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Abstract

Let V denote the n-dimensional row vector space over a finite field Fq , and fix a subspace W of dimension
n − d . Let L(n, d) = P ∪ {V }, where P is the set of all the subspaces of V intersecting trivially with W.
Partially ordered by ordinary or reverse inclusion, two families of finite atomic lattices are obtained. This
article discusses their geometricity, and computes their characteristic polynomials.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let Fq be a finite field with q elements, where q is a prime power. For a positive integer n,
let V be the n-dimensional row vector space over Fq . For a fixed (n − d)-subspace W of V , let
L(n, d) = P ∪ {V }, where

P = {A | A is a subspace of V, A ∩ W = 0}.
Partially ordered by ordinary or reverse inclusion, L(n, d) is a finite poset, denoted by LO(n, d)

or LR(n, d), respectively. For any two elements A, B ∈ LO(n, d),
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A ∧ B = A ∩ B,

A ∨ B =
{
A + B, if (A + B) ∩ W = 0,

V , otherwise.
Similarly, for any two elements A, B ∈ LR(n, d),

A ∨ B = A ∩ B,

A ∧ B =
{
A + B, if (A + B) ∩ W = 0,

V , otherwise.

Therefore, both LO(n, d) and LR(n, d) are finite lattices. This article shows they are atomic,
discusses their geometricity, and computes their characteristic polynomials.

The results on the lattices generated by the orbits of subspaces under finite classical groups
have been obtained in a series of papers by Huo and Wan [3,4,5,6,7], Gao [2], Wang and Feng
[10], Wang and Guo [11,12], Wang and Li [13], and the book of Wan and Huo [9].

2. Preliminaries

In this section, we first recall some terminologies and definitions concerning finite posets and
lattices, which can be found in [1,9], and then introduce two basic lemmas.

Let P be a poset with partial order �. As usual, we write a < b whenever a � b and a /= b.

For any two elements a, b ∈ P , we say a covers b, denoted by b < ·a, if b < a and there exists
no any element c ∈ P such that b < c < a. If P has the minimum (resp. maximum) element,
then we denote it by 0 (resp. 1). In this case we say that P is a poset with 0 (resp. 1). Let P be
a finite poset with 0. By a rank function on P , we mean a function r from P to the set of all the
nonnegative integers such that

(i) r(0) = 0.

(ii) r(a) = r(b) + 1 whenever b < ·a.

Observe the rank function of P is unique if it exists.
Let P be a finite poset with 0 and 1. The polynomial

χ(P, x) =
∑
a∈P

μ(0, a)xr(1)−r(a)

is called the characteristic polynomial of P , where r is the rank function on P .
A poset L is said to be a lattice if both a ∨ b := sup{a, b} and a ∧ b := inf{a, b} exist for any

two elements a, b ∈ L. Let L be a finite lattice with 0. By an atom of L, we mean an element of
L covering 0. We say L is atomic if any element of L \ {0} is a union of some atoms. A finite
atomic lattice L is said to be geometric if L admits a rank function r satisfying

r(a ∧ b) + r(a ∨ b) ≤ r(a) + r(b)

for any two distinct elements a, b ∈ L.

r(a ∧ b) + r(a ∨ b) � r(a) + r(b) ∀a, b ∈ P.

For any two positive integers n � m, let[
n

m

]
=

∏n
i=n−m+1(q

i − 1)∏m
i=1(q

i − 1)
.

For convenience, we assume that
[

n

i

]
= 0 whenever n < i and

[
n

0

]
= 1.
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Let V denote the n-dimensional row space over a finite field Fq . Denote by GLn(Fq) the
set of all the n × n nonsingular matrices over Fq . Then GLn(Fq) forms a group under matrix
multiplication, and acts on V as follows:

V × GLn(Fq) −→ V,

((x1, x2, . . . , xn), T ) �−→ (x1, x2, . . . , xn)T .

If U is an m-subspace of V with a basis u1, u2, . . . , um, the m × n matrix⎛
⎜⎜⎜⎝

u1
u2
...

um

⎞
⎟⎟⎟⎠

is said to be a matrix representation of U . We usually denote a matrix representation of the m-
subspace U still by U . The above action induces an action on the set of all the subspaces. The
above action is transitive on the set of all the subspaces with the same dimension by [8, Theorem
1.1].

Lemma 2.1. Let V denote the n-dimensional row vector space over a finite field Fq, and fix an
(n − d)-subspace W of V. Then the number of i-subspaces of V intersecting trivially with W is[

d

i

]
qi(n−d).

Proof. By the transitivity of GLn(Fq) on the set of all the subspaces with the same dimension,
we may assume that W has the matrix representation of the form

W = (I (n−d) 0(n−d,d)).

If U is an i-subspaces of V intersecting trivially with W , then U has the matrix representation of
the form

(Y Z),

where Y is an i × (n − d) matrix and Z is an i × d matrix of rank i. Hence the number of

i-subspaces of V intersecting trivially with W is
[

d

i

]
qi(n−d). �

Lemma 2.2. Let V denote the n-dimensional row vector space over a finite field Fq, and fix an
(n − d)-subspace W of V. For a given l1-subspace U1 of V intersecting trivially with W, let
u(n, d; l1, l2) denote the number of l2-subspaces U2 of V satisfying U2 ∩ W = 0 and U1 ⊆ U2.

Then

u(n, d; l1, l2) =

[
d

l2

] [
l2
l1

]
q(l2−l1)(n−d)

[
d

l1

] .

Proof. Since the subgroup GLn(Fq)W of GLn(Fq) fixing W acts transitively on the set {U |
U ∩ W = 0, dim U = l1}, the number u(n, d; l1, l2) depend only on l1 and l2.
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Let

M = {(V1, V2)|V1 ⊆ V2, Vi ∩ W = 0, dim Vi = li}.
Counting the set M in two ways, by Lemma 2.1 we obtain

u(n, d; l1, l2) ·
[
d

l1

]
ql1(n−d) =

[
d

l2

]
ql2(n−d) ·

[
l2
l1

]
.

Hence the desired result follows. �

3. The lattice LO(n, d)

The lattice LO(n, d) has the minimum element 0-subspace, and the maximum element V .
Since the set of all the atoms of LO(n, d) consists of all the 1-subspaces intersecting trivially
with W , LO(n, d) is a finite atomic lattice.

Theorem 3.1. LO(n, d) is a geometric lattice if and only if d = 1.

Proof. For any A ∈ LO(n, d), define

r(A) =
{
d + 1 if A = V,

dim A otherwise.

Then r is the rank function of LO(n, d).
If d = 1, it is clear that LO(n, d) is a geometric lattice. Now suppose that d � 2. By the

transitivity of GLn(Fq) on the set of all the subspaces with the same dimension, we may assume
that W has the matrix representation of the form

W = (I (n−d) 0(n−d,d)).

Let A and B be two 1-subspaces of V with matrix representation

A = (0, 0, . . . , 0︸ ︷︷ ︸
n−d

, 1, 0, . . . , 0) and B = (1, 0, . . . , 0︸ ︷︷ ︸
n−d−1

, 1, 0, . . . , 0),

respectively. Then A, B ∈ LO(n, d) and A ∨ B = V. It follows that

r(A ∧ B) + r(A ∨ B) = d + 1 > 2 = r(A) + r(B).

Hence LO(n, d) is not a geometric lattice whenever d � 2. �

Proposition 3.2 [9, Proposition 1.9]. Let n be a nonnegative integer, and q /= 1. T hen

n−1∏
i=0

(1 + qix) =
n∑

m=0

q(m
2 )

[
n

m

]
xm.
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Lemma 3.3. The Möbius function of LO(n, d) is

μ(A, B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)dim B−dim Aq

(
dim B−dim A

2

)
if A � B /= V or A = B = V,

−
d−1∏
i=0

(1 − qi+n−d) if 0 = A < B = V,

d−dim A∑
i=0

(−1)i+1u(n, d; i, dim A + i)q

(
i
2

)
if 0 /= A < B = V,

0 otherwise.

Proof. The Möbius function of LO(n, d) is

μ(A, B) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)dim B−dim Aq

(
dim B−dim A

2

)
if A � B /= V or A = B = V,

− ∑
A�C<B

μ(A, C) if A < B = V,

0 otherwise.

By Lemma 2.1 and Proposition 3.2 we have

−
∑

0�C<V

μ(0, C) =
∑

0�C<V

(−1)dim Cq

(
dim C

2

)
= −

d∑
m=0

q(m
2 )

[
d

m

]
(−qn−d)m

= −
d−1∏
i=0

(1 − qi+n−d)

and

−
∑

0 /=A�C<V

μ(A, C) = −
∑

0 /=A�C<V

(−1)dim C−dim Aq

(
dim C−dim A

2

)

=
d−dim A∑

i=0

(−1)i+1u(n, d; dim A, dim A + i)q

(
i
2

)
.

Hence the desired result follows. �

Theorem 3.4. The characteristic polynomial of LO(n, d) is

χ(LO(n, d), x) =
d∑

i=0

[
d

i

]
(−qn−d)iq

(
i
2

)
xd+1−i −

d−1∏
i=0

(1 − qi+n−d).

Proof. By Lemma 3.3 we obtain

χ(LO(n, d), x) =
∑

0�B�V

μ(0, B)xr(V )−r(B)

= μ(0, V ) +
∑

0�B<V

(−1)dim Bq

(
dim B

2

)
xd+1−dim B

=
d∑

i=0

[
d

i

]
(−qn−d)iq

(
i
2

)
xd+1−i −

d−1∏
i=0

(1 − qi+n−d),

as desired. �
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4. The lattice LR(n, d)

The latticeLR(n, d) has the minimum element V , and the maximum element 0-subspace. The
set of all the atoms of LR(n, d) consists of all the d-subspaces intersecting trivially
with W .

Theorem 4.1

(i) LR(n, d) is an atomic lattice.
(ii) LR(n, d) is a geometric lattice if and only if d = 1 or n − d = 1.

Proof. (i) By the transitivity of GLn(Fq) on the set of all the subspaces with the same dimension,
we may assume that W has the matrix representation of the form

W = (I (n−d) 0(n−d,d)).

For any element A ∈ LR(n, d) with dim A = l, by the transitivity of GLn(Fq)W on the set
{U | U ∩ W = 0and dim U = l}, we may assume that A has the matrix representation of the form

A = (
0(l,n−d) I (l) 0(l,d−l)

)
.

Let B and C1, C2, . . . , Cd−l be the subspaces of V with the following matrix representations

B =
(

0(l,n−d) I (l) 0(l,d−l)

0(d−l,n−d) 0(d−l,l) I (d−l)

)
and Ci =

(
0(l,n−d) I (l) 0(l,d−l)

L
(d−l,n−d)
i 0(d−l,l) I (d−l)

)
,

where 1 � i � d − l and Li is the (d − l) × (n − d) matrix satisfying

(Li)s,t =
{

1 if s = i and t = 1,

0 otherwise.

Then B and C1, C2, . . . , Cd−l are atoms of LR(n, d) satisfying B ∨ C1 ∨ · · · ∨ Cd−l = A.
Therefore, LR(n, d) is an atomic lattice.

(ii) For any element A ∈ LR(n, d), define

r(A) =
{

0 if A = V,

d + 1 − dim A otherwise.

Then r is the rank function of LR(n, d).
If d = 1, it is clear that LR(n, d) is a geometric lattice. Now suppose that d � 2.

Case 1. n − d = 1. In order to prove that LR(n, d) is a geometric lattice, it suffices to show
the following inequality:

r(B ∨ C) + r(B ∧ C) � r(B) + r(C) ∀B, C ∈ LR(n, d). (1)

If B ∧ C /= V , it is well known that (1) holds. If B ∧ C = V , then

r(B) + r(C) − r(B ∨ C) − r(B ∧ C) = d + 1 − dim(B) − dim(C) + dim(B ∩ C)

= d + 1 − dim(B + C)

� 0.

Therefore (1) holds.
Case 2. n − d � 2. Let B and C be two subspaces of V with the following matrix representa-

tions of the form:
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B = (
0(d,n−d) I (d)

)
and C =

(
I (2) 0(2,n−d−2) I (2) 0(2,d−2)

0(d−2,2) 0(d−2,n−d−2) 0(d−2,2) I (d−2)

)
,

respectively. Then B and C are the elements of LR(n, d) satisfying

r(B ∨ C) + r(B ∧ C) = 3 > 2 = r(B) + r(C).

It follows that (1) does not hold. Therefore, LR(n, d) is not a geometric lattice in this case. �

Lemma 4.2. The Möbius function of LR(n, d) is

μ(A, B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)dim A−dim Bq

(
dim A−dim B

2

)
if V /= A � B or A = B = V,

d−dim B∑
i=0

(−1)i+1u(n, d; dim B, dim B + i)q

(
i
2

)
if V = A < B,

0 otherwise.

Proof. The Möbius function of LR(n, d) is

μ(A, B) =

⎧⎪⎨
⎪⎩

(−1)dim A−dim Bq

(
dim A−dim B

2

)
if V /= A � B or A = B = V,

− ∑
A<C�B μ(C, B) if V = A < B,

0 otherwise.

By Lemma 2.2, we have

−
∑

V <C�B

(−1)dim C−dim Bq

(
dim C−dim B

2

)
=

d−dim B∑
i=0

(−1)i+1u(n, d; dim B, dim B + i)q

(
i
2

)
.

Hence the desired result follows. �

Theorem 4.3. The characteristic polynomial of LR(n, d) is

χ(LR(n, d), x) = xd+1 +
d∑

j=0

[
d

j

]
qj (n−d)

d−j∑
i=0

(−1)i+1u(n, d; j, i + j)q

(
i
2

)
xj .

Proof. By Lemma 2.1 and Lemma 4.2 we obtain

χ(LR(n, d), x) =
∑

V �B�0

μ(V, B)xr(0)−r(B)

= μ(V, V )xd+1 +
∑

V <B�0

μ(V, B)xdim B

= xd+1 +
d∑

j=0

[
d

j

]
qj (n−d)

d−j∑
i=0

(−1)i+1u(n, d; j, i + j)q

(
i
2

)
xj ,

as desired. �
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