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In this paper we derive the explicit form of the probability law and of the associated flow function 

of a random motion governed by the telegraph equation. Connections of this law with the transition 

function of Brownian motion are explored. Lower bounds for the distribution of its maximum 

are obtained and some particular distributions of its maximum, conditioned by the number of 

velocity reversals, are presented. 
Finally some versions of motion admitting annihilation are proven to be connected with 

Kirchoff’s laws of electrical circuits. 

telegraph equation * Bessel functions * distribution of the maximum * Brownian mdtion * 

Kirchoff’s laws 

1. Introduction 

The process 

V(f) = V(0)(-l)N”’ (1) 

where N(t) is the number of events of an homogeneous Poisson process (with rate 

A) during (0, t) is usually referred to in literature as the telegraph process. The 

process V(t) can be viewed as the velocity at time f of a point P running on the 

real line and whose speed performs abrupt changes of direction at Poisson times. 

Clearly V(0) denotes the initial velocity which is either +c and -c with equal 

probability. Probably the most interesting information concerning (1) is the joint 

characteristic function which reads (when c = l), 

E(e 
i~v(r)+ipv(.~)) = cos (y cos p -sin (y sin p e~2M~51. 

(2) 

The related process 

X(t)= V(0) 
I 

r(-l)N“‘ds (3) 
cl 

gives the instantaneous position of the point l? 
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The result that the probability law of X(t), say p(x, t; x0, to), (or p(x, I) when P 

starts at x0=0, at time &=O), is a solution of 

a2p d’p dp 
cZr7x2=--&2A- 

at (4) 

seems due to Goldstein (1951). This is proven in many papers (for example, Cane, 

1975; Orsingher, 1985) and books (Kurtz, 1986). 

The proof involves the following probabilities 

f(x, t) dx = Prob{ P is near x at time t with forward velocity}, 
(5) 

h(x, t) dx = Prob{ P is near x at time f with backward velocity}, 

and also 

P(X, t) =f(x, j)+ 6(x, f), w(x, t) =f(x, t) - b(x, t). 

In a large ensemble of particles moving according to the above prescriptions, 

w(x, t) measures, at each time t, the excess of forward moving particles with respect 

to backward moving ones near point x. 

In this paper we obtain the explicit form of p(x, t) and w(x, t) and therefore of 

probabilities f(x, t) and b(x, t) so that a complete picture of the random motion 

X(t) is possible. 

It seems relevant that all formulas are constructed by means of the function 

G(x, t) = 
9Lx2 > ) 1x1 =z ct, 

otherwise, 

which, in the theory of vibrations, represents the instantaneous form 

performing damped vibrations initiated at time t = 0 by a unit impulse 

Clearly 

Z”(X) = ; -Jy (qx)2k 
k=O (k!) 

(6) 

of a string 

at x=0. 

(6’) 

is the Bessel function with imaginary argument of order zero. 

In Orsingher (1985) we obtained an expression for the probability density p(x, t) 

(based on G(x, t)) defective in that the normalising factor was time-dependent. This 

drawback is eliminated here by combining the function (6) with its time derivative. 

What seems relevant is that the flow function w(x, t) coincides with the space 

derivative of G(x, t), and thus is itself related to function (6). 

Since the distribution of X(t) seems not directly obtainable from (3), we investi- 

gated whether moments evaluated on the basis of (3) coincide with those calculated 

by means of the distributions obtained analytically. 

The response is affirmative and we present in detail the calculations concerning 

the variance. 
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Since equation (4), when h + ~0 and c2/h + a2 becomes the heat equation (as is 

pointed out in Kac, 1974) we investigated if the probability law p(x, t) of (3) tends 

to the usual Brownian motion transition function. 

We obtained this result in Section 3 and this allows us to say that Brownian 

motion is a limiting case of the integrated telegraph process. 

A large part of the paper is devoted to the analysis of 

max X(s). 
“ZZ,><, (7) 

The most general results obtained, as far as the distribution of (7) is concerned, 

are the following simple lower bounds (based on specific properties of process (3) 

and valid for 0 < /3 < ct), 

Prob max X(s) < /3 1 V(0) > 0 I 3 em*“’ -{enp’(2c)-e~hp’(2~)}, 
“SCZZC, 

Prob 
i 

max X(s) < p 1 V(0) < 0 
Cl~,~~~, 

Although the explicit law of (7) still escapes us, we are able to present the exact 

conditional distribution 

Prob my,X(s)</3IN(t)=k, V(O)50 
I 

(10) 

when k s 5. This is clearly of interest when A is sufficiently small. 

Furthermore, the results displayed seem to indicate the existence of a rather 

simple analytical form for (10) which we have not been able to obtain in general 

because of an excessively large quantity of entangled calculations. 

We observe, finally, that the basic motion dealt with in this paper has been 

generalised in many directions (for one-dimensional generalisations consult 

Orsingher, 1987; for a two-dimensional version see Orsingher, 1986). 

We are able here to present some further generalisations whose probability law 

is connected with Kirchoff’s laws of electrical circuits. 

The explicit form of this law is derived from the previously described results. An 

example of motion with varying velocity is also produced. 

2. The explicit laws 

The probabilities f and b are solutions of the differential system 

$=-$+h(b-f), $&:+A(./-b). (11) 

This is proven in Cane (1975), Orsingher (1985, 1987) and the derivation of (11) 

is therefore not repeated here. Furthermore the probability density p and the flow 
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function w are solutions of 

ap aw aw 
-=-c-, dP 
at dX dt= -c--2hw ax ’ 

(12) 

as the reader can easily realize by adding and subtracting equations (11). 

Eliminating w in (12) then swiftly yields equation (4). 

In the following theorem we obtain the continuous component of p(x, t) together 

with the flow function w(x, t). 

Theorem 1. Y#%e explicit form of p(x, t) is 

while w( x, t) is given by 

w(x, t) = -4 e-*‘G o a I 
Furthermore 

Prob{X( t) = ct} = Prob{X( t) = -ct} = t em”‘. 

Proof. Equation (4) can be converted into 

d2V 
7 

cz-_tA2v =du 

dX2 at2 

by means of 

21(x, t) eCA’ = p(x, t). 

When 

equation (15) becomes the modified Bessel differential equation 

whose general solution is 

(14) 

(16) 

(17) 
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We must disregard the Bessel function of the second kind K0 which tends to 

infinity as s approaches 0 which clearly contradicts the features of the random 

motion we are analysing. Returning to the original variables we get for 1x1~ ct: 

p(x, t)=Ae -*‘&(;J+ =AG(x, t). (18) 

We now observe that 

(19) 

and thus to obtain 

I 

fCI 
p(x, t) dx = 1 - emA’ 

--cI 

we should select A to be a time-dependent 

combine (18) with its time derivative (which 

p(x, t) = A’G(x, t) + B’; G(x, t) 

function. In order to avoid this we 

is also a solution of (4)) as follows: 

Since 

I::‘; I,&-) dx=i I,’ I,@-) dx-2c 

=: f(e”‘-em”‘) 1 -2c (by (19)) 

= c(eA’ + emA’ - 2), 

we obtain from (20) that 

I 

+Cf 

-0 
~(~,t)dx=n’f(l-e~~“‘)+B’c(l-2e~“’+e~’”’)=(l-e~”‘) 

when A’= h/(2c) and B’= 1/(2c). 

In order to prove (14) we must resort to the differential system (12). On the basis 

of formula (13), which we have just proven, we obtain 

In order to establish the connection between 

a2 - 
at2 

1 1Jc2+_2 =_ ( Cl c > ACX2 

4 c2t2 -x2)3 
z:, em?) ( 

+ (hctJ2 z,, A (-@77) c’+x2 O c 

(21) 

(22) 
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and 

(23) 

we need to know that 

Z{(x) = Z”(X) -; I{)(X), 

which the reader can verify directly working on (6’). Therefore 

(24) 

(by (23)) 

+ 

J 

i-h’ +‘t’-x?) -AJ& I;($t2-x1)) (by (24)) 

(25) 

Formula (25) permits us to write dp/dt as 

z=g [ -A’I++ +-$ I+m)] 
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This shows that (14) is a solution of the first equation of the differential system 

(12). To complete the proof we show tha’: w(x, t) satisfies also the second equation 

of the same system. Neglecting the arguments of I0 in (13) and (14) we obtain 

aw I -A, a 
at 

-*A e --g I,-$ eCAr 
a2 

-I 
axat O’ 

-c---2Aw = -_c e-- dP 
-A, 

dX [ 1 a* +2A e-” a 

2c 
*;l,+- 

ax at 
I, -- II 2 

1 
ax O’ 

(26) 

(26’) 

and by simply comparing the second members of (26) and (26’) we obtain the 

desired result. 0 

Remark 1. An alternative form of p(x, t) is 

p(x, t)=hepA’Io(%JYTT) 
c 

+~~{e~A’lo(~J~)] for /xI<ct. (27) 

Loosely speaking, the first term of (27) represents an overestimation of the density 

which is corrected by its derivative. 

The results of Theorem 1 permit us to write down the explicit form of probabilities 

f(x, t) and b(x, t). In particular 

f(x, I)=$ AI “J *t*- [ o(C x’)+;Io(~m2) 

ax -\c /J 

for 1x1~ ct, which is a fairly complex expression for a rather simple probability. 

It is interesting to note that the flow function (14) shows that in (0, ct) forward 

moving particles exceed backward moving ones (the converse happens in (-ct, 0). 

This accords with the fact that particles diffuse out on the real line as motion develops. 

3. On moments of the particle’s position 

We now prove that the variance of process X(t) obtained by means of (3) and (13) 

coincide. Evaluating higher order moments involves complicated and clumsy algebra 

(with both approaches) and we content ourselves with presenting two independent 

evaluations of second order moments. We also obtain the covariance function of 

X(t) via formula (3). Our results are contained in Lemma 1 below. 
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Lemma 1. 

Var X(t) =$c’ 
L 

2t (1 -e-“‘) 
I- 1 A2 y (28) 

Cov{X(r), X(s)} = 42 
4 min(t, s) (1 _ep2h min(o))(l +ep2U-sl) 

* - 
A2 1. (28’) 

Proof. (i) Approach based on (13). We have 

EX2( t) = x2p(x, f) dx+ c2t’ em”’ 
-(‘I 

Some lengthy calculations yield 

With this at hand formula (28) emerges. 

(ii) Approach based on (3). 

EX’(t) = E [V’(O) I,: 1; (-l)N’~‘J+N(=) ds dz] 

f I 
_ 2 

-4 
E((--1) 

Nb)+NW) & & 

0 0 

(since V(0) and Poisson process are independent). 

When z> s, we obtain 

,y((_l)f’W)+N(Z) ) 

= E((-1) 2N(\)+N(z)FN(O) = ~((_l)N(z)bN(d) 

=Prob{[N(z)-N(s)]=even}-Prob([N(z)-N(s)]=odd) 

=e -2*(=-s) 
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Therefore 

I t 
EX2( t) = c2 

II 

t 5 
e-N--F1 ds dz = 2c2 

II 
e -2A(qmz’ ds dz, 

0 0 0 0 

and performing the two-fold integral above result (28) is obtained. Slight 

modifications then permit us to derive also the covariance (28’). 0 

Remark 2. We note that as t + ~0, Var X(t) - c2t/A, i.e. it increases linearly as the 

variance of Brownian motion increases. 

When t + 0, Var X(t) - c2t2 and therefore the variance increases initially more 

slowly than when motion has attained its limiting development. 

Finally we remark that while the telegraph process V(t) has the same covariance 

function as the Ornstein-Uhlenbeck process, X(t) possesses a covariance obtained 

combining the covariances of Brownian motion and of the Ornstein-Uhlenbeck 

process. These connections are explored in Section 4. 

4. Connections with Brownian motion 

It has been pointed out in Kac (1974) that the wave equation (4) when A + 00 and 

c2/h + a2 tends to the heat equation. 

Letting h + 00 means that the velocity changes occur continuously, while c2/h + CT* 

implies that also the speed of the moving particle must become infinite. Therefore 

the limiting behaviour of the integrated telegraph becomes similar to that of 

Brownian motion. 

Our task in this section is to show that the density function (13) becomes, in the 

limit, the Gaussian transition function of Brownian motion. 

Lemma 2. Ifp(x, t) is us in (13) we have 

lim p(x, t) == 
X2 

h-m 
c’/,4+mZ j,’ rr(r2t 

exp -- 
1 1 2a*t . 

Proof. Our proof is based on the integral form of Bessel function 

Z,(x) = L 

I 

+Ti/* 

e x rin ’ dd 
= -n/2 

and exploits the asymptotic estimate 

x 
-- I,(x) Jk as x+co. 

Since 

(29) 

aJ&q++. .]_+?c] 
C 
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when h + CO and c2/A + a2 we have 

With this at hand we have 

A e-*’ 
--g-I, +2t’-X2 ( _____ > -gexp(t [ ct -&1)/J- 

=expj-$]/(2&Js). (30) 

Performing the limit in the last member of (30) yields one half of the Gaussian 

density. We observe now that 

and exploiting the formula (see Bowman, 1958, p. 49), 

I”(X) 
Zb(x) 

-I,&,..., 

formula (30’) becomes 

~z+[c-~])(*+$$) 

-(exp{ -$$]/(N%))( l/j/=)( I+&). 

Carrying out the limit now yields the Gaussian density again and this concludes 

the proof. 0 

Remark 3. The reader can easily check that the variance and covariance functions 

(28) and (28’) converge to the variance and covariance of Brownian motion as A + 00 

and c”/A + a’. Furthermore the initial time span where Var X( t) increases as t2 

increases, disappears (see Remark 2), because in the limit, particles move with 

infinite velocity. 

5. On the maximum of X(t) 

A fundamental result for the complete analysis of process X(t) is the evaluation 
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of probabilities 

Prob 0m~,X(s)q31N(t)=k, V(O)>0 
1 

and 

Prob ma:, X(S) < p 1 N(t) = k, V(0) < 0 
I 

. 

59 

(31) 

(31’) 

The dependence on the direction of the initial velocity is of fundamental impor- 

tance and the analysis of the two cases must be carried out separately. 

It is well known that if N(t) = k, the joint distribution of times (T, , . . . , Tk) where 

the Poisson events occur is given by 

Prob{T,6dT,,....T~EdT,~N(r)=k}=$dT,...dT, (32) 

whereO~T,~T,~...~T,~t. 

When V(0) > 0 and N(t) = k, the jth displacement recorded has the form 

S; = c i: (-l)‘-‘( T, - T,_,) 
r=l 

= c[2T, -2T,+. + ~+2(-1)‘~2T,_,+(-1)‘~‘T,], j= 1,2,. . . , k, 

&+,=c ; (-l)‘-‘(T,-T,_,)+C(-l)h(t-T,). 
r=, 

It is fairly obvious that 

s2, s s,p, 

which implies that 

max(S, , S2, . . . , S2k+,) = max(S,, %,. . , S2k-,, &+,I, 

a fact which somewhat simplifies the problem of evaluating (31). We present in the 

next theorem the exact distribution of (31) when k 4 5. When k > 5, principles and 

techniques remain the same, but the amount of calculation increases dramatically. 

For the sake of simplicity we assume throughout this section that c = 1. 

Theorem 2. Zf 

F:(P) = Prob 
i 

,rm,ax, X(S) <p 1 V(0) > 0, N(t) = k c.c 

the results of Table 1 hold (when O<p < t). 

Proof. Clearly the most interesting results emerge from the density form of the 

maximum, which seem to indicate an underlying general law. We shall derive only 

the case k = 5 since the others are simpler. Furthermore, this represents the prototype 

of reasoning leading (at least in principle) to the general law of (31). 
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Table 1 

Number of 

velocity reversals 
F:(P) 

k=l 

k=2 

x-=3 

k=4 

k=5 

When k = 5, six displacements occur (S,, r = 1,2,. . . ,6), but only the odd-indexed 

ones are relevant for the evaluation of (31). Therefore we are led to consider 

Prob{S, < P, S3 < P, Ss < PI 

=Prob{T,<P,2T,-2Tz+Tj<P,2T,-22~+2~~-22T4+fT5<P}. (33) 

Evaluating (33) implies taking into account three sets of time-points, namely: 

(i) T,<p, T,<T,<T,+$(t-p), Tz<T,<p+2(T2-T,), 

T3<T4<T3-Tz+T,+;(t-P), T4<TF<P+2(T2-T,+Tq-T3), 

(ii) T,<p, T,<T2<T,+i(t-p), Tz<T3<p+2(T,-T,), 

t> T4> T,-T,+T,++(t-p), t> T,> T4, 

(iii) T,<& t> T2> T,+i(t-/3), f> T,> T,, t> T4> T,, t> T,> T4. 

Set (i) is constructed considering that S, is less than ,!3 if 

Ts<p+2(Tz-T,+T4-TX) 

and that the right member of this inequality must not exceed t. Therefore 

T4<T3-TZ+T,+;(t-/?) 

and since the right member cannot exceed t we obtain the constraint 

T3< T,-T,+$(r+p). 

Since S, < p, it follows that T3 < /3 + 2( Tz - T,) and for (T, , T,) as in (i), i(r + p)+ 

Tz- T, > p +2( T,- T,). This concludes the proof of (i). 

For the other sets note that for T4 > T3 - T, + T, +i( t - p), the displacement S, 

never exceeds the level /3, no matter where the instant Ts occurs. Analogously when 

T, > T, +i( t - p), displacements S, and S5 cannot exceed level p as a quick check 

shows. This is intuitively due to the fact that if the second event (which stops the 

first leftward step) occurs too late, the moving particle is so far to the left that it 

can never reach p before t. 
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Integrating distribution (32) (when k = 5) on sets (i), (ii), (iii) we obtain succes- 

sively: 

(i) $ 
P 

(s I 

T,+(lkP)/z 
dT, d T2 

0 TI I 

P+z-r-T,) 
d T, 

T, 

X J 
T,-T,+T,t(r~fi)/Z p+2(Tz-T, tT?- T33, 

dT, J d T5 
T3 T4 I 

5! B fi+2(Tz-T,) , I 
(ii) _5 

iJ J 

dT T,+(f-P)/2 

t 0 ‘71 
dT2 

J 
d TJ J dT, dT, 

TZ T,mT>+T,+(l-fi)/2 J 1 T4 

Summing up the above results yields the claimed distribution. Some algebra then 

suffices to obtain the density function. 

The distribution of maximum when k = 4 is obtained by considering that in this 

case the relevant displacements are 

S, = T,, S,=2T,-2T,+T,, S,=2T,-2T2+2T,-2T,+t. 

Distribution (32) must be integrated on two sets in this case, i.e.: 

(i) T,<P, T,<T,<T,+i(t-/I), T,<T,<j3+2(T>-T,), 

t>T4>(T,-Tz+T3)+;(t-P), 

and 

(ii) 7-1 <P, T,+$(t-p)<T,<t, Tz<T,<t, T,<T,<t. 

Some calculations give respectively 

4! l3 T,+(r-!3)/2 a+zrT,--T, f 
-2 t (I J d T, dT2 J dT, 

0 TI T2 J dT4 
T,~T,+T,+(r-0)/Z I 

= tP(t’-P’) 

t4 
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and thus the claimed distribution function quickly emerges. 0 

Remark 4. The results displayed lead us to conjecture a general form for (3 1) (when 

the number of Poisson events is 2k-t 1) as 

fW)(f2-P2)k for o<-p < t 

t2k+’ L > 

B(k) being the normalising constant. Unfortunately, the method employed necessi- 

tates the evaluation of k + 1, (2k+ 1)-fold integrals. We observe that the distributions 

obtained are continuous and the densities decrease throughout the whole range of 

j3 (when the initial velocity is negative a discontinuity at p = 0 exists). An interesting 

fact emerging from Theorem 2 is that the maximum attains large values with a 

probability which decreases with k. Furthermore, some calculations give the results 

of Table 2. 

Table 2 

Number of 

velocity reversals 
E{max,_ \<., X(S)lV(O)>O, N(t)=k} 

k=l 2r/22 

k=3 3112’ 

k=5 5t/24 

We finally observe that the distributions of Theorem 2 can be generalised to the 

case c f 1 by replacing p (in the distribution function) by /3/c. 

Theorem 3. For the continuous component of probability 

ma-x, X(s)<p IN(t) = k, V(O)<0 c < 

the results of Table 3 hold. 

Proof. Since the reasoning involved is similar to that of Theorem 2, details are 

omitted. 0 

Remark 5. The reader will notice that no explicit law for the continuous part of 

F;(P) is suggested by the results reported. This is probably due to the perturbating 

influence exerted by the discontinuity at p = 0 on the continuous part. 
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Table 3 

Number of 

velocity 
reversals F,(P) 

k=l 
1 

r 

1-P 
t2 

k=3 

k=4 

$Jw-P%t+P) &P-P’ 

+2p(p2+3tz)] +2t(t-P)1 

~[3(t’-P2)‘+4t~(3t’-B2)1 
4.3 
,,p(t-Nt*-P) 

k=5 

We now present the proof of lower bounds (8) and (9). 

Theorem 4. When 0 < p < et, 

Prob 
1 

,max, X(S) < /3 1 V(0) > 0 2 e~*r’2{e”p’(2r’ -ep”p’(zc)}, (34) cc 

Prob 
1 

,mr_“, X(S) < p 1 V(0) < 0 
I 

2 e-*1/2 ehp’(2c). (35) <S 

Proof. When V(0) > 0, if CT, < /3 and T, > T, + f( t -p/c), all displacements do not 

exceed level /3, no matter what the values of T3 s T4 G . . . s T., s t. 

In fact, the general form of displacements (2 ~j G n) is 

(i) 2c( T, - T2+. . . - T2;pz) + CT,,-, , 

(ii) 2c( T, - T,+. . . + T2j_,) - cT~~, 

and thus for T2 2 T, + i( t -/3/c) we obtain 

2c(T,-T,+...-T,,_,)+cT,,_, 

<2cT,-2cT,-ct+p+2cT,-2cT,+. . .-2cT,,_,+cT,,m, 

=p-2c(T,-T,)-. ..-2(T2~i_~-T2j_~)-~(t-T2~j-~)~P. 

The same inequality is true, a fortiori, for displacements of type (ii). Therefore when 

N(t) = n and V(0) > 0, 

P 
T,<-,tzT,sT,+$ . 3 ta T,a T,_, 

C 

= p,“c”l X(s)<P 1 . I 2 
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Thus, 

Prob max X(s)<pIN(t)=n, V(O)>0 
II- .5 t I I 

Conditioning out with respect to n, inequality (34) energes. As far as the other 

result is concerned, it suffices to note that when V(0) <O and T, a$( t -p/c) all 

displacements do not exceed level p, regardless of the instants where the velocity 

switches occur. Imitating the scheme of the above proof then yields (35). 0 

Clearly we have also 

Prob 
1 

max,X(s)=O1 V(O)<0 rep*“’ 
I 

because the moving particle P can remain, with positive probability, on the negative 

axis (when V(0) < 0) up to time t. 

6. Connection with Kirchoff’s laws of circuits 

The differential system governing variations of voltage V(x, t) and current Z(x, t) 

in a long wire is 

(36) 

The resemblance between (36) and (12) is striking. The fundamental difference 

between the two systems is the term RI in the first equation of (36) which has no 

counterpart in (12). 

We present here a changed version of the random motion treated above possessing 

the peculiarity that its probability law and the related flow function are solutions 

of a differential system coinciding with (36). 

This system can therefore be viewed 

laws. 

as a probabilistic counterpart of KirchoR’s 

Assume that the particle P (moving 

velocity reversals) can be annihilated 

exponentially distributed with rate /_L). 
,. 

forward and backward with Poisson-paced 

while moving forward (decay is assumed 

We need also the notation 

f(x, t) dx = Prob{P is located at x at time t with forward velocity}, 

6(x, t) dx = Prob{P is located at x at time t with backward velocity}, 
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and 

@=?+6, &j-& 

Keeping in mind that P moves with velocity c and can disappear with probability 

pAt while moving forward, we can establish the system 

&x, t+At)=(l-pAt)(l-AAt)f(x-cdt, t)+AAd(x+cAt, t)+o(At), 

6(x, t+At)=(l-hAt&x+cAt, t)+(l-pAt)hA$(x-cdt, t)+o(At). 
(37) 

Expanding equations (37) and letting At and Ax + 0 we obtain 

System (38) can be recast as 

(38) 

(39) 

Eliminating the flow function d in (39) we obtain the complete telegraph equation 

(40) 

which clearly reduces to (4) when p = 0. 

The reader can easily check that the explicit law of j? is given by 

6(x, t) =e -~~/2-Pxl(zc)p(x, t) (41) 

where p coincides with (13). Result (41) shows that the annihilation assumed implies 

an asymmetry of the probability law (p and p^ differ more and more as x passes 

from -ct to +ct) and also 

+(‘, 

I_ 
fi(x, t) dx < 1, when t > 0. 

C, 

When annihilation occurs while P moves in both directions its probability law, say 

@, is a solution of 

2- 2- 

s+2(h+p)$+p(2A+&k2$ (42) 

and its explicit form turns out to be 

p(x, t) = e-+p(x, t) 

as simple probabilistic (and also analytic) arguments show. It is of interest to note 

that the role of resistivity in KirchotYs equations is here played by the chance of 

annihilation of the moving particle P. We conclude this section devoted to generalisa- 

tions by observing that if P moves forward with velocity c, and backward with 
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velocity c2 the differential system (11) governing probabilities f and p must be 

replaced by 

g= -c, F;+h(b -f), $=c,$+h(f-b), 
and the equation governing probability p =f+ b becomes 

7 

$+2*$c,c2~+(c2-c,) dZp 
-+A(c*-c,)~. 
axat 

It is of interest to remark that equation (43) can be reduced to the form (4) by the 

Galilean transformation 

x’=x-$(c,-cc,)t, t’= t. 

Some calculations show that in the (x’, t’) frame the probability law p(x’, t’) is a 

solution of 

The random motion with different forward and backward velocities has the same 

law as the basic motion treated above with velocity :( c, + c2) plus a drift of intensity 

$(c, - c2). Its explicit probability law now emerges easily from (13). 
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