Lattices associated with vector spaces over a finite field

Kaishun Wang ${ }^{\mathrm{a}, *}$, Zengti Li ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ School of Mathematical Sciences, Beijing Normal University, Key Laboratory of Mathematics and Complex Systems,
Ministry of Education, Beijing 100875, China
${ }^{\mathrm{b}}$ Math. and Inf. College, Langfang Teachers'College, Langfang 065000, China

Received 18 July 2006; accepted 28 February 2008
Available online 24 April 2008
Submitted by R.A. Brualdi

Abstract

Let V denote the n-dimensional row vector space over a finite field \mathbb{F}_{q}, and fix a subspace W of dimension $n-d$. Let $\mathscr{L}(n, d)=P \cup\{V\}$, where P is the set of all the subspaces of V intersecting trivially with W. Partially ordered by ordinary or reverse inclusion, two families of finite atomic lattices are obtained. This article discusses their geometricity, and computes their characteristic polynomials.

© 2008 Elsevier Inc. All rights reserved.

AMS classification: 05B35; 20G40
Keywords: Lattice; Vector space

1. Introduction

Let \mathbb{F}_{q} be a finite field with q elements, where q is a prime power. For a positive integer n, let V be the n-dimensional row vector space over \mathbb{F}_{q}. For a fixed $(n-d)$-subspace W of V, let $\mathscr{L}(n, d)=P \cup\{V\}$, where

$$
P=\{A \mid A \text { is a subspace of } V, A \cap W=0\} .
$$

Partially ordered by ordinary or reverse inclusion, $\mathscr{L}(n, d)$ is a finite poset, denoted by $\mathscr{L}_{O}(n, d)$ or $\mathscr{L}_{R}(n, d)$, respectively. For any two elements $A, B \in \mathscr{L}_{O}(n, d)$,

[^0]0024-3795/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2008.02.035

$$
\begin{aligned}
& A \wedge B=A \cap B, \\
& A \vee B= \begin{cases}A+B, & \text { if }(A+B) \cap W=0, \\
V, & \text { otherwise }\end{cases}
\end{aligned}
$$

Similarly, for any two elements $A, B \in \mathscr{L}_{R}(n, d)$,

$$
\begin{aligned}
& A \vee B=A \cap B, \\
& A \wedge B= \begin{cases}A+B, & \text { if }(A+B) \cap W=0 \\
V, & \text { otherwise }\end{cases}
\end{aligned}
$$

Therefore, both $\mathscr{L}_{O}(n, d)$ and $\mathscr{L}_{R}(n, d)$ are finite lattices. This article shows they are atomic, discusses their geometricity, and computes their characteristic polynomials.

The results on the lattices generated by the orbits of subspaces under finite classical groups have been obtained in a series of papers by Huo and Wan [3,4,5,6,7], Gao [2], Wang and Feng [10], Wang and Guo [11,12], Wang and Li [13], and the book of Wan and Huo [9].

2. Preliminaries

In this section, we first recall some terminologies and definitions concerning finite posets and lattices, which can be found in [1,9], and then introduce two basic lemmas.

Let P be a poset with partial order \leqslant. As usual, we write $a<b$ whenever $a \leqslant b$ and $a \neq b$. For any two elements $a, b \in P$, we say a covers b, denoted by $b<\cdot a$, if $b<a$ and there exists no any element $c \in P$ such that $b<c<a$. If P has the minimum (resp. maximum) element, then we denote it by 0 (resp. 1). In this case we say that P is a poset with 0 (resp. 1). Let P be a finite poset with 0 . By a rank function on P, we mean a function r from P to the set of all the nonnegative integers such that
(i) $r(0)=0$.
(ii) $r(a)=r(b)+1$ whenever $b<\cdot a$.

Observe the rank function of P is unique if it exists.
Let P be a finite poset with 0 and 1 . The polynomial

$$
\chi(P, x)=\sum_{a \in P} \mu(0, a) x^{r(1)-r(a)}
$$

is called the characteristic polynomial of P, where r is the rank function on P.
A poset L is said to be a lattice if both $a \vee b:=\sup \{a, b\}$ and $a \wedge b:=\inf \{a, b\}$ exist for any two elements $a, b \in L$. Let L be a finite lattice with 0 . By an atom of L, we mean an element of L covering 0 . We say L is atomic if any element of $L \backslash\{0\}$ is a union of some atoms. A finite atomic lattice L is said to be geometric if L admits a rank function r satisfying

$$
r(a \wedge b)+r(a \vee b) \leq r(a)+r(b)
$$

for any two distinct elements $a, b \in L$.

$$
r(a \wedge b)+r(a \vee b) \leqslant r(a)+r(b) \quad \forall a, b \in P
$$

For any two positive integers $n \geqslant m$, let

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]=\frac{\prod_{i=n-m+1}^{n}\left(q^{i}-1\right)}{\prod_{i=1}^{m}\left(q^{i}-1\right)}
$$

For convenience, we assume that $\left[\begin{array}{l}n \\ i\end{array}\right]=0$ whenever $n<i$ and $\left[\begin{array}{l}n \\ 0\end{array}\right]=1$.

Let V denote the n-dimensional row space over a finite field \mathbb{F}_{q}. Denote by $G L_{n}\left(\mathbb{F}_{q}\right)$ the set of all the $n \times n$ nonsingular matrices over \mathbb{F}_{q}. Then $G L_{n}\left(\mathbb{F}_{q}\right)$ forms a group under matrix multiplication, and acts on V as follows:

$$
\begin{aligned}
& V \times G L_{n}\left(\mathbb{F}_{q}\right) \longrightarrow V \\
& \left(\left(x_{1}, x_{2}, \ldots, x_{n}\right), T\right) \longmapsto\left(x_{1}, x_{2}, \ldots, x_{n}\right) T .
\end{aligned}
$$

If U is an m-subspace of V with a basis $u_{1}, u_{2}, \ldots, u_{m}$, the $m \times n$ matrix

$$
\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right)
$$

is said to be a matrix representation of U. We usually denote a matrix representation of the m subspace U still by U. The above action induces an action on the set of all the subspaces. The above action is transitive on the set of all the subspaces with the same dimension by [8, Theorem 1.1].

Lemma 2.1. Let V denote the n-dimensional row vector space over a finite field \mathbb{F}_{q}, and fix an $(n-d)$-subspace W of V. Then the number of i-subspaces of V intersecting trivially with W is $\left[\begin{array}{c}d \\ i\end{array}\right] q^{i(n-d)}$.

Proof. By the transitivity of $G L_{n}\left(\mathbb{F}_{q}\right)$ on the set of all the subspaces with the same dimension, we may assume that W has the matrix representation of the form

$$
W=\left(I^{(n-d)} \quad 0^{(n-d, d)}\right) .
$$

If U is an i-subspaces of V intersecting trivially with W, then U has the matrix representation of the form

$$
\left(\begin{array}{ll}
Y & Z
\end{array}\right),
$$

where Y is an $i \times(n-d)$ matrix and Z is an $i \times d$ matrix of rank i. Hence the number of i-subspaces of V intersecting trivially with W is $\left[\begin{array}{l}d \\ i\end{array}\right] q^{i(n-d)}$.

Lemma 2.2. Let V denote the n-dimensional row vector space over a finite field \mathbb{F}_{q}, and fix an $(n-d)$-subspace W of V. For a given l_{1}-subspace U_{1} of V intersecting trivially with W, let $u\left(n, d ; l_{1}, l_{2}\right)$ denote the number of l_{2}-subspaces U_{2} of V satisfying $U_{2} \cap W=0$ and $U_{1} \subseteq U_{2}$. Then

$$
u\left(n, d ; l_{1}, l_{2}\right)=\frac{\left[\begin{array}{l}
d \\
l_{2}
\end{array}\right]\left[\begin{array}{l}
l_{2} \\
l_{1}
\end{array}\right] q^{\left(l_{2}-l_{1}\right)(n-d)}}{\left[\begin{array}{l}
d \\
l_{1}
\end{array}\right]}
$$

Proof. Since the subgroup $G L_{n}\left(\mathbb{F}_{q}\right)_{W}$ of $G L_{n}\left(\mathbb{F}_{q}\right)$ fixing W acts transitively on the set $\{U \mid$ $\left.U \cap W=0, \operatorname{dim} U=l_{1}\right\}$, the number $u\left(n, d ; l_{1}, l_{2}\right)$ depend only on l_{1} and l_{2}.

Let

$$
M=\left\{\left(V_{1}, V_{2}\right) \mid V_{1} \subseteq V_{2}, V_{i} \cap W=0, \operatorname{dim} V_{i}=l_{i}\right\}
$$

Counting the set M in two ways, by Lemma 2.1 we obtain

$$
u\left(n, d ; l_{1}, l_{2}\right) \cdot\left[\begin{array}{l}
d \\
l_{1}
\end{array}\right] q^{l_{1}(n-d)}=\left[\begin{array}{c}
d \\
l_{2}
\end{array}\right] q^{l_{2}(n-d)} \cdot\left[\begin{array}{l}
l_{2} \\
l_{1}
\end{array}\right] .
$$

Hence the desired result follows.

3. The lattice $\mathscr{L}_{O}(n, d)$

The lattice $\mathscr{L}_{O}(n, d)$ has the minimum element 0 -subspace, and the maximum element V. Since the set of all the atoms of $\mathscr{L}_{O}(n, d)$ consists of all the 1 -subspaces intersecting trivially with $W, \mathscr{L}_{O}(n, d)$ is a finite atomic lattice.

Theorem 3.1. $\mathscr{L}_{O}(n, d)$ is a geometric lattice if and only if $d=1$.
Proof. For any $A \in \mathscr{L}_{O}(n, d)$, define

$$
r(A)= \begin{cases}d+1 & \text { if } A=V \\ \operatorname{dim} A & \text { otherwise }\end{cases}
$$

Then r is the rank function of $\mathscr{L}_{O}(n, d)$.
If $d=1$, it is clear that $\mathscr{L}_{O}(n, d)$ is a geometric lattice. Now suppose that $d \geqslant 2$. By the transitivity of $G L_{n}\left(\mathbb{F}_{q}\right)$ on the set of all the subspaces with the same dimension, we may assume that W has the matrix representation of the form

$$
W=\left(I^{(n-d)} \quad 0^{(n-d, d)}\right) .
$$

Let A and B be two 1 -subspaces of V with matrix representation

$$
A=(\underbrace{0,0, \ldots, 0}_{n-d}, 1,0, \ldots, 0) \text { and } B=(1, \underbrace{0, \ldots, 0}_{n-d-1}, 1,0, \ldots, 0) \text {, }
$$

respectively. Then $A, B \in \mathscr{L}_{O}(n, d)$ and $A \vee B=V$. It follows that

$$
r(A \wedge B)+r(A \vee B)=d+1>2=r(A)+r(B)
$$

Hence $\mathscr{L}_{O}(n, d)$ is not a geometric lattice whenever $d \geqslant 2$.
Proposition 3.2 [9, Proposition 1.9]. Let n be a nonnegative integer, and $q \neq 1$. Then

$$
\prod_{i=0}^{n-1}\left(1+q^{i} x\right)=\sum_{m=0}^{n} q^{\binom{m}{2}}\left[\begin{array}{c}
n \\
m
\end{array}\right] x^{m}
$$

Lemma 3.3. The Möbius function of $\mathscr{L}_{O}(n, d)$ is

$$
\mu(A, B)= \begin{cases}(-1)^{\operatorname{dim} B-\operatorname{dim} A} q\left(\begin{array}{ll}
(\operatorname{dim} B-\operatorname{dim} A
\end{array}\right) & \text { if } A \leqslant B \neq V \text { or } A=B=V, \\
-\prod_{i=0}^{d-1}\left(1-q^{i+n-d}\right) & \text { if } 0=A<B=V, \\
d-\operatorname{dim} A \\
\sum_{i=0}^{d}(-1)^{i+1} u(n, d ; i, \operatorname{dim} A+i) q^{\binom{i}{2}} & \text { if } 0 \neq A<B=V, \\
0 & \text { otherwise. }\end{cases}
$$

Proof. The Möbius function of $\mathscr{L}_{O}(n, d)$ is

$$
\mu(A, B)= \begin{cases}\left.(-1)^{\operatorname{dim} B-\operatorname{dim} A} q{ }^{(\operatorname{dim} B-\operatorname{dim} A}\right) & \text { if } A \leqslant B \neq V \text { or } A=B=V \\ -\sum_{A \leqslant C<B} \mu(A, C) & \text { if } A<B=V \\ 0 & \text { otherwise } .\end{cases}
$$

By Lemma 2.1 and Proposition 3.2 we have

$$
\begin{aligned}
-\sum_{0 \leqslant C<V} \mu(0, C)=\sum_{0 \leqslant C<V}(-1)^{\operatorname{dim} C} q^{\binom{\operatorname{dim} C}{2}} & =-\sum_{m=0}^{d} q^{\binom{m}{2}}\left[\begin{array}{c}
d \\
m
\end{array}\right]\left(-q^{n-d}\right)^{m} \\
& =-\prod_{i=0}^{d-1}\left(1-q^{i+n-d}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
-\sum_{0 \neq A \leqslant C<V} \mu(A, C) & =-\sum_{\substack{0 \neq A \leqslant C<V}}(-1)^{\operatorname{dim} C-\operatorname{dim} A} q\left(\frac{\operatorname{dim} C-\operatorname{dim} A}{2}\right) \\
& =\sum_{i=0}^{d-\operatorname{dim} A}(-1)^{i+1} u(n, d ; \operatorname{dim} A, \operatorname{dim} A+i) q^{\binom{i}{2}} .
\end{aligned}
$$

Hence the desired result follows.
Theorem 3.4. The characteristic polynomial of $\mathscr{L}_{O}(n, d)$ is

$$
\chi\left(\mathscr{L}_{O}(n, d), x\right)=\sum_{i=0}^{d}\left[\begin{array}{l}
d \\
i
\end{array}\right]\left(-q^{n-d}\right)^{i} q^{\binom{i}{2}} x^{d+1-i}-\prod_{i=0}^{d-1}\left(1-q^{i+n-d}\right)
$$

Proof. By Lemma 3.3 we obtain

$$
\begin{aligned}
\chi\left(\mathscr{L}_{O}(n, d), x\right) & =\sum_{0 \leqslant B \leqslant V} \mu(0, B) x^{r(V)-r(B)} \\
& =\mu(0, V)+\sum_{0 \leqslant B<V}(-1)^{\operatorname{dim} B} q^{\binom{\operatorname{dim} B}{2}} x^{d+1-\operatorname{dim} B} \\
& =\sum_{i=0}^{d}\left[\begin{array}{l}
d \\
i
\end{array}\right]\left(-q^{n-d}\right)^{i} q^{\binom{i}{2}} x^{d+1-i}-\prod_{i=0}^{d-1}\left(1-q^{i+n-d}\right),
\end{aligned}
$$

as desired.

4. The lattice $\mathscr{L}_{R}(n, d)$

The lattice $\mathscr{L}_{R}(n, d)$ has the minimum element V, and the maximum element 0 -subspace. The set of all the atoms of $\mathscr{L}_{R}(n, d)$ consists of all the d-subspaces intersecting trivially with W.

Theorem 4.1

(i) $\mathscr{L}_{R}(n, d)$ is an atomic lattice.
(ii) $\mathscr{L}_{R}(n, d)$ is a geometric lattice if and only if $d=1$ or $n-d=1$.

Proof. (i) By the transitivity of $G L_{n}\left(\mathbb{F}_{q}\right)$ on the set of all the subspaces with the same dimension, we may assume that W has the matrix representation of the form

$$
W=\left(I^{(n-d)} \quad 0^{(n-d, d)}\right)
$$

For any element $A \in \mathscr{L}_{R}(n, d)$ with $\operatorname{dim} A=l$, by the transitivity of $G L_{n}\left(\mathbb{F}_{q}\right)_{W}$ on the set $\{U \mid U \cap W=0$ and $\operatorname{dim} U=l\}$, we may assume that A has the matrix representation of the form

$$
A=\left(0^{(l, n-d)} \quad I^{(l)} \quad 0^{(l, d-l)}\right) .
$$

Let B and $C_{1}, C_{2}, \ldots, C_{d-l}$ be the subspaces of V with the following matrix representations

$$
B=\left(\begin{array}{ccc}
0^{(l, n-d)} & I^{(l)} & 0^{(l, d-l)} \\
0^{(d-l, n-d)} & 0^{(d-l, l)} & I^{(d-l)}
\end{array}\right) \quad \text { and } \quad C_{i}=\left(\begin{array}{ccc}
0^{(l, n-d)} & I^{(l)} & 0^{(l, d-l)} \\
L_{i}^{(d-l, n-d)} & 0^{(d-l, l)} & I^{(d-l)}
\end{array}\right)
$$

where $1 \leqslant i \leqslant d-l$ and L_{i} is the $(d-l) \times(n-d)$ matrix satisfying

$$
\left(L_{i}\right)_{s, t}= \begin{cases}1 & \text { if } s=i \text { and } t=1 \\ 0 & \text { otherwise }\end{cases}
$$

Then B and $C_{1}, C_{2}, \ldots, C_{d-l}$ are atoms of $\mathscr{L}_{R}(n, d)$ satisfying $B \vee C_{1} \vee \cdots \vee C_{d-l}=A$. Therefore, $\mathscr{L}_{R}(n, d)$ is an atomic lattice.
(ii) For any element $A \in \mathscr{L}_{R}(n, d)$, define

$$
r(A)= \begin{cases}0 & \text { if } A=V \\ d+1-\operatorname{dim} A & \text { otherwise }\end{cases}
$$

Then r is the rank function of $\mathscr{L}_{R}(n, d)$.
If $d=1$, it is clear that $\mathscr{L}_{R}(n, d)$ is a geometric lattice. Now suppose that $d \geqslant 2$.
Case 1. $n-d=1$. In order to prove that $\mathscr{L}_{R}(n, d)$ is a geometric lattice, it suffices to show the following inequality:

$$
\begin{equation*}
r(B \vee C)+r(B \wedge C) \leqslant r(B)+r(C) \quad \forall B, C \in \mathscr{L}_{R}(n, d) \tag{1}
\end{equation*}
$$

If $B \wedge C \neq V$, it is well known that (1) holds. If $B \wedge C=V$, then

$$
\begin{aligned}
r(B)+r(C)-r(B \vee C)-r(B \wedge C) & =d+1-\operatorname{dim}(B)-\operatorname{dim}(C)+\operatorname{dim}(B \cap C) \\
& =d+1-\operatorname{dim}(B+C) \\
& \geqslant 0 .
\end{aligned}
$$

Therefore (1) holds.
Case 2. $n-d \geqslant 2$. Let B and C be two subspaces of V with the following matrix representations of the form:

$$
B=\left(\begin{array}{ll}
0^{(d, n-d)} & I^{(d)}
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cccc}
I^{(2)} & 0^{(2, n-d-2)} & I^{(2)} & 0^{(2, d-2)} \\
0^{(d-2,2)} & 0^{(d-2, n-d-2)} & 0^{(d-2,2)} & I^{(d-2)}
\end{array}\right),
$$

respectively. Then B and C are the elements of $\mathscr{L}_{R}(n, d)$ satisfying

$$
r(B \vee C)+r(B \wedge C)=3>2=r(B)+r(C)
$$

It follows that (1) does not hold. Therefore, $\mathscr{L}_{R}(n, d)$ is not a geometric lattice in this case.
Lemma 4.2. The Möbius function of $\mathscr{L}_{R}(n, d)$ is

$$
\mu(A, B)= \begin{cases}\left.(-1)^{\operatorname{dim} A-\operatorname{dim} B} q^{(\operatorname{dim} A-\operatorname{dim} B}\right) & \text { if } V \neq A \leqslant B \text { or } A=B=V \\ \sum_{i=0}^{d-\operatorname{dim} B}(-1)^{i+1} u(n, d ; \operatorname{dim} B, \operatorname{dim} B+i) q^{\binom{i}{2}} & \text { if } V=A<B \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. The Möbius function of $\mathscr{L}_{R}(n, d)$ is

$$
\mu(A, B)= \begin{cases}(-1)^{\operatorname{dim} A-\operatorname{dim} B} q\left(\frac{\operatorname{dim} A-\operatorname{dim} B}{2}\right) & \text { if } V \neq A \leqslant B \text { or } A=B=V \\ -\sum_{A<C \leqslant B} \mu(C, B) & \text { if } V=A<B \\ 0 & \text { otherwise }\end{cases}
$$

By Lemma 2.2, we have

$$
\left.-\sum_{V<C \leqslant B}(-1)^{\operatorname{dim} C-\operatorname{dim} B} q^{(\operatorname{dim} C-\operatorname{dim} B}\right)=\sum_{i=0}^{d-\operatorname{dim} B}(-1)^{i+1} u(n, d ; \operatorname{dim} B, \operatorname{dim} B+i) q^{\binom{i}{2}}
$$

Hence the desired result follows.
Theorem 4.3. The characteristic polynomial of $\mathscr{L}_{R}(n, d)$ is

$$
\chi\left(\mathscr{L}_{R}(n, d), x\right)=x^{d+1}+\sum_{j=0}^{d}\left[\begin{array}{l}
d \\
j
\end{array}\right] q^{j(n-d)} \sum_{i=0}^{d-j}(-1)^{i+1} u(n, d ; j, i+j) q^{\binom{i}{2}} x^{j} .
$$

Proof. By Lemma 2.1 and Lemma 4.2 we obtain

$$
\begin{aligned}
\chi\left(\mathscr{L}_{R}(n, d), x\right) & =\sum_{V \leqslant B \leqslant 0} \mu(V, B) x^{r(0)-r(B)} \\
& =\mu(V, V) x^{d+1}+\sum_{V<B \leqslant 0} \mu(V, B) x^{\operatorname{dim} B} \\
& =x^{d+1}+\sum_{j=0}^{d}\left[\begin{array}{l}
d \\
j
\end{array}\right]^{j(n-d)} \sum_{i=0}^{d-j}(-1)^{i+1} u(n, d ; j, i+j) q^{\binom{i}{2}} x^{j},
\end{aligned}
$$

as desired.

Acknowledgement

This research is supported by NSF and Science research Foundation of Hebei Province Education Department (2007137).

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, 1979.
[2] Y. Gao, Lattices generated by orbits of subspaces under finite singular unitary group and its characteristic polynomials, Linear Algebra Appl. 368 (2003) 243-268.
[3] Y. Huo, Y. Liu, Z. Wan, Lattices generated by transitive sets of subspaces under finite classical groups I, Commun. Algebra 20 (1992) 1123-1144.
[4] Y. Huo, Y. Liu, Z. Wan, Lattices generated by transitive sets of subspaces under finite classical groups II, the orthogonal case of odd characteristic, Commun. Algebra 20 (1992) 2685-2727.
[5] Y. Huo, Y. Liu, Z. Wan, Lattices generated by transitive sets of subspaces under finite classical groups III, orthogonal case of even characteristic, Commun. Algebra 21 (1993) 2351-2393.
[6] Y. Huo, Z. Wan, Lattices generated by transitive sets of subspaces under finite pseudo-symplectic groups, Commun. Algebra 23 (1995) 3753-3777.
[7] Y. Huo, Z. Wan, On the geometricity of lattices generated by orbits of subspaces under finite classical groups, J. Algebra 243 (2001) 339-359.
[8] Z. Wan, Geometry of Classical Groups over Finite Fields, second ed., Science Press, Beijing/New York, 2002.
[9] Z. Wan, Y. Huo, Lattices generated by orbits of subspaces under finite classical groups, second ed., Science Press, Beijing, 2002 (in Chinese).
[10] K. Wang, Y. Feng, Lattices generated by orbits of flats under affine groups, Commun. Algebra 34 (2006) 1691-1697.
[11] K. Wang, J. Guo, Lattices generated by orbits of totally isotropic flats under finite affine-classical groups, Finite Fields Their Appl. (2007), 10.1016/j.ffa.2007.06.004.
[12] K. Wang, J. Guo, Lattices generated by two orbits of subspaces under finite classical groups, preprint.
[13] K. Wang, Z. Li, Lattices associated with totally isotropic subspaces in classical spaces over a finite field, preprint.

[^0]: * Corresponding author. Tel.: +86 10 13521406935; fax: +86 1058808202.

 E-mail addresses: wangks@bnu.edu.cn (K. Wang), lizengti@126.com (Z. Li).

