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ABSTRACT In the methodology development for statistical prediction of protein structures, the founders of different methods usually
selected different sets of proteins to test their predicted results. Therefore, it is hard to make a fair comparison according to the results
they reported. Even if the predictions by different methods are performed for the same set of proteins, there is still such a problem: a
method better than the other for one set of proteins would not necessarily remain so when applied to another set of proteins. To tackle
this problem, a Monte Carlo simulation method is proposed to establish an objective criterion to measure the accuracy of prediction for
the protein folding type. Such an objective accuracy is actually corresponding to the asymptotical limit generated dunng the Monte Carlo
simulation process. Based on that, it has been found that the average objective accuracy for predicting the all-a, all-#, a + ,, and a/l8
proteins by the least Euclid's distance method (Nakashima, H., K. Nishikawa, and T. Ooi. 1986. J. Biochem. 99:152-162) is 73.0% and
that by the least Minkowski's distance method (Chou, P. Y. 1989. Prediction in Protein Structure and the Principles of Protein Conforma-
tion. Plenum Press, New York. 549-586) is 70.9%, indicating that the former is better than the latter. However, according to the original
reports, the latter claimed a rate of correct prediction with 79.7% but the former with only 70.2%, leading to a completely opposite
conclusion. This indicates the necessity of establishing an objective criterion, and a comparison is meaningful only when it is based on
the objective criterion. The simulation method and the idea developed here also can be applied to examine any other statistical prediction
methods.

1. INTRODUCTION

Proteins of known structures are usually classified into
five folding types: all-a, all-:, a + (3, a/(3, and r (irregu-
lar) proteins (Levitt and Chothia, 1976; Richardson and
Richardson, 1989). It has been found that the folding
type of a protein is relevant to its amino acid composi-
tion (Chou, 1980, 1989; Nakashima et al., 1986). There-
fore, the folding type of a protein can be predicted from
its amino acid frequencies of occurrence. Such predic-
tion was performed for 64 structurally known proteins,
in which there are 19 all-a proteins, 15 all-: proteins, 14
a + f3 proteins, and 16 a/(3 proteins, and the average rate
of correct prediction was reported to be 79.7% (Chou,
1989). On the other hand, Nakashima et al. (1986) con-
sidered a set of 135 structurally known proteins, in
which there are 31 all-a, 34 all-:, 27 a + 1,39 a/(3, and 4
r (irregular) proteins. If the four irregular folding type
proteins are not taken into account, the average rate of
correct prediction by them would be 70.2%. The predic-
tion by Chou (1989) was based on the least Minkowski's
distance principle, and the prediction by Nakashima et
al. (1986) was based on the least Euclid's distance princi-
ple. The details ofthe predicted results by means ofthese
two methods are summarized in Table 1.

After carefully analyzing the data listed in Table 1, one
may raise the following questions. Although the average
accuracy predicted by the least Euclid's distance method
(Nakashima et al., 1986) is only 70.2%, which is lower
than 79.7%, the average accuracy by the least Min-
kowski's distance method, it does not necessarily mean
that the least Euclid's distance method is poorer because
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the prediction by it was performed for a set of 135 - 4 =

131 regular folding type proteins rather than a set of 64
proteins, as done by the least Minkowski's distance
method (Chou, 1989). Furthermore, even if the predic-
tions by different methods are performed for an exactly
same set ofproteins, the accountability ofthe results thus
obtained could still be questionable. This is because a

method, which yields the best predicted results for a set
of proteins, does not necessarily guarantee to remain so
when applied to another set of proteins. In other words,
the predicted accuracy is, to some extent, dependent on
the set of proteins selected by the predictor. Only when
the number of proteins considered is sufficiently large
can the bias due to the selection ofdifferent sets be elimi-
nated. Unfortunately, so far there are only -500 pro-

teins whose three-dimensional structures have been de-
termined. In view of this, can we find an approach
through which the comparison of various prediction
methods can be carried out according to an objective
criterion? The present study was initiated in an attempt
to tackle such a problem. Below, we shall resort to the
Monte Carlo simulation to overcome the difficulty
caused by the limited number ofstructurally known pro-
teins.

II. METHODS
The principle and process of the Monte Carlo simulation can be illus-
trated as follows.

A. Simulation for the all-ai proteins
Suppose that v,(a), v2(a), . . ., v20(a) are, respectively, the frequen-
cies of 20 amino acids in the a folding type proteins. Note that each of
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TABLE 1 The rates of correct prediction reported by the founders of the two different methods in literatures

Rate of correct prediction

Method a type ,B type a + f, type a/fl type r type Average accuracy*

Nakashima et al.t 27 = 87.1% 232 = 64.7% 2° = 37.0% 33 = 84.6% 2 = 50.0%§ 92 = 70.2%31 34 27 39 4 131

Choull 16 = 84.2% '2 = 80.0% 4 = 78.6% '2 = 75-0% - = 79.7%

* The average accuracy is the rate of total number of correct prediction for the four regular (i.e., a, fi, a + fi, and a/fl) type proteins divided by the
total number of corresponding prediction events. The denominator in this table represents the number of prediction events and the numerator
represents that of the corresponding correct prediction events.
$Based on the least Euclid's distance principle (Nakashima et al., 1986).
The rate for the (irregular) folding type is based on too few (only 4) protein molecules to justify its statistical meaning, and hence it should not be

counted in calculating the average accuracy.
11 Based on the least Minkowski's distance principle (Chou, 1989).

vi (a) (i = 1, 2,..., 20) is not a constant but a random variable. The
mean Mi (a) and standard deviation Di (a) for each of vi (a)(i = 1, 2,
.. ., 20) were calculated based on 31 structurally known all-a proteins
(Nakashima et al., 1986), and their values are listed in the third col-
umn of Tables 2 and 3, respectively. When the number of the all-a
proteins is sufficiently large, each of vi (a) (i = 1, 2, ..., 20) may be
assumed to be a normal random variable, and hence we have the follow-
ing distribution density formula for v, (a) (DeGroot, 1986):

N{Vi(at) Mi(at) Di(a) I
I1______ [vi(a) -Mi(a)]2

Di(a) 2D?(a) J

(i = 1, 2, . . ., 20).(1)

Thus, for a sufficiently large set of a proteins, the value of v, (a) can
be treated as a random sample ofthe normal distribution as formulated

by Eq. 1. Therefore, the occurrence frequency ofeach ofthe 20 amino
acids in any given a protein can be simulated by using the Monte Carlo
sampling technique. The concrete steps ofMonte Carlo simulation are
as follows.

1. Sampling of the standard normal
distribution N{R, 0, 1).
An approximate, but quite accurate, sampling method will be adopted
for generating the standard normal distribution, which, by definition, is
the one obtained by substituting vi (a) = R, Mi (a) = 0, and D,(a) = 1

into Eq. 1; i.e.,

N{R, 0, 1}=rexpt, 2 (la)

Suppose that ri ( i = 1, 2, 3, * * * ) are within the region of [0, I] and
form a random number sequence, then according to the reason given in

TABLE 2 The means Ml(a), M/(4t), M,(a + ,f), M,(ar/l), and M,(r) (I = 1, 2,..., 20) of the 20 amino acid occurrence frequencies for the
five protein folding types*

it Amino acid Mi(a) MO() Mi(a + ,B) Mi(a/fl) Mi)

Arg 0.0279 0.0322 0.0405 0.0435 0.0108
2 Leu 0.0889 0.0669 0.0637 0.0854 0.0402
3 Ser 0.0544 0.0950 0.0705 0.0589 0.0642
4 Thr 0.0491 0.0783 0.0641 0.0550 0.0435
5 Pro 0.0381 0.0523 0.0429 0.0436 0.0582
6 Ala 0.1163 0.0754 0.0889 0.0883 0.0890
7 Gly 0.0766 0.0987 0.0800 0.0871 0.1049
8 Val 0.0602 0.0748 0.0650 0.0762 0.0489
9 Lys 0.1010 0.0466 0.0718 0.0655 0.0327
10 Asn 0.0379 0.0490 0.0560 0.0413 0.0416
11 Gln 0.0333 0.0412 0.0317 0.0344 0.0403
12 His 0.0279 0.0164 0.0200 0.0219 0.0102
13 Glu 0.0652 0.0375 0.0618 0.0612 0.0685
14 Asp 0.0652 0.0537 0.0576 0.0612 0.0885
15 Tyr 0.0255 0.0367 0.0459 0.0302 0.0395
16 Cys 0.0171 0.0348 0.0294 0.0143 0.1204
17 Phe 0.0422 0.0357 0.0360 0.0388 0.0173
18 Ile 0.0372 0.0476 0.0474 0.0582 0.0699
19 Met 0.0242 0.0124 0.0140 0.0214 0.0053
20 Trp 0.0117 0.0148 0.0128 0.0138 0.0062

* These values were derived based on 135 structurally known proteins (Nakashima et al., 1986), ofwhich 31 proteins are all-a type, 34 all-d, 27 a +
fi, 39 a/fl, and 4 r(irregular).
* The order of amino acids, each of which corresponds to a component of the 20-dimensional composition space, is numbered according to the
codon usage table compiled by Wada et al. (1990), i.e., the order ofan amino acid increases with the decrease ofthe degenerate degrees ofits genetic
code. If two amino acids are the same in such a degeneracy, then they are arranged in alphabetical order.
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TABLE 3 The standard deviations Di(a), D,(f)), D,(a + j5), D,(alat), and D&(r) ( = 1, 2,... ,20) of the 20 amino acid occurrence frequencies
for the five protein folding types*

it Amino acid Di(a) Di(#) Di(a + Di(a/f) D1(r)

1 Arg 0.0270 0.0253 0.0222 0.0193 0.0083
2 Leu 0.0370 0.0232 0.0243 0.0197 0.0298
3 Ser 0.0230 0.0348 0.0325 0.0214 0.0325
4 Thr 0.0221 0.0272 0.0173 0.0164 0.0468
5 Pro 0.0176 0.0211 0.0202 0.0134 0.0311
6 Ala 0.0493 0.0439 0.0409 0.0265 0.0286
7 Gly 0.0335 0.0329 0.0286 0.0221 0.0833
8 Val 0.0232 0.0241 0.0256 0.0191 0.0321
9 Lys 0.0373 0.0269 0.0346 0.0235 0.0152
10 Asn 0.0174 0.0185 0.0257 0.0161 0.0140
11 Gln 0.0188 0.0238 0.0176 0.0138 0.0163
12 His 0.0246 0.0122 0.0136 0.0101 0.0067
13 Glu 0.0414 0.0249 0.0308 0.0240 0.0425
14 Asp 0.0259 0.0239 0.0170 0.0190 0.0326
15 Tyr 0.0153 0.0198 0.0248 0.0144 0.0150
16 Cys 0.0223 0.0339 0.0372 0.0091 0.0500
17 Phe 0.0258 0.0135 0.0153 0.0143 0.0178
18 Ile 0.0197 0.0229 0.0230 0.0180 0.0426
19 Met 0.0190 0.0110 0.0110 0.0091 0.0053
20 Trp 0.0096 0.0088 0.0121 0.0085 0.0077

*See the corresponding footnote to Table 2.
t See the corresponding footnote to Table 2.

the Appendix, the quantity R defined by the following equation should
obey the standard normal distribution N{ R, 0, 1 } of Eq. Ia:

6 12

R= 2 ri- 2 ri (2)
i-I i=7

2. Sampling of the normal distribution
N{v,(a), Ml (a), Di (a))
Once the sample R for the N{ R, 0, } distribution is generated by Eq.
2, the following variable v,(a) derived from R should obey the normal
distribution N{ vi(a), Mi(a), Di(a)}:

vi(a)= Di(a)R + Mi(a)

(i= 1, 2,..., 20) (3)

This can be proved by substituting R = [v,(a) - Mi(a)]/Di(a) into
Eq. Ia followed by incorporating a corresponding transformation fac-
tor, the Jacobian (DeGroot, 1986), and comparing the equation thus
obtained with Eq. 1.

3. Normalization
Since the sum of vi (a) (i = 1, 2,. .., 20) thus obtained is generally not
equal to 1, the following substitution should be performed:

vj(ax) 4 vi(a)
20

z vj(a)
j-l

set in the program: if the prediction is correct, then the reading of the
counter will be increased by 1; otherwise, it remains unchanged.
The above steps 1-4 constitute a cycle of Monte Carlo simulation.

The number of the simulation cycles can be set at any integer. The
maximum number assigned in this work is 10'. For each method, the
accuracy ofprediction is calculated according to the following formula:

q = accuracy of prediction
(total number of correct prediction events

total number of prediction events

B. Simulation of all the other folding
types
For the other folding types, i.e., all-,B, a + ,S, a/l, and r (irregular)
proteins, just substituting a of Eqs. 1, 3, and 4 by ,B, a + ,B, a/,(, and ¢,
we can get the corresponding formulations, respectively. The simula-
tion process is in a way completely parallel to the one for the all-a
proteins. The corresponding means M,(fl), Mi(a + ,B), Mi(a/lf),
Mi (r) and standard deviations D, (t), Di(a + ,), Di (a/,8), Di ( ) are

given in Tables 2 and 3, respectively. Note that the mean M, ( ) and
standard deviation D, ( ) for the irregular folding type were calculated
based on only four structurally known proteins (Nakashima et al.,
1986) and their values are statistically insignificant. Therefore, all the
data corresponding to the irregular folding type proteins are listed here
for reference only.

(i= 1, 2, .. ., 20) (4)

4. Prediction of the a folding type proteins
Once the normalized vi (a) (i = 1, 2, .. ., 20) are generated by Eqs.
2-4, the folding type for the "all-a proteins" is predicted by each ofthe
following methods: (a) the least Minkowski's distance method (Chou,
1989) and (b) the least Euclid's distance method (Nakashima et al.,
1986). The prediction by each of the above methods has only two
possibilities, i.e., either correct (belonging to all-a type) or incorrect
(not belonging to all-a type). For each ofthe two methods, a counter is

III. RESULTS AND DISCUSSION
The main aim of this study is to find the objective accu-
racy for each of the two prediction methods. To realize
this, the number of "proteins" generated by the simula-
tion process should be sufficiently large. Note that ac-
cording to the principle of Monte Carlo simulation, the
error ofthe result thus obtained is proportional to 1 / n
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FIGURE 1 Plot of the rate of correct prediction q by the least Euclid's
distance method (Nakashima et al., 1986) versus the number ofsimula-
tion cycles n for each of the five protein folding types. When n < IO',
the statistical fluctuations are remarkable. When n . 3 X 103, however,
each of the five curves approaches to its asymptotical limit, which is
defined as the corresponding objective accuracy of prediction.

where n is the number of simulation cycles (DeGroot,
1986). Therefore, to obtain a reliable result, the value of
n should be considerably large. The accuracy of predic-
tion for each ofthe five folding types as a function ofn by
the least Euclid's distance method and least Minkowski's
distance method is shown in Figs. 1 and 2, respectively,
where there are five curves, each ofwhich corresponds to
a folding type of protein. It is seen through the two fig-
ures that when n is >3 x IO', all of these curves gradu-
ally approach to a respective limit, the so-called asymp-
totical limit. In this case, the errors due to fluctuation
can be omitted. Such an asymptotical limit is defined as
the objective accuracy of prediction, whose value ob-
tained for each ofthe five folding types and calculated by
each ofthe two methods is listed in Table 4. Below, let us
examine the results thus obtained according to the five
different folding types.

A. Objective accuracy of prediction
for the all-a proteins
It is seen from Table 4 that the asymptotical limit calcu-
lated by the least Euclid's distance method (Nakashima
et al., 1986) is 76.3%, whereas the asymptotical limit by
the least Minkowski's distance method (Chou, 1989) is
only 74.1%, indicating that the objective accuracy ofpre-
diction for the all-a proteins by means of the least Eu-
clid's method is better than that by the least Minkowski's
method.

B. Objective accuracy of prediction
for the all-,8 proteins
The asymptotical limit obtained by the least Euclid's
method is 78.2% and that by the Minkowski's distance
method is lower, with a value of only 74.5%.

C. Objective accuracy of prediction
for the a + j8 proteins
The asymptotical limits obtained by the least Euclid's
distance method and the least Minkowski's method are

59.5 and 58.1%, respectively. These figures indicate that
the accuracy of prediction for the a + ,B proteins is poor
regardless of which one of the two methods is used, al-
though the former is slightly better than the latter. The
poor predicted results for a + A proteins are consistent
with the observation of Nakashima et al. (1986). They
have found from a set of 135 structurally known proteins
that the distribution ofamino acid composition of a + a
proteins extensively overlaps with those of all the other
folding types of proteins. This might be the intrinsical
reason why the accuracy is always poor when prediction
is made for the a + ,B proteins only according to their
amino acid composition.

D. Objective accuracy of prediction
for the a/,B proteins
The asymptotical limits obtained by the lease Euclid's
distance method and the least Minkowski's method are

78.2 and 76.7%, respectively. Again, we can see that the
result obtained by the former is better than that by the
latter.

E. Objective accuracy of prediction
for the proteins
As pointed out previously, the statistical parameters for
this type of proteins are derived from only four struc-
turally known proteins (Nakashima et al., 1986), a num-

ber too small to justify their statistical meaning. There-
fore, the Monte Carlo simulated results for the irregular
proteins are statistically insignificant and they are re-

ported here just for reference only.
Note that the asymptotical limits listed in Table 4 are

1*.
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FIGURE 2 Plot of the rate of correct prediction q by the least Min-
kowski's distance method (Chou, 1989) versus the number of simula-
tion cycles n for each ofthe five protein folding types. See legend to Fig.
1 for further explanation.
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TABLE 4 The objective accuracies obtained by Monte Carlo simulation for the two dHierent methods*

Objective accuracy

Method a type , type a + , type a/,8 type r type$ Average accuracy0

Nakashima et al.11 76.3 78.2 59.5 78.2 90.9 73.0
Chou' 74.1 74.5 58.1 76.7 90.9 70.9

* The number of simulation cycles in 10'.
The data for the r (irregular) folding type is statistically insignificant, and they are listed here for reference only. See text for further explanation

about this.
§ The average accuracy is the rate of total number of correct prediction for the four regular (i.e., a, ,, a + jS, and a/,) type proteins divided by the
total number of corresponding prediction events.
Based on the least Euclid's distance principle (Nakashima et al., 1986).
Based on the least Minkowski's distance principle (Chou, 1989).

generally lower than the corresponding rates of correct
prediction as listed in Table 1. This is because the num-
ber of proteins from which the data of Table 1 were de-
rived is not large enough to really form a statistically
significant set, and hence any data thus obtained must
bear considerable statistical fluctuation. Such a statisti-
cal fluctuation also can be seen easily through Fig. 1.
When the number of simulation cycles is small, the rate
of correct prediction fluctuates remarkably with the
number ofsimulation cycles. Afterthe number ofsimula-
tion cycles n 2 3 x 103, however, the amplitude offluctu-
ation tends to almost zero, indicating the predicted accu-

racy reaches an asymptotical limit. Accordingly, it is our
belief that with the continuous increase of structurally
known proteins, the predicted accuracy for the realistic
proteins will gradually get close to the corresponding
asymptotical limit, namely, the objective accuracy of
prediction.

According to the Monte Carlo simulation results as

listed in Table 4, the least Euclid's distance method is
better than the least Minkowski's distance method in the
objective accuracy. This is obviously contradictory to
the results of Table 1, where the average accuracy re-

ported by Chou ( 1989) using the least Minkowski's dis-
tance method is 79.7%, higher than the average accuracy
of70.2% obtained by means ofthe least Euclid's distance
method as reported by Nakashima et al. (1986). Such a

contradiction implies that the accuracy of prediction
based on different set of proteins would bear consider-
able arbitrariness and hence could not be regarded as an

objective standard. In the report by Chou ( 1989), the
average accuracy was derived based on a set of 64 pro-
teins, whereas in the report by Nakashima et al. ( 1986)
that rate was derived on a set of 131 proteins, and hence
they are not comparable. The Monte Carlo simulation
results indicate that the phenomenon as shown in Table
1, that Chou's average accuracy is higher than Naka-
shima et al.'s, is none but an artifact. Such a contradic-
tion also further indicates the necessity to use the asymp-
totical limit, namely the objective accuracy, as a crite-
rion to judge which method is really more accurate than

the other. According to the objective accuracy, the least
Euclid's distance method is better than the least Min-
kowski's distance method.

It is instructive to point out that there is always some
uncertainty in predicting the folding type of a protein
according to its amino acid composition. The essence for
this is that, although the folding type ofa protein is corre-
lated to its amino acid composition, the former cannot
be uniquely defined by the latter. In other words, the
amino acid composition of a protein is not yet suffi-
ciently perfect to form a set of"complete parameters" to
uniquely define its folding type. The effect ofsome "hid-
den variables," such as the amino acid order along the
sequence ofa protein, was not taken into account in any
of the aforementioned two prediction methods. Obvi-
ously, these "hidden variables" will certainly somehow
affect the folding of a protein. Therefore, merely based
on the amino acid composition ofproteins, it is impossi-
ble to raise the objective accuracy of folding type predic-
tion to 100%. This also can be addressed rather quantita-
tively from a statistical point of view. It is clear from
Table 3 that the standard deviations ofthe 20 amino acid
frequencies for any of the five protein folding types are

not equal to zero. This is the essence ofwhy the objective
accuracy of prediction will never reach 100% unless all
these standard deviations are reduced to zero. As a dem-
onstration to show the consistency of our theory and
program, operations were performed according to the
following hypothetical conditions. Suppose that the
standard deviations listed in Table 3 are reduced by be-
ing multiplied with a factor of0.9A, where X = 0, 2, 4, 6,
8, 10, and 12, respectively. For each value of X, the least
Euclid's distance method was used to perform the Monte
Carlo simulation as described above. As we see from Fig.
3, the rates of correct prediction are raised with the in-
crease of X, i.e., the reduction of standard deviations.
When X = 12, all the standard deviations would be re-

duced by a factor of0.9 12, i.e., almost equal to zero, and
hence the rates of correct prediction for all the folding
types are very close to 100%, as expected. It should be
underscored, however, that this is just a hypothetical

Zhang and Chou Protein Folding Types from Amino Acid Composition 1527

Zhang and Chou Protein Folding Types from Amino Acid Composition 1527



4 6 8 1o
Standard deviation decay factor, X

shown that the asymptotical limit generated by the simu-
lation process can be well defined as the objective accu-
racy of prediction. Based on that, it has been found that
the objective accuracies ofprediction for a, ,B, a + A3, and
a/( proteins by the least Euclid's distance method (Na-
kashima et al., 1986) are 76.3, 78.2, 59.5, and 78.2%,
respectively, and those by the least Minkowski's distance
method (Chou, 1989) are 74.1, 74.5, 58.1, and 76.7%,
respectively. Accordingly, the least Euclid's distance
method is better than the least Minkowski's distance
method.
The simulation method and the idea developed here

14 also can be applied to examine any other statistical pre-
diction methods.

FIGURE 3 Plot of the rate of correct prediction q by the least Euclid's
distance method versus the hypothetical decay exponent A imposed on
the standard deviations. During the simulation process, each of the
standard deviations listed in Table 3 is multiplied by 0.9A. As shown in
the figure, when X 2 12, the rate ofcorrect prediction for the all folding
types would get close to 100%, implying that the hypothetical standard
deviations would almost be zero and the corresponding statistical fluc-
tuations vanish.

case, because in reality the standard deviations must ex-
ist and cannot be eliminated.

Besides the least Euclid's distance method (Naka-
shima et al., 1986) and the least Minkowski's distance
method (Chou, 1989), there are some other methods,
such as those proposed by Klein (1986) and Klein and
Delisi (1986), for predicting the folding type of a pro-
tein. However, in their method the multidimensional
statistical technique ofdiscriminant analysis was used to
assign a protein to one of the protein folding types. Ac-
cordingly, their methods actually belong to a discrimi-
nant analysis method in which the multidimensional
statistical technique is used. Moreover, when the Klein
and Delisi (1986) method was used to perform predic-
tion, in addition to the amino acid composition, the regu-
lar variations in the hydrophobic values ofresidues along
the amino acid sequence was also used as the attribute.
This is quite different in selecting parameters from the
two demonstrated methods, where the amino acid com-
position of a protein is the only input in performing the
prediction of its folding type. For brevity, we would
rather not include their methods as examples for demon-
stration here since the main goal ofthis article is in devel-
oping the idea ofdefining an objective criterion in terms
of Monte Carlo simulation. Once established, its basic
principle and procedure can be applied to examine any
other statistical prediction methods.

APPENDIX
The sampling principle as formulated in Eq. 2 can be briefly explained
as follows.
The probability of any random variable R < x can be expressed as

(DeGroot, 1986)

P(R<x)=J f(R)dR (A.1)

wherexE (-oo, oo ),f( R) is the density function ofR, and its concrete
form will depend on the distribution nature ofthe random variable R.
For a random number r E [0, 1] as defined in Eq. 2 of the text, the
distribution density should be

f(r)

1, rE [0, 1]
{0, otherwise

from which the mean of the random number r is

,u=frf(r) dr r2

and its standard deviation is

1/2
D= J(r-'/)2f(r) dr

= ( (r - l/2 ) 2fi(r) dr]'/= /

Setting

Rm= [l-mRDmm I:r

(A.2)

(A.3)

(A.4)

(A.5)

then we have that the probability for R(m) x can be written as

P{R(m) <x} =J g(R) dR (A.6)

where g(R) is the distribution density ofR(m). When m > 1, accord-
ing to the central limit theorem (DeGroot, 1986), we have

IV. CONCLUSION
A Monte Carlo simulation method is proposed in an
attempt to establish an objective criterion for measuring
the accuracy of predicting the folding type of a protein
according to its amino acid composition. It has been

limP{R(m)<x} = fb I e-R2/2dR
mp-l f2i-

(A.7)

Comparing Eq. A.6 with Eq. A.5 indicates that, when m > 1, g(R) is
actually a standard normal distribution density, and hence R = R(m)
becomes a standard normal random variable when m > 1. For conve-
nience, letting m = 12, we have
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12 6 12

R(12) = 2 r,- 6 = z r,- z (1 - ri) (A.8)
i=I i-I i=7

Since the density of r and the density of ( 1 - r) are the same according
to Eq. A. 1, as far as the statistical distribution is concerned, R( 12) also
can be equivalently expressed as

6 12

R(12) = R = f ri- 2 r, (A.9)
i- I X-7

which has exactly the same form as Eq. 2 in the text. Therefore, R as
given by Eq. 2 belongs to the standard normal distribution.

We are greatly indebted to Dr. Ken Nishikawa, Dr. Hiroshi Naka-
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viation data. We would also like to thank Dr. Wei-Zhu Zhong for
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