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Based on the Lagrangian of the steady axisymmetric force-free magnetosphere (FFM) equation around 
Kerr black holes (KBHs), we find that the FFM equation can be rewritten in a new form as f,rr/(1 −μ2) +
f,μμ/� + K ( f (r, μ), r, μ) = 0, where μ = − cos θ . With coordinate transformation, the above equation 
can be given as s,yy + s,zz + D(s(y, z), y, z) = 0. Using this form, we prove that the Meissner effect is 
not possessed by a KBH–FFM with the condition dω/dAφ � 0 and Hφ(dHφ/dAφ) � 0, here Aφ is the φ
component of the vector potential �A, ω is the angular velocity of magnetic fields and Hφ corresponds to 
twice the poloidal electric current.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Blandford & Znajek (1977) [1] gave the equation for a force-
free magnetosphere (FFM) of the curved Kerr spacetime, which can 
describe the energy extraction process. The rotational energy of 
the Kerr black hole (KBH) can be converted into the thermal and 
kinetic energy of the surrounding plasma, and there could exist 
an outgoing electromagnetically driven wind. In this physical pic-
ture the electron would emit many photons, which can produce a 
plentiful supply of the electron–positron pairs. The above energy 
source is a part of the central engines for gamma-ray bursts and 
active galactic nuclei. Exact analytic solutions of this highly non-
linear equation can provide a good understanding of the energy 
extraction process and can be helpful for numerical simulation. But 
there exist few analytic works to deal with this highly nonlinear 
equation. Based on a new mathematical form of this equation, we 
discuss an interesting phenomenon called Meissner effect, which 
is the expulsion of magnetic field lines out of the event horizon 
and the quenching of jet power for the KBH with high spin [2,3]. 
King et al. (1975) [4] found this effect from the Wald vacuum so-
lution [5]. Other types of black holes, such as Kerr–Newman black 
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hole and string theory black holes, also show this behavior [6]. 
But this effect was never seen in the general relativistic magneto-
hydrodynamic simulations [2,7]. Penna (2014) [2] tried to explain 
the absence of Meissner effect. The author thinks it is a geome-
try effect and the steady axisymmetric fields only become radial 
near the event horizon to evade Meissner effect, but this explana-
tion is not very satisfactory and convincing [7]. Pan & Yu (2016) 
[7] also tried to answer this question in the steady axisymmetric
force-free magnetosphere, but they needed many special condi-
tions, such as, Hφ = ωAφ , where Aφ is the φ component of the 
vector potential �A, ω is the angular velocity of magnetic fields and 
Hφ corresponds to twice the poloidal electric current. In this pa-
per, we try to answer this question using more general conditions.

The paper is organized as follows. In Section 2, basic equation 
derived by Blandford & Znajek (1977) [1] and its Lagrangian are 
showed. Then we discuss the physical meaning of its Lagrangian 
in Section 3. In section 4, we prove that this equation can be re-

duced to f,rr

1−μ2 + f,μμ

�
+ K ( f , r, μ) = 0 or s,yy + s,zz + D(s, y, z) = 0. 

K ( f , r, μ) and D(s, y, z) are source functions. In Section 5, we 
prove that the Meissner effect does not appear in a steady axisym-
metric and magnetically dominated KBH–FFM with the condition 
dω

dAφ
� 0 and 

dH2
φ

dAφ
� 0. The summary is in Section 6.

2. Basic equation

The Kerr metric in Boyer–Lindquist coordinates is (with c =
G = 1)
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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ds2 = gμνdxμdxν

= −(1 − 2Mr

�
)dt2 − 4Mar sin2 θ

�
dtdφ + �

�
dr2 + �dθ2

+ A sin2 θ

�
dφ2, (1)

where xν = (t, r, θ, φ), ν = (0, 1, 2, 3), � = r2 − 2Mr + a2, � =
r2 + a2 cos2 θ and A = (r2 + a2)� + 2Mra2 sin2 θ = (r2 + a2)2 −
�a2 sin2 θ . Here, the notation M is the KBH mass and a its an-
gular momentum. The constraint differential equation for the FFM 
around KBHs is given by Menon & Dermer (2005) [8] as

√
γ

2αγφφ

dH2
φ

dAφ

=ω∂r[ γθθ

α
√

γ
(γφφω + βφ)Aφ,r]

+ ω∂θ [ γrr

α
√

γ
(γφφω + βφ)Aφ,θ ]

+ ∂r[ γθθ

α
√

γ
(β2 − α2 + βφω)Aφ,r]

+ ∂θ [ γrr

α
√

γ
(β2 − α2 + βφω)Aφ,θ ]

(2)

where α =
»

��
A , βφ = − 2Mra

�
sin2 θ, √γ =

»
A�
�

sin θ, γφφ =
A sin2 θ

�
,γθθ = �, γrr = �

�
, β2 − α2 = 2Mr

�
− 1. Aφ is the φ com-

ponent of the vector potential. The angular velocity ω(Aφ) is a 
function of Aφ , this relation can be expressed as dω = − 1

�
dAφ =

ω′dAφ . Hφ(Aφ) corresponds to twice the poloidal electric current 
and it is also a function of Aφ . Using the Euler–Lagrange equation

∂ν
∂L

∂ Aφ,ν
= ∂L

∂ Aφ

, (3)

the Lagrangian for Eq. (2) can be expressed as

L = γθθ

α
√

γ
(γφφω2 + 2βφω + β2 − α2)A2

φ,r

+ γrr

α
√

γ
(γφφω2 + 2βφω + β2 − α2)A2

φ,θ +
√

γ

αγφφ

H2
φ

= 1

sin θ
(

A sin2 θ

�
ω2 − 4Mar sin2 θ

�
ω − 1 + 2Mr

�
)

× (A2
φ,r + 1

�
A2

φ,θ ) + 1

sin θ

�

�
H2

φ

= 1

sin θ
(g33ω

2 + 2g03ω + g00)(A2
φ,r + 1

�
A2

φ,θ )

+ 1

sin θ
g11 H2

φ.

(4)

If g33ω
2 + 2g03ω + g00 = 0, we can get the light surfaces, namely 

(ω−
)� = ±α, where 
 = 2aMr
A , � =

»
A
�

sin θ . Let μ = − cos θ , 
L = g33ω

2 +2g03ω+ g00, and we assume that L(Aφ, r, μ) is a func-
tion of Aφ, r, μ. Then Eq. (2) becomes

L(
Aφ,rr

1 − μ2 + Aφ,μμ

�
) + L,r Aφ,r

1 − μ2 + L,μ Aφ,μ

�

+ 1

2
L,Aφ (

A2
φ,r

1 − μ2 + A2
φ,μ

�
) − g11

1 − μ2 Hφ H ′
φ = 0

(5)

where L,r = g33,rω
2 + 2g03,rω + g00,r, L,μ = g33,μω2 + 2g03,μω +

g00,μ, L,Aφ = 2g33ωω′ + 2g03ω
′, ω′ = dω , H ′ = dHφ .
dAφ φ dAφ
3. Physical meaning of the Lagrangian

The Lorentz invariant 1
2 F 2 = 1

2 Fμν F μν to the Carter observers 
is B2 − E2, where the Carter field components given by Znajek 
(1977) [9] are

Er = [a − ω(r2 + a2)]Aφ,r/�,

Br = [(1 − aω sin2 θ)Aφ,θ ]/(� sin θ),

Eθ = [a − ω(r2 + a2)]Aφ,θ /(�
√

�),

Bθ = [−√
�(1 − aω sin2 θ)Aφ,r]/(� sin θ),

Eφ = 0,

Bφ = Hφ/(
√

� sin θ).

(6)

Then we can get 1
2 F 2 = (B2

r + B2
θ + B2

φ) − (E2
r + E2

θ + E2
φ) =

[1 − (ν
φ
c )2][B2

r + B2
θ ] + B2

φ , where νφ
c is the velocity of an observer 

rotating around the KBH with angular velocity ω with respect to 
the Carter observers (νφ

c = sin θ√
�

ω(r2+a2)−a
1−aω sin2 θ

). The final result of the 
Lorentz invariant is

1

2
F 2 = −1

� sin2 θ
(

A sin2 θ

�
ω2 − 4Mar sin2 θ

�
ω − 1 + 2Mr

�
)

× (A2
φ,r + 1

�
A2

φ,θ ) + 1

sin2 θ

1

�
H2

φ

= 1

� sin θ
(

2

sin θ

�

�
H2

φ − L )

= 1√−g
(

2

sin θ

�

�
H2

φ − L ).

(7)

Here, g is the determinant of the metric tensor gμν . So L =
−√−g[(B2

r + B2
θ − B2

φ) −(E2
r + E2

θ + E2
φ)]. This relation can be found 

in MacDonald & Thorne (1982) [10].
The inner and the outer light surfaces will never intersect 

each other [11] when 0 < ω < a
2Mr+ , there exists a region be-

tween the inner light surface and the outer light surface such that 
L < 0. According to the equation: [ω(r2 + a2) − a]2 sin2 θ − �(1 −
aω sin2 θ)2 = �L, there are three cases: (i). L < 0 implies |νφ

c | < 1, 
which means L is time-like. (ii). L > 0 leads to |νφ

c | > 1, it will 
be space-like. (iii). L = 0 leads to |νφ

c | = 1, it will be null [10]. In-
side the inner light surface we have [1 − (ν

φ
c )2][B2

r + B2
θ ] < 0, then 

1
2 F 2 > 0 reduces to B2

φ > 0 and H2
φ > 0. Komissarov (2004) [11]

analyzed this poloidal electric field in detail at this region.

4. Equation forms

Let p ≡ Aφ and f (r, μ) = F (p, r, μ). Here, F (p, r, μ) and 
L(p, r, μ) are two functions of p, r and μ. f (r, μ) is a func-
tion of the variables r and μ. Then we have the following re-
sults: f,rr = p,rr F ,p + p2

,r F ,pp + 2p,r F ,pr + F ,rr, f,μμ = p,μμ F ,p +
p2

,μ F ,pp + 2p,r F ,pμ + F ,μμ . We apply the above results to compare 

Eq. (5) with equation f,rr

1−μ2 + f,μμ

�
+ K ( f , r, μ) = 0 and find that

F ,p

L
= 2F ,pp

L,p
= 2F ,pr

L,r
= 2F ,pμ

L,μ
, (8)

then we have F ,p = √|L|. If we know the relation between ω and 
Aφ , we can also get the relation between f and Aφ through F =∫ √|L|dAφ . If ω = constant, then F (Aφ, r, μ) = √|L|Aφ . Applying
Eq. (8) to Eq. (5) gives
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f,rr

1 − μ2 + f,μμ

�
− (

F ,rr

1 − μ2 + F ,μμ

�
) − F ,p g11

L(1 − μ2)
Hφ H ′

φ = 0.

(9)

F ,rr and F ,μμ are not partial derivatives with respect to p, so 
F ,rr and F ,μμ have no terms of p,r, p,rr, p,μ, p,μμ , then C =
−(

F ,rr

1−μ2 + F ,μμ

�
) − F ,p g11

L(1−μ2)
Hφ H ′

φ . C is just a function of p, r, μ. On 
the other hand, f (r, μ) = F (p, r, μ), we have p = p( f , r, μ) so that 
C(p, r, μ) = C(p( f , r, μ), r, μ) = K ( f , r, μ).

Using coordinate transformation, we can simplify ζ,rr

1−μ2 + ζ,μμ

�
. 

At first,

ζ,rr

1 − μ2 + ζ,μμ

�

=
⎧⎨
⎩

1
M2−a2 (

ζ,R R

1−μ2 + ζ,μμ

R2−1
), with R = r−M√

M2−a2
, if a2 < M2

ζ,R R

1−μ2 + ζ,μμ

R2 , with R = r − M, if a2 = M2

(10)

Now we transform the equation f,R R

1−μ2 + f,μμ

R2−1
= 0 in (R, μ) space 

to (y, z) space, and

y = y(R,μ), z = z(R,μ)

f,R R

1 − μ2 + f,μμ

R2 − 1
= a11 f,y y + 2a12 f,y z + a22 f,z z + b1 f,y

+ b2 f,z (11)

where, a11 = y2
,R

1−μ2 + y2
,μ

R2−1
, a22 = z2

,R

1−μ2 + z2
,μ

R2−1
, a12 = y,R z,R

1−μ2 +
y,μz,μ

R2−1
, b1 = y,R R

1−μ2 + y,μμ

R2−1
, b2 = z,R R

1−μ2 + z,μμ

R2−1
. Solving the equa-

tions a11 = a22 and a12 = 0, we can obtain the following equations: 

y,R =
»

1−μ2

R2−1
z,μ, y,μ = −

√
R2−1
1−μ2 z,R . The relation y,Rμ = y,μR

leads to

z,R R

1 − μ2 + z,μμ

R2 − 1
+ R z,R

(1 − μ2)(R2 − 1)
− μz,μ

(1 − μ2)(R2 − 1)
= 0

(12)

The substitution z = R(R)U (μ) will separate Eq. (12) into

(1 − μ2)U ,μμ − μU ,μ + n2U = 0,

(1 − R2)R,R R − R R,R + n2 R = 0,
(13)

where n is a non-negative integer. The solutions of Eq. (13) are 
the Chebyshev polynomials of the first kind. The simplest solu-
tion of Eq. (13) is z = μR so that y =

√
(1 − μ2)(R2 − 1). f,R R

1−μ2 +
f,μμ

R2−1
= 0 takes the form ( μ2

1−μ2 + R2

R2−1
)( f,y y + f,z z − f,y

y
) = 0. 

Similarly, f,R R

1−μ2 + f,μμ

R2 = 0 can be transformed into the form 
1

1−μ2 ( f,y y + f,z z − f,y

y
) = 0 with coordinate transformation z =

μR and y =
√

1 − μ2 R . Let f = s
√

y, then f,y y + f,z z − f,y

y
=√

y(s,y y + s,z z − 3s
4y2 ). Finally, Eq. (9) becomes

s,yy + s,zz = 3s

4y2 + (1 − μ2)�√
y[� + (m2 − a2)(1 − μ2)]

× [( F ,rr
2 + F ,μμ

) + F ,p g11
2 Hφ H ′

φ]
(14)
1 − μ � L(1 − μ )
with variable transformation z = μ(r − M), y =
√

(1 − μ2)� and 
f = s

√
y (see Fig. 1 (a)). So D(s, y, z) = − 3s

4y2 −
(1−μ2)�√

y[�+(m2−a2)(1−μ2)] [(
F ,rr

1−μ2 + F ,μμ

�
) + F ,p g11

L(1−μ2)
Hφ H ′

φ].
We can make use of the following relations to re-express 

F ,rr

1−μ2 + F ,μμ

�
. Because F ,rr = ∫

F ,p[ L,rr
2L − (

L,r
2L )2]dp, F ,μμ =∫

F ,p[ L,μμ

2L −(
L,μ

2L )2]dp, L,rr = 2(1 −μ2)ω2 +[a(1 −μ2)ω−1]2 g00,rr , 
L,μμ = −2�ω2 + [ r2+a2

a ω − 1]2 g00,μμ , g00,μμ = −a2 g00,rr , we can 
obtain

L,rr

1 − μ2 + L,μμ

�

= {[a(1 − μ2)ω − 1]2

1 − μ2 − [(r2 + a2)ω − a]2

�
}g00,rr

= − g00,rr�L

�(1 − μ2)
, (15)

and Eq. (9) becomes

f,rr

1 − μ2 + f,μμ

�
+
∫

F ,p

4L2 (
L2
,r

1 − μ2 + L2
,μ

�
)dp + g00,rr� f

2�(1 − μ2)

− F ,p�

L�(1 − μ2)
Hφ H ′

φ = 0. (16)

L2
,μ is positive for r > r+ = M + √

M2 − a2 and μ �= 0 so that 
F ,p

4L2 (
L2
,r

1−μ2 + L2
,μ

�
) is singular at the light surfaces.

5. Meissner effect

Our proof is similar to that in Pan & Yu (2016) [7]. But theirs 
needs many hypotheses and only applies to a special case. If there 
is Meissner effect, then all magnetic field lines should not cross 
the event horizon. Because Br = Fθφ = Aφ,θ , Bθ = Fφr = −Aφ,r , 
the tangential vector of Aφ = constant is (Br, Bθ ) in (r, θ) space. If 
there exists a magnetic field line which only crosses the inner light 
surface and does not cross the event horizon, then there must exist
a curve Aφ = constant which only crosses the inner light surface 
and does not cross the event horizon. We will prove that magnetic 
field lines of this type do not exist, so that the curves like Ô A
in the Fig. 1 (b), do not exist. And we do not require the FFM to 
be symmetric with respect to the equator. In (y, z) space, Eq. (5)
becomes

L(Aφ,yy + Aφ,zz − 1

y
Aφ,y) + L,y Aφ,y + L,z Aφ,z

+ 1

2
L,Aφ (A2

φ,y + A2
φ,z) = κ Hφ H ′

φ or

y∇2 · ( L

y
∇2 Aφ) = 1

2
L,Aφ (A2

φ,y + A2
φ,z) + κ Hφ H ′

φ,

(17)

where κ is �

�+(m2−a2)(1−μ2)
. Making use of Green’s theorem and 

Eq. (17), we obtain
∫ ∫

∇2 · ( L

y
∇2 Aφ)dydz

=
∫ ∫

1

y
[1

2
L,Aφ (A2

φ,y + A2
φ,z) + κ Hφ H ′

φ]dydz

=
∮

L

y
(Aφ,ydz − Aφ,zdy).

(18)
Ȯ ABC O
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Fig. 1. (a): Coordinate transformation. Three thicker solid lines represent μ = 1, μ = 0, μ = −1, respectively. The ellipses are z2

(r−M)2 + y2

�
= 1 with r = constant, the 

hyperbolas are z2

μ2(M2−a2)
− y2

(1−μ2)(M2−a2)
= 1 with μ = constant. (b): The inner light surface ĀBC O and the configuration of magnetic fields. c1, c2 are constant.
In Fig. 1 (b) the tangential vector and the normal vector of Ô A is −→
tv = (dy, dz) and −→nv = (Aφ,y, Aφ,z), respectively. They have the 
relation Aφ,ydy + Aφ,zdz = 0. The curve ĂBC O is the inner light 
surface, and 

∫
ĀBC O

L
y (Aφ,ydz − Aφ,zdy) = 0. Using boundary con-

dition Aφ,y(r = ∞) > 0, we can make sure that there must exist
a region where the numerical value of Aφ on the right equipo-
tential line is higher than that on the left (i.e. c2 > c1). This 
boundary condition is a necessary condition for the extraction of 
energy. Then in Fig. 1 (b) the cross product −→

tv × −→nv is always 
perpendicular to the paper plane and pointing outside so that 
−Aφ,ydz + Aφ,zdy > 0. Inside the inner light surface L

y > 0 leads to ∫
ıO A

L
y (Aφ,ydz− Aφ,zdy) < 0, and g33ω+ g03 is less than 0 under the 

condition 0 < ω < a
2Mr+ [11]. κ is always bigger than 0. If we as-

sume that Hφ H ′
φ � 0 and ω′ � 0, then L,Aφ = 2(g33ω+ g03)ω

′ � 0, 
and 

∫ ∫
1
y ( 1

2 L,Aφ (A2
φ,y + A2

φ,z) +κ Hφ H ′
φ)dydz � 0, which is in con-

tradiction to 
∮

Ŏ ABC O

L
y (Aφ,ydz − Aφ,zdy) < 0 (see Eq. (18)). The 

inner light surface is located between event horizon and the ergo-
sphere [11]. So the magnetic field lines which cross the inner light 
surface must also cross the event horizon. The Meissner effect ex-
pels magnetic fields out of the event horizon and it also expels 
magnetic fields out of the inner light surface. The magnetic fields 
outside the inner light surface could not go to the region between 
the event horizon and the inner light surface, and the Meissner ef-
fect expels magnetic fields out of the event horizon, so there can 
only exist closed poloidal field line or constant Aφ , ω and Hφ be-
tween the event horizon and the inner light surface. But the closed 
poloidal fields do not exist. The reason is as follows. One of the 
necessary conditions for the steady-state force-free approximation 
not break down is 1

2 F 2 > 0 [9,11] [see Eq. (71), Eq. (72) and Sec-
tion 3 in Komissarov (2004) [11]]. Gralla & Jacobson (2014) [12]
have proved:

A stationary, axisymmetric, force-free and magnetically dominated 
field ( 1

2 F 2 > 0) configuration cannot possess a closed loop of poloidal 
field line [see Eq. (98) in Gralla & Jacobson (2014) [12]].
This leads to the fact that any closed poloidal field line does not
exist in the region between event horizon and the inner light sur-
face. The final case left is that Aφ , ω and Hφ must be constant in 

this region. The boundary condition Hφ = sin θ(ω(r2++a2)−a)

r2++a2 cos2 θ
Aφ,θ [11]

at the event horizon leads to Hφ = 0 in the region between the 
event horizon and the inner light surface, so no magnetic field or 
electric field exists. This means 1

2 F 2 = 0 in this region. These con-
figurations are unrealistic. So the Meissner effect does not appear 
in a stationary, axisymmetric and magnetically dominated KBH–
FFM. If ω = constant, the relations between Hφ and Aφ in Pan & 
Yu (2016) [7], which include the Blandfold–Znajek monopole solu-

tion, are consistent with the condition dω
dAφ

� 0 and 
dH2

φ

dAφ
� 0. The 

numerical simulation in Nathanail & Contopoulos (2014) [13] also 
shows that no Meissner effect occurs for some magnetospheres, 

which are consistent with the condition dω
dAφ

� 0 and 
dH2

φ

dAφ
� 0. 

When ω = a
2Mr+ , the inner light surface will meet the event hori-

zon, there will be no rotational energy for the KBH to extract [1], 
and our proof does not apply to this situation. We think the Meiss-
ner effect will occur in this case.

6. Conclusion

We give a new mathematical form of FFM equation. The sim-
plest case of this equation has the form s,yy + s,zz = ρs, where ρ
and s are independent. The stable Schrödinger equation has this 
form and it has some analytic solutions. However in our case, 
ρ is a very complicated function of y, z so it is hard to give 
an analytic solution. Although the Green’s function of Laplace’s 
equation can be easily obtained for the positive quarter-plane or 
half-plane, the integral equation is hard to solve. In other cases 
where FFM equations are high nonlinear, the solutions are more 
difficult to get. On the other hand, analyzing the light surface 
function L = g33ω

2 + 2g03ω + g00 provides important insights on 
understanding this equation. We will focus on it in our future 
work.
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