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In this work we shall consider two classes of weakly second-order periodically correlated
and strongly second-order periodically correlated processes with values in separable
Hilbert spaces. The periodogram for these processes is introduced and its statistical
properties are studied. In particular, it is proved that the periodogram is asymptotically
unbiased for the spectral density of the processes, where the type of the convergence is
fully specified.
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1. Introduction

In this paper we let X be a separable Hilbert space with an inner product (·, ·)X , and consider a random sequence
ξ = {ξ n, n ∈ Z} in X , where each ξ n : Ω → X is F /B measurable, (Ω,F , P) is a probability space, B is the Borel
field in X , and Z is the set of integers. We refer to ξ as an X-valued discrete time stochastic process. This process is called
second order (SO in abbreviation) if every ξ n ∈ L2(Ω,F , P), where the latter is the Hilbert space of all mean zero complex
random variables u defined on (Ω,F , P) with E|u|2 < ∞, equipped with the inner product Euv, where E stands for the
expectation. The process ξ is called weakly second order (WSO in abbreviation) if ξ nx = (ξ

n, x)X ∈ L2(Ω,F , P), and strongly
second order (SSO in abbreviation) if ‖ξ n‖X ∈ L2(Ω,F , P), for all n ∈ Z, x ∈ X .
An X-valued (WSO or SSO) stochastic process is said to be periodically correlated (PC in abbreviation) if there exists an

integer T > 0 such that for every x, y ∈ X and m, n ∈ Z, Eξ nx ξmy = Eξ
n+T
x ξm+Ty . The smallest such T is the period of the

process. If T = 1, then the process is called stationary.
Basic spectral foundations of Hilbert space-valued WSO stationary processes are established by Rozanov [1], Salehi and

Soltani [2], among others. Hilbert space-valued SSO stationary processes are also intensively studied by different authors:
Gihman and Skorohod [3], Bosq [4], Chen andWhite [5], among others. Hilbert space-valued WSO PC processes are studied
by Soltani and Shishebor [6], where basic spectral structures of such processes are provided.
In this work, we introduce the periodogram of periodically correlated (PC) processes of type WSO or SSO with values in

separable Hilbert spaces. The periodogram is commonly defined on a segment of the process; see Section 4. We prove that
the periodogram is asymptotically unbiased for the corresponding spectral density, as the length of the segment tends to
infinity. The asymptotic unbiasedness of the periodogram appears to be in the weak sense for WSO PC processes, and in
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the strong sense for SSO PC processes, as given in Theorem 1. Our methodology is to derive the results for an auxiliary PC
process, which is more convenient to work with, then extend the results to the process itself.
Periodograms are useful tools in time series for estimating the spectral densities and highlighting active frequencies.

Although periodograms of multivariate stationary processes are intensively studied, to the best of our knowledge this is
the first work on periodograms of infinite dimensional PC processes. This work is inspired by the work of Soltani and
Azimmohseni [7], Hurd [8] on periodograms of univariate PC processes; and also Pourahmadi and Salehi [9]. The work
of Makagon, Miamee, Salehi and Soltani [12] gives insights to the spectral domin of PC processes. This article is organized
as follows.
Preliminaries are given in Section 2. In Section 3, basic properties of the finite Fourier transform for various segments

corresponding to the PC processes are introduced and studied. Periodograms are defined in Section 4, and are proved to be
asymptotically unbiased for the corresponding spectral densities.

2. Notation and preliminaries

Following the notions and terminology given in Section 1, let ξ = {ξ n, n ∈ Z} be an X-valued WSO or SSO PC process.
We also write ξ = {ξ nx , n ∈ Z, x ∈ X}, where every ξ nx , as a function in x, is in L(X), where L(X) stands for the bounded
linear operators on X . In this case, every ξ n is also specified by {ξ nei , i = 1, 2, . . .}, where {e1, e2, . . .} is an orthonormal basis
for X . Evidently every SSO PC process is also WSO PC, and

∑
∞

i=1 E|(ξ(·), ei)X |
2 <∞. Under the latter condition, every WSO

PC process is SSO PC.
Univariate second-order PC processes were introduced and studied by Gladyshev [10]. The X-valued WSO PC processes

were studied by Soltani and Shishebor [6]. It is proved in this reference that such a process is harmonizable, i.e.,

ξ n =

∫ 2π

0
e−inλZ(dλ), n ∈ Z,

where the spectral random measure Z does not necessarily have orthogonal increments, but possesses the property that
EZ(ds)xZ(dt)y = (x, F(ds, dt)y) defines a so called spectral distribution F(·, ·) on [0, 2π)×[0, 2π), which is supported by
the parallel lines dk = {(s, t) ∈ [0, 2π)2, s− t = 2πk

T }, k = 1− T , . . . , T − 1. The spectral distribution is indeed specified
by T , L(X)-valued distributions {F0, F1, . . . , FT−1} on [0, 2π) such that the matrix F defined by

F (ds) =
[
Fp−l

(
ds+

2πp
T

)]
p,l=0,...,T−1

, s ∈
[
0,
2π
T

)
,

is positive definite; see [6]. We also assume that the spectral density ddsF (ds) exists:

f(s) =
[
fp−l

(
ds+

2πp
T

)]
l,p=0,...,T−1

, s ∈
[
0,
2π
T

)
.

An alternative time dependent spectral representation is also given by Soltani and Shishebor [6,13], namely

ξ nx =

∫ 2π

0
e−insΦ(ds)Vn(s)x, n ∈ Z,

in the sense that

Eξ nx ξmy =
∫ 2π

0
e−i(n−m)s(Vn(s)x, Vm(s)y)Xds, n,m ∈ Z,

where Φ is an orthogonally scattered random measure, and Vn(s) =
∑T−1
k=0 e

−i 2πknT ak(s + 2πk
T ) is a sequence of T -periodic,

L(X)-valued functions for s ∈ [0, 2π) and n ∈ Z. Furthermore f(s) = A∗(s)A(s), s ∈ [0, 2πT ), whereA(s) = [aj−k(s+
2π j
T )]k≤j,

k, j = 0, . . . , T − 1. The operator-matrix A is the Cholesky factor of the spectral density f.
The mapping K(ξ nx ) = e

−insVn(s)x establishes an isometry between the time domain and the spectral domain of the
PC process ξ. The spectral domain of ξ is a closed subset of L2(X), generated by {e−in· Vn(·)x, n ∈ Z, x ∈ X}. We recall
that L2(X) is the Hilbert space of all X-valued functions u on [0, 2π) such that

∫ 2π
0 ‖u(s)‖

2
Xds <∞, with the inner product

(u, v)L2(X) =
∫ 2π
0 (u(s), v(s))Xds. Note that Eξ nx ξmy = (K(ξ

n
x ),K(ξ

m
y ))L2(X).

Wenote that aWSOPCprocess is SSO if and only if
∑
∞

i=1

∫ 2π
0 ‖Vn(s)ei‖

2
Xds <∞, for n = 0, . . . , T−1. It is straightforward

to verify that this is equivalent to
∑
∞

i=1 ‖an(s)ei‖
2
X ∈ L

1([0, 2π), ds) for n = 0, . . . , T − 1. Also E(
∑
∞

i=1 |(ξ
n(·), ei)X |2) =∑

∞

i=1

∫ 2π
0 ‖Vn(s)ei‖

2
Xds < ∞. It readily follows that the matrix-operator f is the spectral density of a SSO PC process if and

only if it is nuclear, i.e. each of its entries is nuclear. Equivalently, the matrix-operator A is Hilbert–Schmidt.
Let us record the following properties that will be used in subsequent sections. (i) Φ defines a WSO X-valued random

measure; (ii) Φ(ds, ω)Vn(s) defines a SSO X-valued random measure. It follows from (i) that ηn =
∫ 2π
0 e−insΦ(ds), n ∈ Z,

defines an X-valued WSO stationary process.
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3. Asymptotic equivalences

Let dNζ (λ) = N
−1/2∑N−1

t=0 ζ
teitλ, λ ∈ [0, 2π), denote the finite Fourier transform (FFT) of a segment ζ 1, ζ 2, . . . , ζ N in X .

As is customary, we define the FFT terms to be step functions with jumps at Fourier frequencies 2πkN , k = 0, . . . ,N−1, and
drop the superscript N whenever there is no ambiguity.
Let ξ be an X-valued (WSO or SSO) process, and let {ξ 1, . . . , ξN} be a segment of ξ. We assume N = mT . Also let

ξ̃ nN = N
−1/2

N−1∑
p=0

e−inλpdη(λp)Vn(λp), n ∈ Z.

Clearly, if ξ is SSO, then dNξ (λ) and d
N
ξ̃
(λ), λ ∈ [0, 2π) are SSO. It is straightforward to verify that

E|dη(λp)Vn(λp)ei|2 = 2π ‖Vn(λp)ei‖2X , and E(dη(λp)Vn(λp)x)(dη(λq)Vn(λq)y) = 0,
p, q = 0, . . . ,N − 1, p 6= q. Therefore dη(λp)Vn(λp), p = 0, . . . ,N − 1, possesses the covariance operator
[Bη,n(p, q)]p,q=0,...,N−1, where Bη,n(p, q) = 0 for p 6= q and Bη,n(p, p) = V ∗n (λp)Vn(λp), which is nuclear if the process is
SSO. This also implies that the X-valued random variables dη(λp)Vn(λp), p = 0, . . . ,N−1, are pairwise uncorrelated. It will
be more convenient to work with ξ̃ and dξ̃ rather than ξ and dξ . We will show in this section that the corresponding terms
share the same asymptotic properties.
TheDirichlet kernelDN(θ) =

∑N−1
t=0 e

itθ and the Fejer kernelKN(θ) ≡ |DN(θ)|2 /(2πN) = sin2(Nθ/2)/{(2πN) sin2(θ/2)},
θ ∈ [0, 2π), are useful tools in the theory of Fourier transformations. These kernels have potential applications in the spec-
tral estimation of stationary processes. The following kernel which appears to be useful in the spectral estimation of PC
processes was introduced by Soltani and Azimmohseni [7]:

SN(θ; η, η′) =
DN(θ − η)DN(θ − η′)

N
, θ ∈ [0, 2π), η, η′ ∈ [0, 2π).

It has the following properties: (i) SN(θ; η, η) = 2πKN(θ − η), where KN is the Fejer kernel; (ii) SN(θ; η, η′)→ 0, N →∞,
for η 6= η′, θ ∈ [0, 2π), θ 6= η and η′; (iii) for any 0 < δ < 1

2 |η−η
′
|, |SN(θ; η, η′)| < 1/ sin2( δ2 ),N ≥ 1, θ ∈ [0, 2π), η, η

′
∈

[0, 2π), η 6= η′.
Our first asymptotic result below shows that the PC process ξ̃ converges to ξ . For x ∈ X, n = 0, . . . , T − 1, let

us set un,x(θ) = ‖Vn(θ)x‖2X , vn(θ) =
∑
∞

i=0 ‖Vn(θ)ei‖
2
X , and also set un,x(θ, θ

′) = (Vn(θ)x, Vn(θ ′)x)X , vn(θ, θ ′) =∑
∞

i=0(Vn(θ)ei, Vn(θ
′)ei)X .

Lemma 1. (i) Let ξ be a WSO PC process for which un,x(·), n = 0, . . . , T − 1, are continuous and of bounded variation on
[0, 2π). Then for each t ∈ Z, x ∈ X,

E|ξ̃ tx − ξ
t
x |
2
→ 0, N →∞. (3.1)

(ii) Let ξ be a SSO PC process for which vn(·), n = 0, . . . , T − 1, are continuous and of bounded variation on [0, 2π). Then for
each t ∈ Z,

E‖ξ̃ t − ξ t‖2X → 0, N →∞. (3.2)

Proof. It follows from the Kolmogorov isomorphism that the terms in (3.1) and (3.2) are respectively equal to∫ 2π

0

∥∥∥∥∥ 1N
N−1∑
p=0

e−iλptDN(λp − θ)Vt(λp)x− e−itθVt(θ)x

∥∥∥∥∥
2

X

dθ,

and ∫ 2π

0

∞∑
i=0

∥∥∥∥∥ 1N
N−1∑
p=0

e−iλptDN(λp − θ)Vt(λp)ei − e−itθVt(θ)ei

∥∥∥∥∥
2

X

dθ,

which can be written as aNt + b
N
t − e

N
t − e

N
t , where for the WSO process

aNt =
∫ 2π

0

1
N2

N−1∑
p,p′=0

e−iλpt+iλp′ tDN(λp − θ)DN(λp′ − θ)ut,x(λp, λp′)dθ,

bNt =
∫ 2π

0
ut,x(θ)dθ,

eNt =
1
N

N−1∑
p=0

e−iλpt
∫ 2π

0
DN(λp − θ)eitθut,x(λp, θ)dθ;
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the same expression for the SSO process will be true if the u functions are replaced by the v functions. Wewill show that the
limits of aNt and e

N
t are the same as that of b

N
t . For a

N
t , by using the facts that

∫ 2π
0 DN(λ− θ)DN(λ∗ − θ)dθ = 2πDN(λ− λ∗),

and DN(λp − λp′) = N1(p = p′) for the Fourier frequencies, we deduce that aNt =
2π
N

∑N−1
p=0 ut,x(λp), which converges

to
∫ 2π
0 ut,x(θ)dθ < ∞. For eNt , let CN,M =

1
N

∑N−1
p=0 e

−iλpt
∫ 2π
0 DM(λp − θ)eitθut,x(λp, θ)dθ , and CN = 2π

N

∑N−1
p=0 ut,x(λp).

Under the assumption that the u functions are continuous and are of bounded variation on [0, 2π), the integral term in CN,M
converges to 2πeiλptut,x(λp) uniformly in λp, as M → ∞; consequently CN,M converges to CN uniformly in N as M → ∞.
Therefore limN→∞ eNt = limN→∞ CN,N = limN→∞ limM→∞ CN,M = limN→∞ CN =

∫ 2π
0 ut,x(θ)dθ. The proof is complete. �

Let us highlight some applications of Lemma 1. It can be used to test whether a segment ξ 1, . . . , ξ n is a segment of a
PC process with given {V0(·), . . . , Vn(·)}. More precisely, by replacing ξ̃ by ξ in dNξ̃ (λ), one can solve the resulting linear
equations for {dη(λp), p = 0, . . . ,N − 1} and then test whether the solutions are the FFT of a white noise process.
Also, since E|ξ̃ nNx|

2
X = (2π)/N

∑N−1
p=0 un,x(λp), and E‖ξ̃

n
N‖
2
X = (2π)/N

∑N−1
p=0 vn(λp), n ∈ Z,N = 1, 2, . . ., it readily

follows that for large N the contribution of every Fourier frequency to the variances of a WSO or SSO PC process can be
measured by solving a number of simultaneous equations. We note that the variances are periodic too.
In what follows, we prove that the mean square deviation between dN

ξ̃
(λ) and dNξ (λ) goes to zero as N tends to infinity,

under the mild assumption of continuity of the Cholesky factor. Let us introduce some functions that will be useful in the
following lemma. Let

hk,x(θ) =
∥∥∥∥ak (θ + 2πkT

)
x
∥∥∥∥2
X
, gk(θ) =

∞∑
i=0

∥∥∥∥ak (θ + 2πkT
)
ei

∥∥∥∥2
X
,

hk,k′,x(θ, θ ′) =
(
ak

(
θ +

2πk
T

)
x, ak′

(
θ ′ +

2πk′

T

)
x
)
X
,

gk,k′(θ, θ ′) =
∞∑
i=0

(
ak

(
θ +

2πk
T

)
ei, ak′

(
θ ′ +

2πk′

T

)
ei

)
X
,

x ∈ X and k = 0, . . . , T − 1. We also note that

K(dξ (λ)x) = N
−1
2

N−1∑
t=0

eit(λ−θ)Vt(θ)x = N
−1
2

T−1∑
k=0

DN

(
λ− θ −

2πk
T

)
ak

(
θ +

2πk
T

)
x,

andK(dξ̃ (λ)x) = N
−1
2
∑N−1
t=0 e

itλK(ξ̃ t) is equal to

N
−3
2

T−1∑
k=0

N−1∑
p=0

DN

(
λ− λp −

2πk
T

)
DN(λp − θ)ak

(
λp +

2πk
T

)
x.

Lemma 2. (i) Let ξ be a WSO PC process for which hn,x(·), n = 0, . . . , T − 1, are continuous on [0, 2π). Then at every
λ ∈ [0, 2π),

E|dξ̃ (λ)x− dξ (λ)x|
2
→ 0, x ∈ X, N →∞. (3.3)

(ii) Let ξ be a SSO PC process for which gn(·), n = 0, . . . , T − 1, are continuous on [0, 2π). Then at every λ ∈ [0, 2π),

E‖dξ̃ (λ)− dξ (λ)‖
2
→ 0, N →∞. (3.4)

Proof. Let us fix λ ∈ [0, 2π), then for each N > 1 choose Fourier frequencies λq(N) such that λq(N) ≤ λ < λq(N)+1, and
λq(N) → λ, as N →∞. Note that the terms in (3.3) and (3.4) are respectively equal to

E
∣∣dξ̃ (λ)x− dξ (λ)x∣∣2 = ∫ 2π

0
‖K(dξ̃ (λ)x)−K(dξ (λ)x)‖2Xdθ,

and

E‖dξ̃ (λ)− dξ (λ)‖
2
=

∫ 2π

0

∞∑
i=0

‖K(dξ̃ (λ)ei)−K(dξ (λ)ei)‖2Xdθ,

which can be written as ANλ + B
N
λ − E

N
λ − E

N
λ ,where, for each WSO process,

ANλ =
T−1∑
k=0

∫ 2π

0
KN

(
λq(N) − θ −

2πk
T

)
hk,x(θ)dθ +

∑
k6=k′

∫ 2π

0
SN

(
θ, λq(N) −

2πk
T
, λq(N) −

2πk′

T

)
hk,k′,x(θ, θ)dθ,
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BNλ =
1
N

T−1∑
k,k′=0

N−1∑
p=0

SN

(
λp, λq(N) −

2πk
T
, λq(N) −

2πk′

T

)
hk,k′,x(λp, λp),

ENλ =
1
N2

∫ 2π

0

T−1∑
k,k′=0

N−1∑
p=0

DN

(
θ +

2πk
T
− λq(N)

)
DN

(
λp +

2πk′

T
− λq(N)

)
DN(λp − θ)hk,k′,x(θ, λp)dθ.

The same expressions for the SSO processes will hold if the h functions are replaced by the g functions. Let us treat these
terms one by one. Under the continuity assumption, the integral involved in the first term of ANλ equals ‖ak(λq)x‖

2
X , which

converges to ‖ak(λ)x‖2X for each k as N → ∞. The second term in A
N
λ converges to zero. Indeed, we note that for k 6= k

′,
SN(θ, λq(N)− 2πk

T , λq(N)−
2πk′
T )→ 0 for every θ ∈ [0, 2π) except for θ = λq(N)− 2πk

T and θ = λq(N)−
2πk′
T . Moreover since

a given θ cannot be equal to these exception points simultaneously, it follows from the property (iii) of the SN(·, ·, ·) that
for a.e. θ , w.r.t. the Lebesgue measure,∣∣∣∣SN (θ, λq(N) − 2πkT , λq(N) −

2πk′

T

)∣∣∣∣ ≤ 1
sin2

(
δ
2

) ,
where δ < π |k−k′|

T . Since
∫ 2π
0 hk,k′,x(θ, θ)dθ <∞, we conclude, using theDominatedConvergence Theorem, that the integral

in the second term in ANλ converges to zero. Therefore A
N
λ →

∑T−1
k=0 ‖ak(λ)x‖

2
X as N → ∞. Similarly, it can be shown that

BNλ and E
N
λ have the same limiting values as A

N
λ , and then we conclude the lemma. �

Corollary 1. Under the assumption of Lemma 2, for λ, λ′ ∈ [0, 2π),

E|dξ̃ (λ)xdξ̃ (λ′)x− dξ (λ)xdξ (λ′)x| → 0, N →∞, x ∈ X,

for WSO PC processes; and for SSO PC processes,

E

∣∣∣∣∣ ∞∑
i=0

{dξ̃ (λ)eidξ̃ (λ′)ei − dξ (λ)eidξ (λ′)ei}

∣∣∣∣∣→ 0, N →∞.

4. Periodograms

For a segment ζ 1, . . . , ζ N in the X ,

dTζ (λ) =
(
dζ (λ), . . . , dζ

(
λ+

2π(T − 1)
T

))′
, λ ∈

[
0,
2π
T

)
. (4.1)

If ξ is an X-valued PC (WSO or SSO) process with period T , then we call {dTξ (λ), λ : Fourier frequency} the sample finite
Fourier transform (SFFT). The periodogram for a WSO as well as a SSO PC process is defined to be

ITξ (λ) = [Ik,`(λ)]k,`=0,...,T−1, λ ∈

[
0,
2π
T

)
, (4.2)

(Ik,`(λ)x, y) = dξ

(
λ+

2πk
T

)
xdξ

(
λ+

2π`
T

)
y, x, y ∈ X . (4.3)

By using Theorem 12.8 of Rudin [11], we observe that each Ik,`(λ) is a random L(X)-valued function on [0, 2πT ). Moreover,
for WSO or SSO processes,

E|(Ik,`(λ)x, y)| <∞, E‖Ik,`(λ)x‖2 <∞, k, ` = 0, . . . , T − 1,

respectively, Let us give the main result of this article.

Theorem 1. Let ξ be an X-valued PC process with the spectral density f(λ), λ ∈ [0, 2π). Let A(λ), λ ∈ [0, 2π) be the Cholesky
factor of f. Assume, for every x ∈ X, A(λ)x is continuous in λw.r.t. the norm in X. Also let dTξ (λ) and I

T
ξ (λ) be the corresponding

SFFT and periodogram, respectively. Then:
(i) If ξ is WSO then for k, ` = 0, . . . , T − 1,

E(Ik,`(λ)x, y)X −→ (2π fk,`(λ)x, y)X , N →∞, x, y ∈ X . (4.4)

(ii) If ξ is SSO then for k, ` = 0, . . . , T − 1,

E‖Ik,`(λ)x− 2π fk,`(λ)x‖2X −→ 0, N →∞, x ∈ X . (4.5)

(iii) For arbitrary frequencies λ1, . . . , λJ in [0, 2πT ), SFFT d
T
ξ (λ1), . . . , d

T
ξ (λJ) are asymptotically uncorrelated with mean zero

and covariance operators f(λ1), . . . , f(λJ).
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Proof. Indeed, we provide (4.4) and (4.5) for the periodogram of the auxiliary process ξ̃, and then use Lemma 2 and
Corollary 1 to deduce them for the periodogram of the process ξ. It is straightforward to verify that for Fourier frequencies
λj =

2π j
T that are in [0,

2π
T ),

dT
ξ̃
(λj) = A(λj)dTη(λj),

where adη is understood as dηa, for a and dη entries of A(λj) and dTη(λj), respectively. This gives

EdT
ξ̃
(λp)dTξ̃ (λp)

∗
= A(λp)E

(
dTη(λp)d

T
η(λp)

∗
)
A(λp)∗ = 2π f(λp), (4.6)

in the sense that the inner products between the corresponding entries applied to x and y are the same, for all x, y ∈ X . Thus,
in this sense, at Fourier frequencies in [0, 2πT ),

EIT
ξ̃
(λp) = 2π f(λp). (4.7)

For an arbitrary frequency in λ ∈ [0, 2πT ), choose a sequence of Fourier frequencies {λp(N)} that converge to λ, then apply
(4.7) together with Lemma 2 to conclude the result. For (iii) note that dT

ξ̃
(λp) and dT

ξ̃
(λq) are uncorrelated for p 6= q. Then

use Lemma 2 and (4.6). �
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