF-embedded in G/([N,G]Np)p . Conversely, consider a potent filtration
{Ni/([N,G]Np)p} beginning at N/([N,G]Np)p . Since N is finitely generated, the subgroup
[N,G]Np is open and consequently Nt � [N,G]Np for some t . Then it suffices to consider the
series of subgroups N = N1[N,G]Np � N2[N,G]Np � · · · � Nt [N,G]Np = [N,G]Np and
to apply the previous lemma. �

We can now prove the main theorem of this section.

Theorem 3.4. Let G be a torsion-free finitely generated pro-p group. Then the following condi-
tions are equivalent:

(1) G is a p-saturable group.
(2) G is a PF-group.
(3) G/Φ(G)p is a PF-group, where Φ(G) is the Frattini subgroup of G.

Proof. The equivalence between (2) and (3) follows from Corollary 3.3. Let us prove the equiv-
alence between (1) and (2).

Suppose first that G is a PF-group. Consider a family of subgroups G = N1 � N2 � · · · �
Nt+1 = Φ(G) such that [Ni,G] � Ni+1 and [Ni,p−1 G] � N

p

i+1 for all i � t . For every positive
integer i, write i = rt (p − 1) + j t + s with 0 � j � p − 2 and 1 � s � t , and define Mi =
([Ns,j G]Gp)p

r
. By Lemma 3.2, {Mi} is a potent filtration of G.

We define a valuation ω on G as follows. For every x ∈ Mi\Mi+1, let

ω(x) = 1

p − 1

(
2sp+j+1

2(t+1)p
+ j + 1

)
+ r,

where r , j and s are as above and ω(1) = ∞. Conditions (i)–(iii) of the definition of a valua-
tion are obviously satisfied. On the other hand, if xp ∈ ([Ns,j G]Gp)p

r
then, by Proposition 2.2,

x ∈ ([Ns,j G]Gp)p
r−1

. Therefore (v) also holds. In order to check that (iv) is fulfilled, consider
x1, x2 ∈ G and suppose that xk ∈ Mik\Mik+1. Write Mik = ([Nsk ,jk

G]Gp)p
rk . Then, by Propo-

sition 2.1,

[x1, x2] ∈ [([Ns1,j1 G]Gp
)pr1

,
([Ns2,j2 G]Gp

)pr2 ]

= [[Ns1,j1 G]Gp, [Ns2,j2 G]Gp
]pr1+r2 �

([Ns1,j1+j2+1 G]Gp
)pr1+r2

.

We may assume without loss of generality that s1p + j1 � s2p + j2. If j1 + j2 < p − 2 then

ω
([x1, x2]

)
� 1

p − 1

(
2s1p+j1+j2+2

2(t+1)p
+ j1 + j2 + 2

)
+ r1 + r2.

Since

ω(x1) + ω(x2) = 1
(

2s1p+j1+1 + 2s2p+j2+1

(t+1)p
+ j1 + j2 + 2

)
+ r1 + r2
p − 1 2
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and

2s1p+j1+j2+2 � 2s1p+j1+2 � 2s1p+j1+1 + 2s2p+j2+1,

we obtain that ω([x1, x2]) � ω(x1) + ω(x2). On the other hand, if j1 + j2 � p − 2 then

[x1, x2] ∈ [[Ns1,j1 G]Gp, [Ns2,j2 G]Gp
]pr1+r2

�
([Ns1,j1+j2+1 G][Ns1 ,j1+1 G]p[Ns2,j2+1 G]pGp2)pr1+r2

�
([Ns1+1,j1+j2−p+2 G]p[Ns1,j1+1 G]p[Ns2,j2+1 G]pGp2)pr1+r2

�
([Ns1+1,j1+j2−p+2 G]Gp

)pr1+r2+1
,

and the result follows similarly.
Finally, we need to prove that G is p-radical with respect to ω, i.e. that for every x ∈ G

with ω(x) > p(p − 1)−1 there exists y ∈ G such that x = yp . Suppose x ∈ ([Ns,j G]Gp)p
r
.

Since ω(x) > p(p − 1)−1, it is clear from the definition of ω that r � 1. Thus x ∈ Gp and, by
Proposition 2.1, x = yp for some y ∈ G.

Conversely, let us suppose that G has a p-valuation ω such that G is a p-saturable group.
Define on ((p − 1)−1,+∞] the topology whose open sets are those of the form (ν,+∞] with
ν � (p − 1)−1, together with the empty set. This makes ω a continuous map, since Gν is open
in G. Now, since G is compact, ω(G) is also compact. Thus there exists δ > 0 such that ω(G) ⊆
[(p − 1)−1 + δ,+∞]. Let us see that Ni = {x ∈ G | ω(x) � (p − 1)−1 + δi} defines a potent
filtration of G. It is obvious that {Ni}i∈N form a decreasing series of closed subgroups with trivial
intersection. That they form a central filtration of closed normal subgroup follows from the fact
that if x ∈ Ni and y ∈ G,

ω
([x, y]) � ω(x) + ω(y) � (p − 1)−1 + iδ + (p − 1)−1 + δ � (p − 1)−1 + (i + 1)δ.

Finally, if x ∈ Ni and y1, . . . , yp−1 ∈ G then

ω
([x, y1, . . . , yp−1]

)
� (p − 1)−1 + iδ + 1 + δ(p − 1)

� p(p − 1)−1 + (i + 1)δ > p(p − 1)−1.

Therefore [x, y1, . . . , yp−1] = ap with ω(a) = ω([x, y1, . . . , yp−1]) − 1 � (p − 1)−1 +
(i + 1)δ. Thus a ∈ Ni+1 and [Ni,p−1 G] � N

p

i+1, which yields the last condition of being a
potent filtration. �
Corollary 3.5. Let G be a pro-p group such that γp(G) � Φ(G)p . Then G is a PF-group.

Let K be a finite extension of Qp with ramification index e, and let O be its valuation ring.
This last corollary can be used to provide an alternative proof of Lazard’s result that the Sy-
low pro-p subgroups of GLn(O) and SLn(O) are p-saturable if en < p − 1 (see (3.2.7.5) in
Chapter III of [7]). To see this, let G be one of these Sylow subgroups and note that G is
torsion-free if en < p − 1. Since γen+2(G) � (G′)p for every matrix size n, in particular we
have γp(G) � Φ(G)p for en < p − 1, and the result follows.
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As we could expect from Theorem 3.4, PF-groups can be used in the same way as powerful
groups, uniformly powerful groups or p-saturable groups in order to characterize p-adic analytic
groups.

Corollary 3.6. Let G be a finitely generated pro-p group. Then G is p-adic analytic if and only
if G has an open PF-subgroup.

Proof. The “only if” part is immediate from Theorem 3.4. Conversely, if N is an open PF-
subgroup of G then Np is an open powerful subgroup of G: by part (5) of Proposition 2.1
[Np,Np] � [N,N ]p2

and [N,N ]p2
is contained in (Np)p if p � 3 and in (N2)4 if p = 2.

Consequently G is p-adic analytic. �
We finish this section by giving an example of a p-saturable group G that does not satisfy the

condition γp(G) � Φ(G)p . In particular G will not be a uniformly powerful group.

Example. Consider A = 〈x1, . . . , xp〉 the direct product of p copies of Zp and 〈α〉 ∼= Zp acting
on A by xα

i = xixi+1 for 1 � i � p − 2, xα
p−1 = xp−1x

p
p and xα

p = xp . Let G be the semidirect
product between A and 〈α〉. Consider N1 = G and Ni = 〈xi, xi+1, . . . , xp〉. One has that {Ni}
is a potent filtration of G. Therefore, since G is torsion free, G is p-saturable. But G does not
satisfy the condition γp(G) � Φ(G)p .

4. The correspondence between PF-embedded normal subgroups and PF-embedded
ideals

As in the case of pro-p groups, we can also introduce the concept of a p-saturable Lie al-
gebras. Let L be a finitely generated Zp-Lie lattice. We say that L is p-valued if there exists a
map ω :L → R>0 ∪ {∞}, which we call valuation, such that the following properties hold for all
x, y ∈ L:

(i) ω(x) > (p − 1)−1,
(ii) ω(x) = ∞ if and only if x = 0,

(iii) ω(x − y) � min{ω(x),ω(y)},
(iv) ω([x, y]L) � ω(x) + ω(y),
(v) ω(px) = ω(x) + 1.

If L is p-radical with respect to ω, i.e. if for every x ∈ L with ω(x) > p(p − 1)−1 there exists
y ∈ L such that x = py, then L is called a p-saturable Lie algebra.

In the same way we did for pro-p groups, we can introduce PF-Lie algebras. Consider L
a finitely generated Zp-Lie algebra and {Ii}i∈N a central series of Lie ideals with trivial intersec-
tion. We say that {Ii}i∈N is a potent filtration of L if [Ii ,p−1 L]L � pIi+1. Again we will write
{Ii} instead of {Ii}i∈N. In this case, if I = I1, we say that I is PF-embedded in L. A Zp-Lie
algebra L is a PF-Lie algebra if L is PF-embedded in L. It is easy to check that {[Ii ,L]L} and
{pIi} are again potent filtrations of L. Therefore, as in the case of pro-p groups, [I,L]L and I
will be PF-embedded in L. One can also characterize p-saturable Lie algebras in terms of p-Lie
algebras.



818 J. González-Sánchez / Journal of Algebra 315 (2007) 809–823
Theorem 4.1. Let L be a finitely generated Zp-Lie lattice. Then the following conditions are
equivalent:

(1) L is p-saturable.
(2) L is a PF-Lie algebra.
(3) L/(p[L,L]L + p2L) is a PF-Lie algebra.

Proof. The proof is very similar to that one of Theorem 3.4. �
For a p-saturable Lie algebra we can write the Baker–Campbell–Hausdorff formula as

H(x, y) = x + y +
∑
i∈N

ui(x, y),

where ui(x, y) is a Lie polynomial in x and y with coefficients in Q and p
� n−1

p−1 �
ui(x, y) has

coefficients in Zp (see Theorem 3.2.2, Chapter 4 of [7]). The Baker–Campbell–Hausdorff for-
mula transforms any p-saturable Lie algebra into a p-saturable group. One can also write the
conjugation of an element x by an element y in terms of Lie products in the following way:

H
(
H(−x, y), x

) = y +
n∑

i=1

1

n! [y,n x].

Conversely, if G is a p-saturable group we can define the following operations:

• x + y = limn→∞(xpn
ypn

)p
−n

,

• [x, y]L = limn→∞[xpn
, ypn]p−2n

G .

With this new operations (G,+, [ , ]L) is a p-saturable Lie algebra.
Even more, the two operations defined above are compatible one with each other. The facts

given above are summarized in the following theorem due to Lazard.

Theorem 4.2.

(1) Let L be a p-saturable Lie algebra. Then (L,H) is a p-saturable group.
(2) Let G be a p-saturable group. Then (G,+, [ , ]L) is a p-saturable Lie algebra.

Even more, if L is a p-saturable Lie algebra and G = (L,H), then L = (G,+, [ , ]L). Con-
versely, if G is a p-saturable group and L = (G,+, [ , ]L), then G = (L,H).

Proof. See (3.2.6) in Chapter 4 of [7]. �
It seems natural to ask what happens with PF-embedded subgroups and PF-embedded ideals.

Consider G a PF-embedded subgroup in a p-saturable group. We know that G is also a
p-saturable group. This means that G becomes a p-saturable sub Lie algebra. Our aim in the
following sections will be to prove that, indeed, G is a PF-embedded ideal. Conversely, one can



J. González-Sánchez / Journal of Algebra 315 (2007) 809–823 819
prove that PF-embedded ideals are PF-embedded normal subgroups. We start by proving the
following two technical lemmas.

Lemma 4.3. Let G be a pro-p group and N a PF-embedded subgroup of G. Then, for all x ∈ G

and y ∈ N there exists a ∈ N such that xpn
ypn = (xa)p

n
.

Proof. Consider a potent filtration {Ni} starting at N . We first proceed with the case when N is
finite, and prove it of all Ni . We argue by induction on n. For n = 1 we argue by reverse induc-
tion on i. For i big enough one has that Ni = 1 and the result follows. Suppose that the result is
true for i + 1. Then, by part (2) of Proposition 2.1, xpyp = (xy)p (mod N

p

i+1). Hence, apply-
ing part (4) of Proposition 2.1, xpyp = (xy)pzp with z ∈ Ni+1. Now, by induction hypothesis
xpyp = (xy)pzp = (xyb)p for some b ∈ Ni+1. In particular if we take a = yb we are done.

For the general n we apply the case n = 1 to (xpn−1
)p(ypn−1

)p and to the PF-group Npn−1
.

Then xpn
ypn = (xpn−1

b)p with b ∈ Npn−1
. Again, by part (4) of Proposition 2.1 there exists

c ∈ N such that b = cpn−1
. Applying the induction hypothesis on xpn−1

cpn−1
we are done.

Suppose now that N is not necessarily finite. From previous argument one has that for any
open normal subgroup H of G there exists aH ∈ N such that, xpn

ypn ≡ (xaH )p
n
(mod H) (Note

that NH/H is also a PF-group.) {aH | H open normal subgroup of G} is a net of G. Therefore,
since G is compact, it has a cluster point. Let a be such a point. It is clear that a ∈ N and
xpn

ypn = (xa)p
n
. �

Lemma 4.4. Let L be a p-saturable Lie algebra and I a PF-embedded ideal of L. Consider {Ii}
a potent filtration starting at I . Then for all x ∈ L and y ∈ Ii the following holds:

(1) H(x, y) ≡ x + y (mod Ii+1).
(2) H(H(−x, y), x) ≡ y (mod [Ii ,L]L).

Proof. Let us prove (1). We have that H(x, y) = x + y +∑
n∈N

un(x, y) where the un(x, y) is a

Lie polynomial in x and y and p
� n−1

p−1 �
un(x, y) has coefficients in Zp . Since any Lie polynomial

in x and y of length n and coefficients in Zp is contained in p
� n−1

p−1 �Ii+1, one has that un(x, y) is
contained in Ii+1 and the assertion follows.

In order to prove (2) we recall that H(H(−x, y), x) = y + ∑n
i=1

1
n! [y,n x]L. Since the

p-valuation of n! is bounded above by � n−1
p−1�, it follows that [y,n x]L ∈ p

� n−1
p−1 �[Ii ,L]L. There-

fore 1
n! [y,n x]L ∈ [Ii ,L]L. �

Now we are ready to prove the correspondence between PF-embedded subgroups and PF-
embedded Lie ideals.

Theorem 4.5. Let G = G be a p-saturable group. Then N ⊆ G is a PF-embedded subgroup
of G if and only if N = N is a PF-embedded Lie ideal of G. Even more, in this circumstances
G/N = G/N and [G,N ]L = [G,N ]G.

Proof. Consider N a PF-embedded subgroup of G and {Ni} a potent filtration starting at N .
Since Ni is p-saturable, then Ni is a sub Lie algebra of G. Even more, by part (5) of Proposi-

tion 2.1, if x ∈ Ni and y ∈ G, it follows that [xpn
, ypn ]G ∈ [Npn

,Gpn ]G = [Ni,G]p2n

. Hence,
i G
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by Proposition 2.2, we have that [xpn
, ypn]p−2n

G ∈ [Ni,G]G. Then [Ni ,G]L ⊆ [Ni,G]G, and in
particular [Ni ,G]L � Ni+1 and [Ni ,p−1 G]L ⊆ [Ni,p−1 G]G � N

p

i+1 = pNi+1. Therefore {Ni}
is a potent filtration and N is a PF-embedded Lie ideal of G.

Conversely, consider N a PF-embedded Lie ideal of G and {Ni} a potent filtration starting
at N . Since Ni is a p-saturable Lie algebra, Ni is a p-saturable subgroup of G. Even more, if
x ∈ Ni and y ∈ G, then, by previous lemma, xy = x + z with z ∈ [Ni ,G].

On the other hand, any Lie polynomial of length k(p−1)+1 in x and x+z it will be contained
in pk[N ,G]L. Therefore [x, y]G = H(H(H(−x,−y), x), y) = H(−x, xy) will be contained in
[Ni ,G]L. Thus [Ni,G]G � [Ni ,G]L. Arguing in a similar way as above, one concludes that N

is a PF-embedded subgroup of G and that {Ni} is a potent filtration of G.
The equality [G,N ]L = [G,N ]G follows from the above construction. Finally, the fact that

G/N = G/N follows from the previous two lemmas. �
A direct consequence of the previous theorem is that lower central series and derived series

of the group and of the Lie algebra coincide.

Corollary 4.6. Let G be a p-saturable group and G its corresponding Lie algebra. Then the
lower central series of G and G coincide. In particular G is nilpotent if and only if G is nilpotent
and the nilpotency class of G and G coincide.

Proof. Let γi(G) and γi(G) be the lower central series of G and G, respectively. The corollary
now follows from the previous theorem and from the fact that γi(G) and γi(G) are PF-embedded
in G and G, respectively. �
Corollary 4.7. Let G be a p-saturable group and G its corresponding Lie algebra. Then the
derived series of G and G coincide. In particular G is solvable if and only if G is solvable and
the derived length of G and G coincide.

Proof. Consider G(i) and G(i) the derived series of G and G, respectively. The corollary now
follows from the previous theorem and from the fact that G(i) and G(i) are p-saturable and
G(i+1) and G(i+1) are PF-embedded in G(i) and G(i), respectively. �
5. Normal subgroups of p-saturable group

In this section we prove that a normal subgroup of a p-saturable group contained in Φ(G)

is again p-saturable. First we recall the next theorem which is a key tool to understand normal
subgroups of PF-groups.

Theorem 5.1. Let G be a PF-group and N a closed normal subgroup of G. Then there exists
a closed PF-subgroup T of G containing N and such that for every PF-embedded subgroup M

of T , we have that [Mpi
, T pj ]pk = [Mpr

,Nps ]pt
whenever i + j + k = r + s + t � 1.

Proof. This is a particular case of Theorem 3.7 of [2]. �
We start proving that normal subgroups contained in Gp are p-saturable.
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Proposition 5.2. Let G be a PF-group and N a closed normal subgroup of G contained in Gp .
Then there exists a filtration

N = N1 � N2 � N3 � · · ·

such that
⋂∞

i=1 Ni = 1 and [Ni,N] � N
p

i+1. In particular N is a PF-group.

Proof. Consider M = 〈x ∈ G | xp ∈ N〉. Since N � Gp we have that N � Mp . On the
other hand M/Nγp(M) is a regular group generated by elements of order p, therefore
(M/Nγp(M))p = 1. Then Mp � Nγp(M).

By previous theorem there exists a normal subgroup T of G that contains M and a potent
filtration {Ti} of T starting at T such that [T p

i , T ] = [Mp,Ti]. We start proving that [Mp,Ti] �
[N,Ti]. By Lemma 4.9 in Chapter 4 of [4]

[
Mp,Ti

]
� [N,Ti]

[
γp(M),Ti

]
� [N,Ti][Ti,p M]

� [N,Ti]
[
T

p

i+1, T
]
� [N,Ti]

[
Mp,Ti+1

]
.

Applying this argument several times we have that for all k, [Mp,Ti] � [N,Ti][Mp,Ti+k].
Therefore [Mp,Ti] � [N,Ti]. Now we conclude that

[N,N ] �
[
Mp,Mp

]
�

[
T p,T p

]
�

[
Mp,T

]p � [N,T ]p

and

[[N,Tk],N
]
�

[
Mp,Tk,M

p
]
�

[[
T p,Tk

]
, T p

]
�

[
T

p

k+1, T
]p �

[
Mp,Tk+1

]p � [N,Tk+1]p.

That is, N � [N,T1] � [N,T2] � [N,T3] � · · · satisfies the conclusions of the proposition. �
Corollary 5.3. Let G be a p-saturable group and N a closed normal subgroup of G. Then N is
a Lie subalgebra of G = G if and only if Np = {np | n ∈ N}.

Proof. Consider x, y ∈ N , then x + y = limn→∞(xpn
ypn

)p
−n

. On the other hand Np is p-
saturable. Then, since Np = {np | n ∈ N} and by Proposition 2.1, Npn = {npn | n ∈ N}. There-
fore xpn

ypn = zpn
for some z ∈ N . Then by Proposition 2.2, (xpn

ypn
)p

−n = z. In particular,
x + y = limn→∞(xpn

ypn
)p

−n ∈ N .

For the Lie product we have that [x, y]L = limn→∞[xpn
, ypn]p−2n

G . But, if we take a subgroup

T as in Theorem 5.1, we have that [xpn
, ypn]G � [Npn

,Npn ]G = [N,T ]p2n

G , and arguing as
above we have that [x, y]L ∈ N . Therefore N is a Lie subalgebra of G. �
Corollary 5.4. Let p � 3 and let G be a finitely generated torsion free pro-p group such that
γp−1(G)�Gp . Then G is p-saturable and all closed normal subgroups are Lie subalgebras of
G = G.
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Proof. Since G is a potent group, γp(G) � [Gp,G] = [G,G]p (see Theorems 3.1 and 3.2
of [3]). Therefore, by Theorem 3.4, G is p-saturable and applying Theorem 6.1 of [3] we have
that all normal subgroups of G satisfy the condition of the previous corollary. �

In order to extend the previous proposition to more normal subgroups we need to generalize
the definition of potent filtrations and PF-groups. Consider G a pro-p group and let 1 � k � p−1
and m � 1. We say that a normal subgroup N is PF-embedded in G of type (k,m) if there exists
a decreasing central series of closed normal subgroups with trivial intersection {Ni} such that
[Ni,k G] � N

pm

i+1. In this circumstances, we say that {Ni} is a potent filtration of type (k,m).
We say that a pro-p group G is a PF-group of type (k,m) if G is PF-embedded in G of type
(k,m). PF-groups of type (k,m) generalize the concept of k-powerful groups (see [8]). The next
theorem constitutes a key tool to understand PF-groups of type (k,m).

Theorem 5.5. Let G be a PF-group of type (k,m) and N a closed normal subgroup of G. Then
there exists T a closed PF-subgroup of type (k,m) of G containing N and such that for every
PF-embedded subgroup of type (k,m) M of T , we have that [Mpi

, T pj ]pk = [Mpr
,Nps ]pt

whenever i + j + k = r + s + t � k.

Proof. The proof is the same as that of Theorem 5.1. �
Lemma 5.6. Let G be a PF-group of type (k,m) with k + 1 � p − 1 and N a closed normal
subgroup of G. Then N is a PF-group of type (k + 1,m).

Proof. Let N be a normal subgroup of G. By previous theorem there exists a subgroup T

of G that contains N and a potent filtration {Ti} of type (k,m) starting at T such that [T pk

i , T ] =
[N,Ti]pk

. Then [N,k+1 N ] � [T pk

2 , T ] = [N,T2]pk
and [[N,Ti],k+1 N ] � [T pk

i+1, T ] =
[Ti+1,N ]pk

. Therefore

N � [N,T2] � [N,T3] � [N,T4] � · · ·

satisfies the conditions of a potent filtration of type (k,m). �
Corollary 5.7. Let G be a PF-group and N a closed normal subgroup of G contained in Φ(G).
Then N is a PF-group.

Proof. The case p = 2 follows from Proposition 5.2. For the case p � 3, consider Ti a potent
filtration starting at G and Hi = [Ti,G]T p

i . Then [Hi,p−2 Φ(G)] = [[Ti,G]T p
i ,p−2 Φ(G)] �

[[Ti,G],p−2 Φ(G)][T p
i ,p−2 Φ(G)]. Now, since

[[Ti,G],p−2 Φ(G)
]
� [Ti,p−1 G]p[Ti,p G] �

(
T

p

i+1

)p[Ti+1,G]p � H
p

i+1

and

[
T

p
,p−2 Φ(G)

]
�

(
T

p )p[Ti+1,G]p � H
p

,
i i+1 i+1
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it follows that [Hi,p−2 Φ(G)] � H
p

i+1. Then Φ(G) is a PF-group of type (p − 2,1) and by
previous lemma, N is a PF-group. �

Now we are prepared to prove the main result of this section concerning normal subgroups of
p-saturable groups.

Corollary 5.8. Let G be a p-saturable group and N a closed normal subgroup of G contained
in Φ(G). Then N is p-saturable.

Proof. By previous corollary, N is a PF-group. Since G is torsion free and of finite rank, then N

is also torsion free and finitely generated. Then, by Theorem 3.4, we have that N is a p-saturable
group. �

We finish this section by giving an example of a normal subgroup of a p-saturable group that
is not p-saturable.

Example. Let A = 〈x1, . . . , xp〉 the direct product of p copies of Zp and B = 〈α〉 ∼= Zp . Con-
sider the semidirect product between A and B given by the action xα

i = xixi+1 if 1 � i � xp−1,

xα
p−1 = xp−1x

p2

p and xα
p = xp . It is clear that γp(G) � Gp2

. Therefore G is a PF-group. Take

N = 〈α,x1, x2, . . . , xp−1, x
p2

p 〉. N is a normal subgroup of G but αpx
p

1 is not a p-power in N .
Therefore N cannot be a PF-group.

References

[1] J. Dixon, M. du Sautoy, A. Mann, D. Segal, Analytic pro-p Groups, second ed., Cambridge Univ. Press, 1999.
[2] G. Fernández-Alcober, J. González-Sánchez, A. Jaikin-Zapirain, Omega subgroups of pro-p groups, Israel J. Math.,

in press.
[3] J. González-Sánchez, A. Jaikin-Zapirain, On the structure of normal subgroups of potent p-groups, J. Algebra 276

(2004) 193–209.
[4] E.I. Khukhro, p-Automorphisms of Finite p-Groups, Cambridge Univ. Press, 1998.
[5] B. Klopsch, On the Lie theory of p-adic analytic groups, Math. Z. 249 (2005) 713–730.
[6] B. Klopsch, Groups with less than n subgroups of index n, Math. Ann. 333 (2005) 67–85.
[7] M. Lazard, Groupes analytic p-adic, Publ. Math. Inst. Hautes Études Sci. 26 (1965) 389–603.
[8] A. Mann, F. Posnick-Fradkin, Subgroups of powerful groups, Israel J. Math. 138 (2003) 19–28.
[9] L. Ribes, P. Zalesskii, Profinite Groups, Springer, 2000.

[10] L. Wilson, The torsion subgroup of p-adic analytic pro-p groups, J. Group Theory 8 (2005) 195–201.


