
J. Math. Anal. Appl. 377 (2011) 274–285

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Image normalization of Wiener–Hopf operators and
boundary-transmission value problems for a junction of two half-planes

A. Moura Santos a,∗, N.J. Bernardino b

a Department of Mathematics, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
b ESB 2440-062 Batalha, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 May 2010
Available online 27 October 2010
Submitted by Richard M. Aron

Keywords:
Diffraction by a junction of two half-planes
Boundary-transmission value problems
Not normally solvable operators
Image normalization
Wiener–Hopf operators

The present paper deals with an application of the image normalization technique
for certain classes of Wiener–Hopf operators (WHOs) associated to ill-posed boundary-
transmission value problems. We briefly describe the method of normalization and then
apply it to boundary-transmission value problems issued from diffraction problems for
a junction of two half-planes, which are relevant in mathematical physics applications.
For each boundary-transmission value problem, we analyze the conditions under which
the associated operator and the equivalent WHO are not normally solvable, and define
the corresponding image normalized operators.
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1. Introduction

We are interested in operators, namely Wiener–Hopf operators (WHOs), which arise in the context of diffraction prob-
lems of electromagnetic and acoustic waves and are strongly related to the operator description of the corresponding
boundary-transmission value problems. In general, for many relevant physical situations of the boundary the corresponding
boundary value problems are ill-posed, i.e., the associated operators are not normally solvable (see e.g. [5,11,7,8]). This was
the main reason why one of the authors of the present paper developed in her PhD work a method of image normalization
in order to convert not normally solvable WHOs into operators with closed image. This method was firstly applied to bound-
ary value problems on the half-plane [8], but can be successfully used in case of other geometries of the boundary. In this
paper we describe how to apply it to a junction of two half-planes. The case of a strip is treated in paper [1]. The method
of image normalization is one of the possible ways of normalizing bounded linear operators acting between Banach spaces
(see [4]), and works very effectively for the operators under consideration.

In Section 2 we describe the class of boundary-transmission value problems which arise from the diffraction of a plane
wave by a junction of two half-planes. Diffraction by a two-part plane is relevant in many practical applications (see e.g.
[9,10,12]). Starting from the standard operator procedure of the classical survey of Meister and Speck [5], we associate
with the physical problem an operator and then prove the equivalence of this operator to a WHO. In Section 2 we also
establish notation. Section 3 is dedicated to a summary of the method of image normalization of the WHOs under con-
sideration. We present there the main results of [8] without proofs and use a more convenient notation for our present
purpose. The next three sections describe and analyze chosen examples of image normalization of WHOs coming from
different boundary-transmission conditions on the two half-planes. For instance, in Section 4 we first derive the WHO for
boundary-transmission conditions of arbitrary orders on the two banks of the two half-planes, and then consider the image
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normalization when all four orders are even. Section 5 is devoted to consider boundary-transmission conditions with only
normal derivatives of the same order on the upper and lower banks of the two half-planes, respectively. Finally, in Sec-
tion 6 we consider a simpler boundary condition on the left half-plane and a boundary-transmission condition with oblique
derivatives on the right half-plane.

2. Boundary-transmission problems and WHOs

In order to study the WHOs, we begin with the formulation of the following general boundary-transmission value prob-
lem, we call it Problem P , for the diffraction of a plane wave by a junction of two half-planes in the natural setting of
locally finite energy norm.

Problem P . Find ϕ ∈ L2(R2), with ϕ|R×R± = ϕ± ∈ H1(R × R±), such that(
� + k2

0

)
ϕ± = 0 in R × R±, (1)

B−
j ϕ(x) =

∑
σ1+σ2�m j

a+
σ , j

(
Dσ ϕ+)

(x,0) + a−
σ , j

(
Dσ ϕ−)

(x,0) = h j(x) on R−, (2)

B+
j ϕ(x) =

∑
σ1+σ2�m′

j

b+
σ , j

(
Dσ ϕ+)

(x,0) + b−
σ , j

(
Dσ ϕ−)

(x,0) = g j(x) on R+, (3)

where σ = (σ1, σ2), σ j ∈ N0, and m = (m1,m2), m′ = (m′
1,m′

2), m j,m′
j ∈ N0, represent the order of the boundary operators

B−
j and B+

j , respectively, with j = 1,2 corresponding to the upper and lower banks of both left R− and right R+ half-

lines.1 The coefficients a±
σ , j,b±

σ , j ∈ C simulate physical properties of the boundaries. For instance, for σ = (0,1), m j = (0,1),

a+
σ , j = 1, a−

σ , j = −1 and h = (h1,h2) = (0,0) in (2), B−
j consists of the trivial jump of Dirichlet data and Neumann data on

R− and is usually known as the transmission condition for the Sommerfeld problem (see e.g. [5]). On the other hand for
σ1 + σ2 � 1 in (3), B+

j consists of a linear combination of Dirichlet, Neumann, and oblique derivative data as considered
in [7]. It is also physically meaningful to consider linear combinations of higher derivatives [11] both normal and tangential,
with coefficients a±

σ , j,b±
σ , j ∈ C depending on the materials of the boundary. In the Helmholtz equation (1) k0 stands for the

complex wave number with positive real and imaginary part, i.e., Re k0 > 0 and Im k0 > 0.
Similarly to the method used by Meister and Speck in the classical survey [5], we describe Problem P by a single

equation

Pϕ = g, (4)

where P : D(P ) → H1/2−m′
1 (R+) × H1/2−m′

2 (R+) is a linear operator associated to Problem P . The domain D(P ) consists
of the elements of H1(R × R±) satisfying the Helmholtz equation (1) and the boundary-transmission conditions in (2).
The image of P consists of the data g = (g1, g2) ∈ H1/2−m′

1 (R+)× H1/2−m′
2 (R+) according to the trace theorem (see below)

and the representation formula applied to (3) with m′ = (m′
1,m′

2).

We recall that the space Hs is a Bessel potential space of order s defined by

Hs = {
φ ∈ S ′: F −1(ξ2 + 1

)s/2 · F φ ∈ L2}
where F represents the Fourier transformation.2 We also need to consider the space Hs+ , which represents a subspace of
Hs distributions supported on R+ , and Hs(R+), a subspace of restrictions of Hs distributions on R+ that already appeared
in the last paragraph. These are well-known Hilbert spaces whose topologies are the usual subspace topology for Hs+ and
the quotient space topology for Hs(R+), respectively.

The next goal is to show that the equivalence relation P = EW F holds, where E and F are bounded invertible linear
operators and W is a linear operator acting on Hr+ = Hr1+ × Hr2+ whose image is Hs(R+) = Hs1 (R+) × Hs2 (R+).

We start with the standard representation formula for the solutions of the Helmholtz equation (1) (see e.g. [13])

ϕ(x, y) = Kϕ0(x, y) = F −1
ξ→x

{
e−β(ξ)yϕ̂+

0 (ξ)χ+(y) + eβ(ξ)yϕ̂−
0 (ξ)χ−(y)

}
, (5)

where ϕ0 = (ϕ+
0 ,ϕ−

0 ) ∈ H1/2 × H1/2 is the trace vector of ϕ± corresponding to the banks of R± , ϕ̂±
0 represents the Fourier

transform of the traces, χ± denotes the characteristic function of the positive and negative half-line, respectively, and

1 As a consequence of the physics of the wave diffraction the boundaries, i.e., the two half-planes, can be identified with these two subsets of the real
line.

2 In the context of Problem P , it is also commonly used (ξ2 − k2
0)s/2 in the definition of the Bessel potential spaces, in which case the branch cuts are

defined along ±k0 ± iε , ε � 0.
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β(ξ) =
√

ξ2 − k2
0. Moreover, define B̃− = Rst B− : [H1/2]2 → H1/2−m1+ × H1/2−m2+ as the restricted operator with the same

domain and Fourier symbol as B− , but whose image is defined to be an Hs+ space.
For operator K in (5) the following result holds.

Theorem 2.1. Let B− = F −1Φ− · F be the bounded linear operator

B− : [H1/2]2 → H1/2−m1 × H1/2−m2

with Fourier symbol

Φ− =
[∑

|σ |�m1
a+
σ ,1(−iξ)σ1(−β(ξ))σ2

∑
|σ |�m1

a−
σ ,1(−iξ)σ1β(ξ)σ2∑

|σ |�m2
a+
σ ,2(−iξ)σ1(−β(ξ))σ2

∑
|σ |�m2

a−
σ ,2(−iξ)σ1β(ξ)σ2

]
(6)

such that det Φ− �= 0, and consider the restricted operator B̃− = Rst B− .
Then the operator K in (5) is invertible and its inverse is the trace operator T0 : D(P ) → Y0 , where D(P ) is a closed subspace of

the direct sum H1(R × R+) ⊕ H1(R × R−). The image space of T0 is given by

Y0 = {
ϕ0 = (

ϕ+
0 ,ϕ−

0

) ∈ [
H1/2]2

: F −1Φ− · F ϕ0 − �(c)h ∈ H1/2−m1+ × H1/2−m2+
}
, (7)

where h = (h1,h2) is the data from (2), �(c) represents a continuous extension operator of even type if m j even, and odd type if m j
odd, and its left inverse is the restriction operator r+ .

Moreover, for ϕ0 = (ϕ+
0 ,ϕ−

0 ) = B̃−1− (v+ + �(c)h) with v+ ∈ H1/2−m1+ × H1/2−m2+ in (5), the operator B̃−T0 is continuously invert-

ible and its inverse is the operator K B̃−1− .

Proof. The trace operator T0 : D(P ) → Y0 is here defined as an operator that acts between spaces of order greater than
or equal to 1/2. For these space orders, we automatically have surjectivity and right invertibility. The left invertibility is
obtained by choosing the space Y0 in (7) as a subspace of order 1/2 and such that it contains zero extensions of the
corresponding trace values that appear in our problem (see e.g. [1] for a discussion when this fails). Therefore, we have
invertibility for T0 and its inverse is the operator K given by (5).

Consider now ϕ0 = B̃−1− (v+ + �(c)h) in the representation formula (5). Then B̃−ϕ0 = v+ + �(c)h and we have

B̃−T0 K B̃−1−
(

v+ + �(c)h
) = B̃−T0 Kϕ0 = B̃−ϕ0 = v+ + �(c)h,

and also

K B̃−1− B̃−T0ϕ = K B̃−1− B̃− B̃−1−
(

v+ + �(c)h
) = K

(
B̃−1−

(
v+ + �(c)h

)) = Kϕ0 = ϕ,

i.e. B̃−T0 is continuously invertible and its inverse is given by K B̃−1− . �
We now prove the following equivalence result.

Theorem 2.2. Let B+ = F −1Φ+ · F be the linear bounded operator

B+ : [H1/2]2 → H1/2−m′
1 × H1/2−m′

2

with Fourier symbol

Φ+ =
[∑

|σ |�m′
1

b+
σ ,1(−iξ)σ1(−β(ξ))σ2

∑
|σ |�m′

1
b−
σ ,1(−iξ)σ1β(ξ)σ2∑

|σ |�m′
2

b+
σ ,2(−iξ)σ1(−β(ξ))σ2

∑
|σ |�m′

2
b−
σ ,2(−iξ)σ1β(ξ)σ2

]
(8)

such that det Φ+ �= 0, and let the conditions of Theorem 2.1 hold. Then, the operator P in (4) is equivalent to the WHO

W = r+B+ B̃−1− : H1/2−m1+ × H1/2−m2+ → H1/2−m′
1(R+) × H1/2−m′

2(R+) (9)

with Fourier symbol Φ = Φ+Φ−1− . The equivalence relation is given by

P = W B̃−T0, (10)

i.e., the operators P and W coincide up to bijective factors.

Proof. Since by Theorem 2.1, we have ϕ0 = B̃−1− (v+ + �(c)h), it follows that v+ = B̃−ϕ0 − �(c)h and

W v+ = W
(

B̃−ϕ0 − �(c)h
) = r+B+ B̃−1−

(
B̃−ϕ0 − �(c)h

) = r+B+ϕ0 − r+B+ B̃−1− �(c)h = g − r+B+ B̃−1− �(c)h.
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On the other hand, assuming that (10) holds, we can write

Pϕ = W B̃−T0ϕ = W B̃−ϕ0 = W B̃− B̃−1−
(

v+ + �(c)h
) = W v+ + W �(c)h,

which after substituting W v+ by the expression obtained before, yields Pϕ = g . This proves the equivalence between the
two operators with the equivalence relation given by (10). �

Next we study in more detail the general structure of the operators obtained above. Firstly, we formally rewrite the WHO
as an operator

W = r+ A|Hr+ : Hr+ → Hs(R+) (11)

where A = F −1Φ · F is a translation invariant homeomorphism with a matrix Fourier symbol Φ = Φ+Φ−1− ∈ L∞
loc. Note that

the elements of the Fourier symbol Φ of W in (9), due to (6) and (8), for any arbitrary orders m j,m′
j and coefficients

a±
σ , j,b±

σ , j , are rational functions of ξ and β(ξ) =
√

ξ2 − k2
0, see the next sections for details. Then, lifting the WHO W into

L2 (see e.g. [3]) we obtain the lifted WHO

W0 = r+ A0|[L2+]n :
[
L2+

]2 → [
L2(R+)

]2
, (12)

where A0 = F −1Φ0 · F , Φ0 ∈ L∞(R)2×2. In this paper we assume in the first place that Φ0 ∈ G Cν(R̈)2×2, i.e., that the
lifted Fourier symbol lies in the invertible algebra of Hölder continuous 2 × 2 matrix functions defined on R̈ = [−∞,+∞].
In fact, the elements of the lifted Fourier symbol Φ0 are bounded rational functions of ρ(ξ) =

√
ξ−k0
ξ+k0

and of ξβ(ξ)−1,

and we always assume that det Φ0(ξ) �= 0, ξ ∈ R̈, in order to get normal type WHOs. Given this assumption, we study
then the conditions under which the operator is not normally solvable and solve the image normalization problem for the
WHO.3

The following Fredholm criterium is well known [6] for the lifted WHO in (12). The operator W0 is normally solvable iff

det
(
μΦ0(−∞) + (1 − μ)Φ0(+∞)

) �= 0, μ ∈ ]0,1[. (13)

As a consequence of ρ(ξ) → ±1 and ξβ(ξ)−1 → ±1 as ξ → ±∞, respectively, this condition does not hold for a large
class of WHOs in (9), and from the equivalence relation (10), the same is true for the associated operator P . Therefore, it is
necessary to obtain the image normalization of both operators.

Finally, we shall also use the zero extension operator �(0) and the following Bessel potential operators [8] for w ∈ C,
k0 ∈ C, Im k0 > 0,

Λw± = F −1λw± · F : Hs → Hs−Re w ,

where we introduced λ±(ξ) = ξ ± k0, a notation often used in this context.

3. Image normalization of WHOs in scalar and matrix cases

We briefly describe the main results of our approach (for proofs see [8]) towards the normalization of the WHOs defined
by (11) with lifted Fourier symbol Φ0 ∈ G Cν(R̈)2×2 for which the Fredholm criterium (13) doesn’t hold. The method is
based on two central ideas: firstly we want the domain of the operator to remain a space of locally finite energy, and
secondly we change the image space in a minimal way. The following scalar result [8] helps to understand the method for
the matrix case.

Theorem 3.1. Let us consider the scalar WHO of normal type, which acts symmetrically, i.e., r = s

W s = W s(Φ) = r+ A|Hs+ : Hs+ → Hs(R+).

Then for the critical orders [2] s + η + 1/2 ∈ Z, where η = 1
2π i

∫
R

d arg Φ , the operator W s is not normally solvable.

Introducing w = η + iτ , with τ = 1
2π ln |Φ(−∞)/Φ(+∞)|, we define the image normalized operator W̆ s by

W̆ s = Rst W s : Hs+ → H̆ s−iτ (R+),

where H̆s−iτ (R+) = r+Λ
−s+iτ−1/2
− H−1/2

+ ⊂ HRe w(R+). The image space of W̆ s solves the normalization problem for {W s =
W s(Φ): Φ ∈ G Cν(R̈), ν ∈ ]0,1[, im W s �= im W s}.

3 In this paper we are interested in the not normally solvable cases, thus we assume first that the coefficients in (2)–(3) are such that det Φ0 �= 0, i.e.,
the matrix does not degenerate on R̈, and for these coefficients analyze the case of not normally solvable WHOs.
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The normalization in the matrix case is based on the same idea of using the jump at infinity of the lifted Fourier symbol
to change the image space in a minimal way. The following result, which we state for the 2 × 2 matrix case, since this will
be enough for our purpose, can be found in [8] for the n × n matrix case.

Theorem 3.2. Consider the WHO W in (11), with r = (r1, r2), s = (s1, s2) and such that the corresponding lifted Fourier symbol
Φ0 ∈ G Cν(R̈)2×2 . Moreover, let this Fourier symbol Φ0 have a jump at infinity. Let λ1, λ2 be the eigenvalues of Φ0 and write

Φ−1
0 (−∞)Φ0(+∞) = T −1 diag(λ1, λ2)T , (14)

where T ∈ GC
2×2 . Assuming that λ1 = e2iπ w1 with Re w1 = −1/2 (λ2 = e2iπ w2 with Re w2 �= −1/2), the WHO W is not normally

solvable for the given s1 and η1 = −1/2. Then we define the image normalized operator W̆ by

W̆ : Hr+ → Y1 = r+Λ−s− T �(0)
{

H̆−iτ (R+) × L2(R+)
}

with τ = 1
2π ln |Φ0(−∞)/Φ0(+∞)|, which corresponds to the eigenvalue λ1 . The image space Y1 of the restricted WHO W̆ solves the

normalization problem for W .

Remark that we say that the image space Y1 solves the normalization problem for the WHO and denote by W̆ the
corresponding image normalized operator.

In Theorem 3.2 we assumed that the eigenvalues of Φ0 are different and that only one of the eigenvalues, λ1 in (14), is
responsible for the jump at infinity. As we will see in next sections, it is possible that we get an eigenvalue with multiplicity
two, i.e., λ2 = λ1 in (14), and in this case we should modify the image space in both components. Furthermore, very often
in applications we have the eigenvalue λ1 = −1, due to w1 = −1/2, which leads to an image space of the type

Y1 = r+Λ−s− �(0)
{

H̆0(R+) × L2(R+)
}

with H̆0(R+) = r+Λ
−1/2
− H−1/2

+ being a proper dense subspace of L2(R+) [8].
Finally, note that by means of the equivalence relation (10), the image normalization of a particular WHO W yields the

image normalization of the operator P in (4).

4. Boundary-transmission problems of higher order

From this section on we analyze several examples of boundary-transmission conditions, less general than (2)–(3), but
still very significant from the applications point of view. In the first place we retain only the higher order terms in the
boundary-transmission conditions (2)–(3) and such that they do not contain derivatives of mixed type. This assumption is
also mathematically consistent with the fact that these terms fully describe the behavior at infinity of the Fourier symbol.
Consider now Problem P with the following higher order boundary-transmission conditions: order m = (m1,m2) on the left
half-line and order m′ = (m3,m4) on the right half-line4{

a+
1 ϕ+

m1
+ a−

1 ϕ−
m1

+ ǎ+
1 ϕ̌+

m1
+ ǎ−

1 ϕ̌−
m1

= h1,

a+
2 ϕ+

m2
+ a−

2 ϕ−
m2

+ ǎ+
2 ϕ̌+

m2
+ ǎ−

2 ϕ̌−
m2

= h2,
on R−, (15)

{
b+

3 ϕ+
m3

+ b−
3 ϕ−

m3
+ b̌+

3 ϕ̌+
m3

+ b̌−
3 ϕ̌−

m3
= g1,

b+
4 ϕ+

m4
+ b−

4 ϕ−
m4

+ b̌+
4 ϕ̌+

m4
+ b̌−

4 ϕ̌−
m4

= g2,
on R+, (16)

where in general all four orders m j , j = 1,2,3,4, are supposed to be different. The notation ϕ±
m j

and ϕ̌±
m j

stands for the

traces of the normal and tangential derivatives of order m j , respectively, with a±
j , b±

j , ǎ±
j , b̌±

j denoting the correspond-

ing coefficients. From the trace theorem and the representation formula, we conclude that h = (h1,h2) ∈ H1/2−m1 (R−) ×
H1/2−m2 (R−) and g = (g1, g2) ∈ H1/2−m3 (R+) × H1/2−m4 (R+).

The following theorem holds for the operator P associated with this boundary-transmission problem and the equivalent
WHO W , and is a direct consequence of Theorems 2.1 and 2.2.

Theorem 4.1. Let B− = F −1Φ− · F and B+ = F −1Φ+ · F be the following linear bounded operators

B− : [H1/2]2 → H1/2−m1 × H1/2−m2 ,

B+ : [H1/2]2 → H1/2−m3 × H1/2−m4

4 In this section we intentionally use the notation of orders m j , j = 1,2,3,4, corresponding to the indices of the coefficients in order not to overload
the formulas. We also simplify the index notations of the coefficients, e.g. a+

1 instead of a+
m ,1.
1
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with the non-degenerated Fourier symbols

Φ− =
[

(−1)m1a+
1 βm1 + ǎ+

1 (−iξ)m1 a−
1 βm1 + ǎ−

1 (−iξ)m1

(−1)m2a+
2 βm2 + ǎ+

2 (−iξ)m2 a−
2 βm2 + ǎ−

2 (−iξ)m2

]
(17)

and

Φ+ =
[

(−1)m3 b+
3 βm3 + b̌+

3 (−iξ)m3 b−
3 βm3 + b̌−

3 (−iξ)m3

(−1)m4 b+
4 βm4 + b̌+

4 (−iξ)m4 b−
4 βm4 + b̌−

4 (−iξ)m4

]
, (18)

respectively, i.e., det Φ+Φ−1− �= 0. Moreover, consider the restricted operator B̃− = Rst B− with Fourier symbol also given by (17).
Then, the operator P given by

P : D(P) → H1/2−m3(R+) × H1/2−m4(R+),

ϕ → Pϕ = g,

where ϕ ∈ D(P ) has traces ϕ0 = (ϕ+
0 ,ϕ−

0 ) = B̃−1− (v+ + �(c)h), v+ ∈ H1/2−m1+ × H1/2−m2+ , is equivalent to the WHO

W : H1/2−m1+ × H1/2−m2+ → H1/2−m3(R+) × H1/2−m4(R+),

v+ → W v+ = g − r+B+ B̃−1− �(c)h,

i.e., W = r+F −1Φ · F with Fourier symbol Φ = Φ+Φ−1− . The equivalence relation is given by P = W B̃−T0 .

A straightforward computation leads to the Fourier symbol of the equivalent WHO W of the form

Φ = 1

det Φ−

[
A11 A12
A21 A22

]
, (19)

with

detΦ− = βm1+m2
(
(−1)m1a+

1 a−
2 − (−1)m2a+

2 a−
1

) + (−iξ)m1+m2
(
ǎ+

1 ǎ−
2 − ǎ−

1 ǎ+
2

)
+ (−iξ)m1βm2

(
(−1)m1 ǎ+

1 a−
2 − (−1)m2 ǎ−

1 a+
2

) + (−iξ)m2βm1
(
(−1)m1a+

1 ǎ−
2 − (−1)m2a−

1 ǎ+
2

)
,

and entries

A11 = βm2+m3
(
(−1)m3a−

2 b+
3 − (−1)m2a+

2 b−
3 + (

ǎ−
2 b̌+

3 + ǎ+
2 b̌−

3

)(−iξβ−1)m2+m3

+ (
(−1)m3 ǎ−

2 b+
3 + ǎ+

2 b−
3

)(−iξβ−1)m2 + (
a−

2 b̌+
3 − (−1)m2a+

2 b̌−
3

)(−iξβ−1)m3
)
,

A12 = βm1+m3
(
(−1)m1a+

1 b−
3 − (−1)m3a−

1 b+
3 + (

ǎ+
1 b̌−

3 − a−
1 b̌+

3

)(−iξβ−1)m1+m3

+ (
(−1)m3 ǎ−

1 b+
3 + ǎ+

1 b−
3

)(−iξβ−1)m1 + (
(−1)m1a+

1 b̌−
3 − ǎ−

1 b̌+
3

)(−iξβ−1)m3
)
,

A21 = βm2+m4
(
(−1)m4a−

2 b+
4 − (−1)m2a+

2 b−
4 + (

ǎ−
2 b̌+

4 + ǎ+
2 b̌−

4

)(−iξβ−1)m2+m4

+ (
(−1)m4 ǎ−

2 b+
4 + ǎ+

2 b−
4

)(−iξβ−1)m2 + (
a−

2 b̌+
4 − (−1)m2a+

2 b̌−
4

)(−iξβ−1)m4
)
,

A22 = βm1+m4
(
(−1)m1a+

1 b−
4 − (−1)m4a−

1 b+
4 + (

ǎ+
1 b̌−

4 − ǎ−
1 b̌+

4

)(−iξβ−1)m1+m4

+ (
ǎ+

1 b−
4 − (−1)m4 ǎ−

1 b+
4

)(−iξβ−1)m1 + (
(−1)m1a+

1 b̌−
4 − a−

1 b̌+
4

)(−iξβ−1)m4
)
,

where β(ξ) =
√

ξ2 − k2
0. The corresponding lifted Fourier symbol can be obtained based on the standard lifting procedure,

i.e., taking Φ0 = diag(λ
1/2−m3− , λ

1/2−m4− )Φ diag(λ
m1−1/2
+ , λ

m2−1/2
+ ). We obtain explicitely

Φ0 = ρ

det Φ−

[
(ξ+k0)m1

(ξ−k0)m3 A11
(ξ+k0)m2

(ξ−k0)m3 A12

(ξ+k0)m1

(ξ−k0)m4 A21
(ξ+k0)m2

(ξ−k0)m4 A22

]
, (20)

where ρ(ξ) =
√

ξ−k0
ξ+k0

.

In general, the given operator P is not normally solvable for arbitrary orders m j and coefficients a±
j , b±

j , ǎ±
j , b̌±

j ,
j = 1,2,3,4. Furthermore, if all orders are even, then the fact that P is not normally solvable does not depend on the
coefficients. Although it will be very cumbersome to enumerate all the cases, the following example shows the power of
the image normalization technique.
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Theorem 4.2. Let m1 = m2 = m3 = m4 = m ∈ 2N0 , i.e., all orders are equal to m, and m is zero or an even number. Furthermore, let
detΦ0 �= 0 in (20). Then the associated operator P , and consequently the equivalent WHO W , are not normally solvable. In this case
we consider the corresponding image normalized operator W̆ defined by

W̆ = Rst W : [H1/2−m
+

]2 → Y1 = r+Λ−s− �(0)
{

H̆0(R+) × H̆0(R+)
}
,

and s = (1/2 − m,1/2 − m). The image space Y1 of the restricted operator W̆ solves the normalization problem for the WHO, conse-
quently we look for solutions of Pϕ = g, P : D(P ) → Y1 , for which g − r+B+ B̃−1− �(c)h ∈ Y1 .

Proof. The lifted Fourier symbol in (20) for m = m1 = m2 = m3 = m4 ∈ 2N0 simplifies to

Φ0 = ρ

A

[
B11 B12
B21 B22

]

where

A = a+
1 a−

2 − a+
2 a−

1 + (
ξβ−1)2m(

ǎ+
1 ǎ−

2 − ǎ−
1 ǎ+

2

) + (−i)m(
ξβ−1)m(

ǎ+
1 a−

2 − ǎ−
1 a+

2 + a+
1 ǎ−

2 − a−
1 ǎ+

2

)
,

B11 = a−
2 b+

3 − a+
2 b−

3 + (
ξβ−1)2m(

ǎ−
2 b̌+

3 + ǎ+
2 b̌−

3

) + (−i)m(
ξβ−1)m(

ǎ−
2 b+

3 + ǎ+
2 b−

3 + a−
2 b̌+

3 − a+
2 b̌−

3

)
,

B12 = a+
1 b−

3 − a−
1 b+

3 + (
ξβ−1)2m(

ǎ+
1 b̌−

3 − a−
1 b̌+

3

) + (−i)m(
ξβ−1)m(

ǎ−
1 b+

3 + ǎ+
1 b−

3 + a+
1 b̌−

3 − ǎ−
1 b̌+

3

)
,

B21 = a−
2 b+

4 − a+
2 b−

4 + (
ξβ−1)2m(

ǎ−
2 b̌+

4 + ǎ+
2 b̌−

4

) + (−i)m(
ξβ−1)m(

ǎ−
2 b+

4 + ǎ+
2 b−

4 + a−
2 b̌+

4 − a+
2 b̌−

4

)
,

B22 = a+
1 b−

4 − a−
1 b+

4 + (
ξβ−1)2m(

ǎ+
1 b̌−

4 − ǎ−
1 b̌+

4

) + (−i)m(
ξβ−1)m(

ǎ+
1 b−

4 − ǎ−
1 b+

4 + a+
1 b̌−

4 − a−
1 b̌+

4

)
.

Recall that ρ(ξ), as well as ξβ(ξ)−1, tends to ±1 as ξ tends to ±∞, respectively. But here all the ξβ(ξ)−1 factors are
raised to an even power: 2m or m. Thus Φ0(−∞) = −Φ0(+∞) and for the Fredholm criterium (13) one has

μΦ0(−∞) + (1 − μ)Φ0(+∞) = (1 − 2μ)Φ0(+∞),

which degenerates for μ = 1/2, i.e., Φ0 doesn’t fulfill the Fredholm criterium for μ = 1/2. After some calculations we arrive
at

Φ−1
0 (−∞)Φ0(+∞) =

[−1 0
0 −1

]
.

Thus, the result follows from Theorem 3.2, since the jump at infinity (14) has a diagonal form with one eigenvalue λ = −1
with multiplicity two. �

We remark once again that an analogous result can be obtained for even orders m j not necessarily all equals, see e.g.
Theorem 6.2, only in that case the calculations are more complicated.

5. Boundary-transmission problems of pairwise normal type

We formulate now a particular case of boundary-transmission conditions of the form (15)–(16), namely consider on both
upper banks of R− and R+ boundary-transmission conditions with normal derivatives of a given order, say m1, and on
both lower banks of R− and R+ boundary-transmission conditions with normal derivatives of another order, say m2. We
can similarly to the previous Section 4, define the associated operator P to the problem and study its normal solvability
together with the normal solvability of the equivalent WHO W . Consider, together with the Helmholtz equation (1), the
following boundary-transmission conditions of orders m = (m1,m2) and m′ = (m1,m2){

a+
1 ϕ+

m1
+ a−

1 ϕ−
m1

= h1,

a+
2 ϕ+

m2
+ a−

2 ϕ−
m2

= h2,
on R−, (21)

{
b+

1 ϕ+
m1

+ b−
1 ϕ−

m1
= g1,

b+
2 ϕ+

m2
+ b−

2 ϕ−
m2

= g2,
on R+, (22)

where m1 �= m2, h = (h1,h2) ∈ H1/2−m1 (R−) × H1/2−m2 (R−) and g = (g1, g2) ∈ H1/2−m1 (R+) × H1/2−m2 (R+).
Here we should consider two cases: when m1 + m2 is even or zero, and when m1 + m2 is odd, due to the following

necessary and sufficient conditions for the operator P , and the equivalent WHO W , be of normal type.
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Theorem 5.1. Consider the associated operator

P : D(P) → H1/2−m1(R+) × H1/2−m2(R+),

ϕ → Pϕ = g,

and the equivalent WHO

W = r+F −1Φ · F : H1/2−m1+ × H1/2−m2+ → H1/2−m1(R+) × H1/2−m2(R+)

with Fourier symbol

Φ = 1

A

[
(−1)m1a−

2 b+
1 − (−1)m2a+

2 b−
1 (−1)m1(a+

1 b−
1 − a−

1 b+
1 )βm1−m2

(−1)m2(a−
2 b+

2 − a+
2 b−

2 )βm2−m1 (−1)m1a+
1 b−

2 − (−1)m2a−
1 b+

2

]
, (23)

where A = (−1)m1 a+
1 a−

2 − (−1)m2 a−
1 a+

2 . Then the operator W , and consequently the operator P , are of normal type iff

a+
1 a−

2 b+
1 b−

2 + a−
1 a+

2 b−
1 b+

2

a−
1 a+

2 b+
1 b−

2 + a+
1 a−

2 b−
1 b+

2

�= (−1)m1+m2 . (24)

Proof. The operator W is obtained as in Section 4 from definition (9), i.e., W = r+B+ B̃−1− , where now the operators B̃−
and B+ have the folllowing Fourier symbols

Φ− =
[

a+
1 (−β)m1 a−

1 βm1

a+
2 (−β)m2 a−

2 βm2

]
,

Φ+ =
[

b+
1 (−β)m1 b−

1 βm1

b+
2 (−β)m2 b−

2 βm2

]
,

respectively. Note that these are particular cases of symbols (17) and (18) for zero coefficients of the tangential derivatives
and m3 = m1, m4 = m2. From (23) we can obtain the lifted Fourier symbol, computing Φ0 = diag(λ

1/2−m1− , λ
1/2−m2− )×

Φ diag(λ
m1−1/2
+ , λ

m2−1/2
+ ) explicitly, i.e.,

Φ0 = 1

A

[
((−1)m1a−

2 b+
1 − (−1)m2a+

2 b−
1 )ρ1−2m1 (−1)m1(a+

1 b−
1 − a−

1 b+
1 )ρ1−m1−m2

(−1)m2(a−
2 b+

2 − a+
2 b−

2 )ρ1−m1−m2 ((−1)m1a+
1 b−

2 − (−1)m2a−
1 b+

2 )ρ1−2m2

]
, (25)

where A = (−1)m1 a+
1 a−

2 − (−1)m2 a−
1 a+

2 . Finally, condition det Φ0 �= 0 is equivalent to

a+
1 a−

2 b+
1 b−

2 + a−
1 a+

2 b−
1 b+

2 + (−1)m1+m2+1(a−
1 a−

2 b+
1 b+

2 + a+
1 a+

2 b−
1 b−

2 + (
a−

1 b+
1 − a+

1 b−
1

)(
a−

2 b+
2 − a+

2 b−
2

)) �= 0,

which can also be simplified to (24). �
Condition (24) means that for orders m1 + m2 ∈ 2N0 the operators P and W are of normal type iff a+

1 a−
2 �= a−

1 a+
2 and

b+
1 b−

2 �= b−
1 b+

2 . On the other hand, if m1 + m2 ∈ 2N0 + 1, then the operators P and W are of normal type iff a+
1 a−

2 �= −a−
1 a+

2
and b+

1 b−
2 �= −b−

1 b+
2 . The first case gives place to the following theorem on the image normalization of W and P .

Theorem 5.2. Let m1 + m2 ∈ 2N0 in the boundary-transmission conditions (21)–(22) and assume that (24) holds. Then the operator
P and the equivalent operator W are not-normally solvable. In this case, the image space of the image normalized operator W̆ given
by

W̆ = Rst W : [H1/2−m1+
]2 → r+Λ−s− �(0)

{
H̆0(R+) × H̆0(R+)

}
,

with s = (1/2 − m1,1/2 − m2), solves the normalization problem for the WHO. The image normalization of operator P is obtained by
substituting W by W̆ in the equivalence relation (10).

Proof. For m1 + m2 ∈ 2N0 we have (−1)m1 = (−1)m2 , and the lifted Fourier symbol in (25) simplifies to

Φ0 = 1

a+
1 a−

2 − a−
1 a+

2

[
(a−

2 b+
1 − a+

2 b−
1 )ρ1−2m1 (a+

1 b−
1 − a−

1 b+
1 )ρ1−m1−m2

(a−
2 b+

2 − a+
2 b−

2 )ρ1−m1−m2 (a+
1 b−

2 − a−
1 b+

2 )ρ1−2m2

]
.

Remark that ρ(ξ)1−m1−m2 , as well as ρ(ξ)1−2m j , j = 1,2, tends to ±1 as ξ tends to ±∞, respectively. Thus Φ0(−∞) =
−Φ0(+∞) and the Fredholm criterium (13) gives

μΦ0(−∞) + (1 − μ)Φ0(+∞) = (1 − 2μ)Φ0(+∞),
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which degenerates for μ = 1/2, i.e., Φ0 doesn’t fulfill the Fredholm criterium for μ = 1/2. We now arrive at

Φ−1
0 (−∞)Φ0(+∞) =

⎡
⎣ (a+

1 a−
2 −a−

1 a+
2 )(b+

1 b−
2 −b−

1 b+
2 )

(a−
1 a+

2 −a+
1 a−

2 )(b+
1 b−

2 −b−
1 b+

2 )
0

0
(a+

1 a−
2 −a−

1 a+
2 )(b+

1 b−
2 −b−

1 b+
2 )

(a−
1 a+

2 −a+
1 a−

2 )(b+
1 b−

2 −b−
1 b+

2 )

⎤
⎦ =

[−1 0
0 −1

]
.

Therefore the result is a consequence of Theorem 3.2, applied to the jump at infinity matrix of diagonal form with one
eigenvalue λ = −1 with multiplicity two. �

For orders m1 + m2 ∈ 2N0 + 1 the following normalization theorem is an example when the image normalization can
also depend on the coefficients.

Theorem 5.3. Let m1 + m2 ∈ 2N0 + 1 in the boundary-transmission conditions (21)–(22) and assume that (24) holds. Then the
operator P and the equivalent operator W are not-normally solvable iff there exists a solution θ ∈ [−1,1] for the equation

θ2 = (a+
1 b−

1 − a−
1 b+

1 )(a+
2 b−

2 − a−
2 b+

2 )

(a+
1 b−

2 + a−
1 b+

2 )(a−
2 b+

1 + a+
2 b−

1 )
. (26)

In this case, the image space of the image normalized operator W̆ defined by

W̆ = Rst W : [H1/2−m1+
]2 → r+Λ−s− T �(0)

{
H̆−iτ (R+) × L2(R+)

}
,

with s = (1/2 − m1,1/2 − m2), solves the normalization problem for the WHO. Here T is the matrix which allows the diagonalization
Φ−1

0 (−∞)Φ0(+∞) = T −1 diag(λ1, λ2)T for which the argument of the eigenvalue λ1 is equal to −π and τ = 1
2π log |Φ0(−∞)

Φ0(+∞)
| cor-

responds to λ1 . Moreover, the image normalization of operator P is obtained by substituting W by W̆ in the equivalence relation (10).

Proof. For m1 + m2 ∈ 2N0 + 1 we have (−1)m1 = −(−1)m2 , and the lifted Fourier symbol in (25) simplifies to

Φ0 = 1

a+
1 a−

2 + a−
1 a+

2

[
(a−

2 b+
1 + a+

2 b−
1 )ρ1−2m1 (a+

1 b−
1 − a−

1 b+
1 )ρ1−m1−m2

(a+
2 b−

2 − a−
2 b+

2 )ρ1−m1−m2 (a+
1 b−

2 + a−
1 b+

2 )ρ1−2m2

]
.

Remark that now, while ρ(ξ)1−m1−m2 tends to one, ρ(ξ)1−2m j , j = 1,2, tends to ±1 as ξ tends to ±∞, respectively.
Therefore, the Fredholm criterium (13) gives

μΦ0(−∞) + (1 − μ)Φ0(+∞) = 1

a+
1 a−

2 + a−
1 a+

2

[
(1 − 2μ)(a−

2 b+
1 + a+

2 b−
1 ) a+

1 b−
1 − a−

1 b+
1

a+
2 b−

2 − a−
2 b+

2 (1 − 2μ)(a+
1 b−

2 + a−
1 b+

2 )

]
,

which degenerates for

(1 − 2μ)2(a−
2 b+

1 + a+
2 b−

1

)(
a+

1 b−
2 + a−

1 b+
2

) − (
a+

1 b−
1 − a−

1 b+
1

)(
a+

2 b−
2 − a−

2 b+
2

) = 0

or equivalently when (26) holds, where we introduced θ = 1 − 2μ.
Since one has

Φ0(−∞) = 1

b+
1 b−

2 + b−
1 b+

2

[−a+
1 b−

2 − a−
1 b+

2 −a+
1 b−

1 + a−
1 b+

1
−a+

2 b−
2 + a−

2 b+
2 −a+

2 b−
1 − a−

2 b+
1

]
,

we get

Φ−1
0 (−∞)Φ0(+∞) =

⎡
⎣ (θ2−1)(a+

1 b−
2 +a−

1 b+
2 )(a−

2 b+
1 +a+

2 b−
1 )

(a+
1 a−

2 +a−
1 a+

2 )(b+
1 b−

2 +b−
1 b+

2 )

2(a+
1 b−

2 +a−
1 b+

2 )(a−
1 b+

1 −a+
1 b−

1 )

(a+
1 a−

2 +a−
1 a+

2 )(b+
1 b−

2 +b−
1 b+

2 )

2(a−
2 b+

1 +a+
2 b−

1 )(a−
2 b+

2 −a+
2 b−

2 )

(a+
1 a−

2 +a−
1 a+

2 )(b+
1 b−

2 +b−
1 b+

2 )

(1−θ2)(a+
1 b−

2 +a−
1 b+

2 )(a−
2 b+

1 +a+
2 b−

1 )

(a+
1 a−

2 +a−
1 a+

2 )(b+
1 b−

2 +b−
1 b+

2 )

⎤
⎦

or, after introducing the notations

A11 = (a+
1 b−

2 + a−
1 b+

2 )(a−
2 b+

1 + a+
2 b−

1 )

(a+
1 a−

2 + a−
1 a+

2 )(b+
1 b−

2 + b−
1 b+

2 )
,

A12 = 2(a+
1 b−

2 + a−
1 b+

2 )(a−
1 b+

1 − a+
1 b−

1 )

(a+
1 a−

2 + a−
1 a+

2 )(b+
1 b−

2 + b−
1 b+

2 )
,

A21 = 2(a−
2 b+

1 + a+
2 b−

1 )(a−
2 b+

2 − a+
2 b−

2 )

(a+a− + a−a+)(b+b− + b−b+)
,

1 2 1 2 1 2 1 2
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we arrive at

Φ−1
0 (−∞)Φ0(+∞) =

[
(θ2 − 1)A11 A12

A21 (1 − θ2)A11

]
.

The eigenvalues of the jump at infinity matrix are

λ j = ±
√(

1 − θ2
)2

A2
11 + A12 A21, j = 1,2, (27)

and the result is a consequence of Theorem 3.2, with the choice of T to be the matrix, possible with a permutation of
columns, that yields the argument of the eigenvalue λ1 in (27) to be equal to −π . �
6. Boundary-transmission problems with oblique derivatives

Finally, we analyze a particular case of boundary-transmission conditions of the form (15)–(16), when we have a bound-
ary condition with normal derivatives of order m1 on both banks of R− , and boundary-transmission conditions with normal
and tangential derivatives of order m2 on both banks of R+ . That is, together with the Helmholtz equation (1), consider
the following boundary-transmission conditions of orders m = (m1,m1) on the left half-line and order m′ = (m2,m2) on the
right half-line{

ϕ−
m1

= h1,

ϕ−
m1

= h2,
on R−, (28)

{
b+

2 ϕ+
m2

+ b−
2 ϕ−

m2
+ b̌+

2 ϕ̌+
m2

+ b̌−
2 ϕ̌−

m2
= g1,

c+
2 ϕ+

m2
+ c−

2 ϕ−
m2

+ č+
2 ϕ̌+

m2
+ č−

2 ϕ̌−
m2

= g2,
on R+, (29)

where in general m1 �= m2, h = (h1,h2) ∈ [H1/2−m1 (R−)]2 and g = (g1, g2) ∈ [H1/2−m2 (R+)]2.
The following necessary and sufficient conditions hold for the operator P and the equivalent WHO W be of normal type.

Theorem 6.1. Consider the associated operator

P : D(P) → [
H1/2−m2(R+)

]2
,

ϕ → Pϕ = g,

and the equivalent WHO

W = r+F −1Φ · F : [H1/2−m1+
]2 → [

H1/2−m2(R+)
]2

with Fourier symbol

Φ = (−1)m1βm1−m2

[
(−1)m2 b+

2 + b̌+
2 (−iξβ−1)m2 (−1)m1(b−

2 + b̌−
2 (−iξβ−1)m2)

(−1)m2 c+
2 + č+

2 (−iξβ−1)m2 (−1)m1(c−
2 + č−

2 (−iξβ−1)m2)

]
. (30)

Then both operators W and P are of normal type iff

(−1)m2
(
b+

2 c−
2 − b−

2 c+
2

) + (
(−1)m2

(
b+

2 č−
2 − b̌−

2 c+
2

) + b̌+
2 c−

2 − b−
2 č+

2

)(−iξβ−1)m2

+ (
b̌+

2 č−
2 − b̌−

2 č+
2

)(−iξβ−1)2m2 �= 0. (31)

Proof. As before, we obtain first the Fourier symbol in (30) from the Fourier symbols of the operators B̃− and B+ , and then
come to the lifted symbol

Φ0 = (−1)m1ρ1−m1−m2

[
(−1)m2 b+

2 + b̌+
2 (−iξβ−1)m2 (−1)m1(b−

2 + b̌−
2 (−iξβ−1)m2)

(−1)m2 c+
2 + č+

2 (−iξβ−1)m2 (−1)m1(c−
2 + č−

2 (−iξβ−1)m2)

]
. (32)

Thus, condition (31) follows from the assumption that det Φ0 �= 0. �
We must consider now four situations: both orders m j are zero or even, both orders are odd, m1 is zero or even and m2

is odd, and the way around, m1 is odd and m2 is zero or even. These four cases give rise to the following four results.



284 A. Moura Santos, N.J. Bernardino / J. Math. Anal. Appl. 377 (2011) 274–285
Theorem 6.2. Let m1,m2 ∈ 2N0 in the boundary-transmission conditions (28)–(29) and assume that (31) holds. Then the operator P
and the equivalent operator W are not-normally solvable. In this case, the image space of the image normalized operator W̆ defined
by

W̆ = Rst W : [H1/2−m1+
]2 → r+Λ−s− �(0)

{
H̆0(R+) × H̆0(R+)

}
,

with s = (1/2 − m2,1/2 − m2), solves the normalization problem for the WHO. Furthermore, the image normalization of operator P
is obtained by substituting W by W̆ in the equivalence relation (10).

Proof. For m1 = m2 this is a direct consequence of Theorem 4.2. For different orders m1 �= m2 we also arrive at Φ0(−∞) =
−Φ0(+∞), since the lifted Fourier symbol simplifies to

Φ0 = ρ1−m1−m2

[
b+

2 + im2 b̌+
2 (ξβ−1)m2 b−

2 + im2 b̌−
2 (ξβ−1)m2

c+
2 + im2 č+

2 (ξβ−1)m2 c−
2 + im2 č−

2 (ξβ−1)m2

]
.

In this case we obtain, once more, a diagonal matrix with −1 in the diagonal entries for the jump at infinity matrix. �
Theorem 6.3. Let m1,m2 ∈ 2N0 + 1 in the boundary-transmission conditions (28)–(29) and assume that (31) holds. Then the opera-
tors P and W are not-normally solvable if there exists a solution θ ∈ [−1,1] for the equation

(
b+

2 c−
2 − b−

2 c+
2

)
θ2 + im2

(
b̌+

2 c−
2 − b+

2 č−
2 + b̌−

2 c+
2 − b−

2 č+
2

)
θ + b̌+

2 č−
2 − b̌−

2 č+
2 = 0. (33)

In this case, the image space of the image normalized operator W̆ given by

W̆ = Rst W : [H1/2−m1+
]2 → r+Λ−s− T �(0)

{
H̆−iτ (R+) × L2(R+)

}
,

with s = (1/2 − m2,1/2 − m2), solves the normalization problem for the WHO. The matrix T is chosen to be the matrix in the
diagonalization Φ−1

0 (−∞)Φ0(+∞) = T −1 diag(λ1, λ2)T for which the argument of the eigenvalue λ1 is equal to −π and τ =
1

2π log |Φ0(−∞)
Φ0(+∞)

| corresponds to the eigenvalue λ1 . The image normalization of the operator P is obtained by substituting W by W̆ in
the equivalence relation (10).

Proof. For m1 + m2 ∈ 2N0 + 1 we have (−1)m1 = (−1)m2 = −1, and the lifted Fourier symbol in (32) simplifies to

Φ0 = ρ1−m1−m2

[
b+

2 + im2 b̌+
2 (ξβ−1)m2 b−

2 − im2 b̌−
2 (ξβ−1)m2

c+
2 + im2 č+

2 (ξβ−1)m2 c−
2 − im2 č−

2 (ξβ−1)m2

]
.

Here, while ρ(ξ)1−m1−m2 tends to one, (ξβ(ξ)−1)m2 tends to ±1 as ξ tends to ±∞, respectively. Thus the Fredholm cri-
terium (13) applied to the lifted Fourier symbol gives

μΦ0(−∞) + (1 − μ)Φ0(+∞) =
[

b+
2 θ + im2 b̌+

2 b−
2 θ − im2 b̌−

2
c+

2 θ + im2 č+
2 c−

2 θ − im2 č−
2

]
,

where we introduced the former notation θ = 1 − 2μ. Remark that once i2m2 = −1, the determinant of the last matrix
equals zero when (33) holds.

Since we have

Φ−1
0 (−∞)Φ0(+∞) =

[− A+im2 B
C

2im2 D
C

2im2 E
C

−A+im2 B
C

]
,

where we introduced the notations

A = b−
2 c+

2 − b+
2 c−

2 + b̌+
2 č−

2 − b̌−
2 č+

2 , B = b̌−
2 č+

2 + b−
2 č+

2 − b̌+
2 c−

2 − b+
2 č−

2 ,

C = b−
2 c+

2 − b+
2 c−

2 + b̌−
2 č−

2 + b̌−
2 č+

2 + im2 B, D = b−
2 č−

2 − b̌−
2 c−

2 , E = b+
2 č+

2 − b̌+
2 c+

2 ,

we get the eigenvalues

λ j = −A ± i
√

B2 + 4D E

C
, j = 1,2. (34)

Therefore the result is a consequence of Theorem 3.2, applied to the jump at infinity matrix with the choice of the eigen-
value λ1 in (34) to be the one for which the argument is equal to −π . �
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Theorem 6.4. Let m1 ∈ 2N0 and m2 ∈ 2N0 + 1 in the boundary-transmission conditions (28)–(29) and assume that (31) holds. Then
the operator P and the equivalent operator W are not-normally solvable if there exists a solution θ ∈ [−1,1] for the equation(

b̌−
2 č+

2 − b̌+
2 č−

2

)
θ2 − im2

(
b̌+

2 c−
2 − č−

2 b+
2 + b̌−

2 c+
2 − b−

2 č+
2

)
θ + b−

2 c+
2 − b+

2 c−
2 = 0. (35)

In this case, the image space of the image normalized operator W̆ given by

W̆ = Rst W : [H1/2−m1+
]2 → r+Λ−s− T �(0)

{
H̆−iτ (R+) × L2(R+)

}
,

with s = (1/2 − m2,1/2 − m2), solves the normalization problem for the WHO. The matrix T is chosen to be the matrix in the
diagonalization Φ−1

0 (−∞)Φ0(+∞) = T −1 diag(λ1, λ2)T for which the argument of the eigenvalue λ1 is equal to −π and τ =
1

2π log |Φ0(−∞)
Φ0(+∞)

| corresponds to the eigenvalue λ1 . The image normalization of the operator P can be obtained by substituting W by

W̆ in the equivalence relation (10).

Proof. The proof follows the same steps as the proof of Theorem 6.3. In this case the jump at infinity is characterized by
the matrix

Φ−1
0 (−∞)Φ0(+∞) =

[ A+im2 B
C

2im2 D
C

2im2 E
C

A−im2 B
C

]
,

where the notations are the same as the ones used in the proof of Theorem 6.3. The eigenvalues are given by

λ j = A ± i
√

B2 + 4D E

C
, j = 1,2,

and we must choose the diagonalization which gives the value of −π for the argument of λ1. �
Theorem 6.5. Let m1 ∈ 2N0 + 1 and m2 ∈ 2N0 in the boundary-transmission conditions (28)–(29) and assume that (31) holds. Then
both operators P and W are normally solvable operators.

Proof. For m1 ∈ 2N0 + 1 and m2 ∈ 2N0 the lifted Fourier symbol reads

Φ0 = ρ1−m1−m2

[−b+
2 − im2 b̌+

2 (ξβ−1)m2 b−
2 + im2 b̌−

2 (ξβ−1)m2

−c+
2 − im2 č+

2 (ξβ−1)m2 c−
2 + im2 č−

2 (ξβ−1)m2

]
,

which has no jumps at infinity, since both ρ(ξ)1−m1−m2 and (ξβ(ξ)−1)m2 tend to one as ξ tends to ±∞. Therefore, the
corresponding WHO has always a closed image and, by the equivalence relation (10), so does the operator P . �

In the present paper we were able to achieve the image normalization of particular WHOs which arise from relevant
boundary-transmission value problems for a junction of two half-planes. For theoretical and practical reasons it is most
important to be able to answer further questions about the invertibility or the Fredholm properties of these operators. We
plan to do this in a future work.
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