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SUMMARY

DNA mismatch repair (MMR) increases replication
fidelity by eliminating mispaired bases resulting
from replication errors. In Saccharomyces cerevi-
siae, mispairs are primarily detected by the Msh2-
Msh6 complex and corrected following recruitment
of theMlh1-Pms1 complex. Here, we visualized func-
tional fluorescent versions of Msh2-Msh6 and Mlh1-
Pms1 in living cells. We found that the Msh2-Msh6
complex is an S phase component of replication
centers independent of mispaired bases; this local-
ized pool accounted for 10%–15% of MMR in wild-
type cells but was essential for MMR in the absence
of Exo1. Unexpectedly, Mlh1-Pms1 formed nuclear
foci that, although dependent on Msh2-Msh6 for
formation, rarely colocalized with Msh2-Msh6 repli-
cation-associated foci. Mlh1-Pms1 foci increased
when the number of mispaired bases was increased;
in contrast, Msh2-Msh6 foci were unaffected. These
findings suggest the presence of replication
machinery-coupled and -independent pathways for
mispair recognition by Msh2-Msh6, which direct
formation of superstoichiometric Mlh1-Pms1 foci
that represent sites of active MMR.
INTRODUCTION

DNA mismatch repair (MMR) catalyzes a postreplication exci-

sion reaction that increases the fidelity of DNA replication by

eliminating mispaired bases resulting from replication errors

(Iyer et al., 2006; Kolodner, 1996; Kolodner and Marsischky,

1999). MMR defects cause increased mutation rates, and in

mammals this results in the development of different cancers

(Peltomäki, 2003). In addition, MMR acts on mispaired bases
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in recombination intermediates and also prevents recombination

between divergent DNA sequences, preventing genome rear-

rangements (Datta et al., 1996; Matic et al., 1995; Putnam

et al., 2009). Mispaired bases are recognized byMutS in bacteria

(Iyer et al., 2006) and by two partially redundant MutS-related

heterodimer complexes, Msh2-Msh6 or Msh2-Msh3, in eukary-

otes (Marsischky et al., 1996). Msh2-Msh6 is more abundant

than Msh2-Msh3 (Genschel et al., 1998; Ghaemmaghami

et al., 2003) and likely promotes most MMR in eukaryotes.

Msh2-Msh3 primarily corrects mispairs that are not efficiently

repaired by Msh2-Msh6 and acts when Msh2-Msh6 is absent

due to loss of Msh6 (Genschel et al., 1998; Marsischky et al.,

1996; Sia et al., 1997). After the mismatch recognition factors

bind a mispaired base, accessory factors including MutL in

bacteria and the Mlh1-Pms1 (S. cerevisiae Pms1 = human

Pms2) or Mlh1-Mlh3 complexes in eukaryotes are recruited,

targeting repair to the daughter DNA strand (Cannavo et al.,

2005; Flores-Rozas and Kolodner, 1998; Iyer et al., 2006; Kunkel

and Erie, 2005; Prolla et al., 1994).

Recent studies in S. cerevisiae using next-generation

sequencing to detect mutations in an MMR-defective mlh1

mutant indicate that the rate of accumulating mispair bases,

including both base:base and frameshift mispairs in repeat

sequences, is approximately 0.1 mispaired base per cell division

(Zanders et al., 2010). This rate is consistent with the rate of

accumulation of nucleotide changes in URA3 and CAN1 (Lang

and Murray, 2008) in wild-type S. cerevisiae multiplied by the

known increase in mutation rate at these genes in MMR-defec-

tive mutants. Thus, it appears that MMR must be able to recog-

nize 1 mispaired base per genome (�12,000,000 base pairs).

Remarkably, in vitro, mismatch recognition proteins exhibit

only modestly higher affinity for mispaired DNA than for DNA

containing only base pairs ranging from 3- to 20-fold (Alani,

1996; Iaccarino et al., 1998; Jiricny et al., 1988; Marsischky

and Kolodner, 1999) to recently reported 60- to 400-fold affinity

differences depending on the specific mispair (Huang and

Crothers, 2008). Mispair binding licenses an ATP-binding-

induced conversion of MutS, Msh2-Msh6, and Msh2-Msh3 to
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a sliding clamp form trapped on DNA; in the absence of mispairs,

ATP induces direct dissociation of these proteins from DNA

(Acharya et al., 2003; Gradia et al., 1999; Mendillo et al., 2005).

In addition, the ATP-binding-dependent formation of ternary

complexes between MutS and MutL (or their eukaryotic homo-

logs) requires binding of the mispair recognition proteins to

a mispaired base (Acharya et al., 2003; Blackwell et al., 2001;

Mendillo et al., 2005). These mechanistic features amplify the

specificity of mispair recognition. Regardless, the specificity of

mispair binding in vitro is unlikely to account for the specificity

of MMR in vivo.

One hypothesis for howmismatch recognition occurs in vivo is

that MMR is coupled to DNA replication, which would localize

MMR proteins to where mispaired bases are formed. Two lines

of evidence suggest this. First, MMR in vitro requires single-

strand breaks in the DNA (Iyer et al., 2006; Kunkel and Erie,

2005), suggesting that MMR might be targeted to strand breaks

in the nascent DNA strands during DNA replication. Second,

Msh2-Msh6 and Msh2-Msh3 (Clark et al., 2000; Flores-Rozas

et al., 2000) as well as Mlh1-Pms1 (Dzantiev et al., 2004; Lee

and Alani, 2006) complexes interact with the proliferating cell

nuclear antigen (PCNA). Because PCNA is part of the replication

machinery, these interactions could link MMR to DNA replica-

tion. Alternatively, because PCNA is left on the DNA after replica-

tion, binding of MMR proteins to PCNA could target MMR to

regions of newly synthesized DNA (Shibahara and Stillman,

1999). However, the interaction between PCNA and Msh6

and Msh3 is not absolutely required for MMR (Flores-Rozas

et al., 2000; Shell et al., 2007). Furthermore, PCNA is required

at many steps during MMR including the activation of the human

Pms2 (Pms1 in S. cerevisiae) endonuclease (Pluciennik et al.,

2010) and the resynthesis step at the end of MMR (Gu et al.,

1998; Umar et al., 1996). Therefore a PCNA requirement does

not necessarily reflect coupling of MMR to DNA replication.

Here, we have used functional fluorescent-tagged MMR and

replication proteins to study MMR in situ. Our results indicate

that the Msh2-Msh6 mismatch recognition complex is an S

phase component of replication centers independent of the

presence of a mispaired base. Unexpectedly, Mlh1-Pms1

formed nuclear foci that, although dependent on Msh2-Msh6

for their formation, rarely colocalized with the Msh2-Msh6

replication-associated foci. The presence of mispaired bases

or defects downstream of mispair recognition increased the

formation of Mlh1-Pms1 foci but not Msh2-Msh6 foci. These

findings suggest the presence of replication machinery-coupled

and -independent pathways for mispair recognition by Msh2-

Msh6, which in turn direct formation of superstoichiometric

Mlh1-Pms1 foci that represent sites of active MMR.

RESULTS

Msh6 Forms Foci that Colocalize
with Replication Factories
DNA replication in eukaryotic cells takes place at discrete glob-

ular foci or clusters within the S phase nucleus, sometimes

referred to as replication factories (Hozák et al., 1993; Kitamura

et al., 2006; Newport and Yan, 1996). To test for an association

between MMR and DNA replication in live cells, we used decon-
C

volutionmicroscopy to image a variety of functional fluorescently

tagged DNA replication and MMR proteins (Tables S1 and S2

available online; the replication proteins are essential and hence

functional) expressed at normal levels (Figure S3A) from their

native chromosomal loci in S. cerevisiae. Consistent with

previous studies (Kitamura et al., 2006), Pol2-4GFP (catalytic

subunit of DNA polymerase ε) formed multiple foci within the

nucleus (Figure 1A). These foci were frequently observed in small

or medium budded cells (S phase cells) and were essentially

absent in unbudded cells (G1 cells) and cells with large buds

(R3 mm) (G2/M cells) (Figures 1A and 1B). Msh6-mCherry also

formed nuclear foci (Figure 1A) that were more abundant in

S phase cells (2.6 ± 1.4 [mean ± standard deviation (SD)],

n = 103, foci per S phase cell) (Figures 1B and S1A). These

Msh6-mCherry foci almost always colocalized with Pol2-4GFP

foci (Figures 1A and 1B), suggesting that a portion of Msh2-

Msh6 is present in replication factories. Importantly, a rad52D

mutation that eliminates mitotic recombination, replication-

dependent recombination intermediates and toxic recombina-

tion intermediates thought to arise from damaged replication

forks (Fabre et al., 2002; Zou and Rothstein, 1997), and an

msh3Dmutation that eliminates targeting of Msh2 to recombina-

tion intermediates (Evans et al., 2000) did not significantly affect

the frequency of Msh6 foci (Figure 2B).

We next tested colocalization of Msh6 with other replisome

components including the following: Pol30 (PCNA), Pol3 (cata-

lytic subunit of DNA polymerase d), Pol1 (catalytic subunit of

DNA polymerase a), Rfa1 (large subunit of replication protein

A, RPA), and Mcm2 and Mcm4 (subunits of the MCM helicase

complex Mcm2-7). Colocalization of Msh6 foci with Pol30,

Pol3, and Pol1 foci was similar to that seen with Pol2 foci (Fig-

ure 1C). Rfa1 formed many foci, and Msh6 foci frequently colo-

calized with these, although a high percentage of Rfa1 foci did

not colocalize with Msh6 foci. We could not detect colocalization

of Msh6 with theMCM subunits Mcm2-4GFP, Mcm4-4GFP (Fig-

ure 1C), or Mcm7-4GFP (Figure S1B); Mcm7-mCherry also did

not colocalize with Pol2-4GFP (Figure S1C). The lack of colocal-

ization of MCM subunits with replication fork components in

microscopy studies has been reported and remains a matter of

discussion (Dimitrova et al., 1999; Laskey and Madine, 2003).

Msh2-Msh6 Foci Depend on Interaction with PCNA
We next tested whether colocalization of Msh6 with the replica-

tion machinery is mediated by an interaction with PCNA, via the

PIP (PCNA interacting protein) box located at the N terminus of

Msh6 (Clark et al., 2000; Flores-Rozas et al., 2000). An msh6-

F33AF34A-GFP mutant, which disrupts the PIP box and the

interaction with PCNA in vitro, displayed a severe reduction in

the percentage of nuclei with Msh6-GFP foci in unsynchronized

(Figures 2A and 2B) and S phase cells (Figures S2A and S2C).

Similar results were obtained with the msh6-2-51D mutation

that deletes the Msh6 PIP box and, like the msh6-F33AF34A

mutation, causes only modest MMR defects (10%–15% reduc-

tion in MMR) (Shell et al., 2007). These results are consistent

with prior observations in human cells transfected with

a construct expressing a nonfunctional Msh6 lacking the first

77 N-terminal amino acids (msh6-D77) that does not interact

with PCNA in vitro and also potentially in vivo (Kleczkowska
ell 147, 1040–1053, November 23, 2011 ª2011 Elsevier Inc. 1041
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Figure 1. Msh2-Msh6 Forms Nuclear Foci that Colocalize with Replication Factories

Cells expressing Msh6-mCherry (or GFP) and a DNA replication-related protein tagged with 4GFP (or mCherry) were analyzed by deconvolution microscopy.

(A) Images of cells with different bud size expressing Msh6-mCherry and Pol2-4GFP.

(B) Distribution of Msh6-mCherry and Pol2-4GFP foci according to bud size: no bud or small (<1.5 mm), medium (1.5–3 mm), or large (>3 mm) budded cells. Error

bars indicate standard error of the mean (SEM), and ‘‘n’’ indicates the number of cells examined.

(C) Msh6 colocalized with other components of the replisome including Pol30, Pol3, Pol1, and Rfa1 but not with the helicase subunits Mcm2 or Mcm4. Yellow

boxes (2 mm square) in ‘‘Bright-field’’ correspond to the nucleus and were enlarged (without interpolation) for the fluorescent images. White arrows indicate

mCherry/GFP foci, and arrowheads indicate colocalized foci on ‘‘Merge’’ images.
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Figure 2. Msh2-Msh6 Replication-Associated Foci Depend on Interactions with PCNA

(A) Cells expressing Msh6-GFP or the Msh6-F33AF34A-GFP mutant protein were analyzed for colocalization with Pol30-mCherry.

(B) Quantification of the percentage of total nuclei containing Msh6-GFP or Msh6-mCherry foci for the indicated wild-type and mutant strains.

(C) Images of wild-type cells or the msh6-F33AF34A mutant expressing Msh2-mCherry.

(D) Quantification of the percentage of total nuclei containing Msh2-mCherry foci for the wild-type or msh3D or msh6-F33AF34A mutant.

Error bars indicate the SEM, and ‘‘n’’ indicates the number of cells examined (for B and D).
et al., 2001). We also quantified Msh6-GFP foci in a strain

carrying the PCNA pol30-204 allele (pol30-C81R) that results in

a partial MMR defect and abolishes the ability of PCNA to

interact with Msh2-Msh6 in vitro (Lau et al., 2002). This mutation

caused an �60% reduction in the percentage of cells with

Msh6-GFP foci, whereas another partially MMR-defective

pol30 allele that does not alter the interaction of PCNA with

Msh2-Msh6 in vitro, pol30-201 (pol30-C22Y), had no effect on

the frequency of Msh6-GFP foci. Furthermore, fusing GFP to

the first 304 amino acids of Msh6, which comprise the unstruc-
C

tured Msh6 N-terminal region (Msh6-NTR) that by itself does

not support MMR (Shell et al., 2007) (msh6-305-1242D-GFP),

yielded foci at frequencies that were nearly identical to the

frequency seenwithMsh6-GFP (Figures 2B, S2A, and S2C), indi-

cating that the Msh6-NTR is sufficient to interact with PCNA and

form foci in vivo. These results show that Msh6 localizes to repli-

cation factories via an interaction with PCNA and that the PIP

box is necessary and sufficient for this localization.

The Msh6-NTR has a second region that is important for MMR

and that is partially redundant with the PIP box (Shell et al., 2007).
ell 147, 1040–1053, November 23, 2011 ª2011 Elsevier Inc. 1043
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Figure 3. MSH6 Mutants that Are Unable to Interact with PCNA Do

Not Complement the Mutator Phenotype of anmsh3Dmsh6D exo1D

Strain

Mutation rates of msh3D msh6D (A) or msh3D msh6D exo1D (B) strains

containing the indicated vector, MSH6 plasmid, or MSH6-NTR mutant

plasmids were determined by fluctuation analysis using the hom3-10 reversion

assay. Rates are shown as a percentage relative to the maximum mutation

rate (empty vector). Error bars indicate the SEM. * indicates p value < 0.001,

and ** indicates p value > 0.15, both relative to the empty vector

rate. *** indicates p value < 0.015 relative to the vector containing wild-type

MSH6. Two-tailed p values were determined by Mann-Whitney tests.
Themsh6-51-251Dmutation that deletes this second region and

by itself only causes modest MMR defects (6% reduction in

MMR) but does not compromise the PIP box or the Msh6-

PCNA interaction did not affect Msh6-GFP foci formation

(Figures 2B, S2A, and S2C). In contrast, themsh6-2-251Dmuta-

tion that deletes both the Msh6 PIP box and this second region

reduced the level of Msh6-GFP foci to the levels seen in the

msh6-F33AF34A and msh6-2-51D PIP box mutants. In the

case of only the msh6-2-251D mutation, some of the mutant

protein was localized in the cytoplasm in addition to the nucleus.

Mutations that eliminate the Msh6 PIP box cause only modest

MMR defects (10%–15% reduction in MMR) by themselves

but cause strong MMR defects in combination with the partially

redundant msh6-51-251D mutation (Flores-Rozas et al., 2000;

Shell et al., 2007). These results establish that the Msh6-PCNA

interaction underlies Msh6 foci formation and makes a modest

contribution to MMR in wild-type cells but is essential for MMR

in the msh6-51-251D mutant.

Because eukaryotic cells have two partially redundant binding

partners for Msh2 (Msh6 andMsh3) (Marsischky et al., 1996), we

tested whether both Msh6 andMsh3were able to target Msh2 to

the replication factories. The frequency of Msh2-mCherry foci in

wild-type cells was essentially the same as that seen for Msh6-

GFP foci, and these were almost completely eliminated by an

msh6-F33AF34A mutation that abolishes the interaction of

Msh6 and PCNA in vitro (Clark et al., 2000; Flores-Rozas et al.,

2000) (Figures 2C and 2D). In contrast, deletion of MSH3, which

eliminates the function of Msh2-Msh3 in MMR and targeting of

Msh2 to recombination intermediates (Evans et al., 2000), did

not change the frequency of Msh2-mCherry foci (Figure 2D).

These results indicate that the Msh2-mCherry foci in wild-type

cells predominantly contain Msh2-Msh6. The inability to observe

Msh2-mCherry foci in themsh6-F33AF34Amutant likely reflects

the lower abundance of Msh3 compared to Msh6 (Genschel

et al., 1998; Ghaemmaghami et al., 2003). We did not test the

effect of deleting MSH2 on the frequency of Msh6-GFP foci as

loss of Msh2 is known to result in degradation of its binding part-

ners, Msh6 and Msh3. Attempts to directly visualize Msh3 foci

were unsuccessful, likely due to its low abundance.

Exo1 Is Preferentially Required for Msh6-PCNA
Interaction-Independent MMR
Exo1 is a 50-30 exonuclease that physically interacts with Msh2

and Mlh1 (Schmutte et al., 2001; Tishkoff et al., 1997; Tran

et al., 2001) and acts in the excision step of MMR in vitro (Dzan-

tiev et al., 2004; Kadyrov et al., 2006; Zhang et al., 2005).

Because deletion of EXO1 results in a weaker mutator pheno-

type than deletion of MSH2 and an exo1D msh2D double

mutant has the same mutator phenotype as an msh2D single

mutant, redundant factors likely exist (Tishkoff et al., 1997;

Tran et al., 2001). In support of this, one study has identified

mutations that only eliminate MMR in the absence of Exo1

(Amin et al., 2001). It has been suggested that either the DNA

polymerase-associated editing exonucleases (Tran et al.,

1999) or strand displacement DNA synthesis (Kadyrov et al.,

2009) might substitute for Exo1. Consistent with a role for

Exo1 downstream of mispair recognition (Genschel and Mod-

rich, 2003; Kadyrov et al., 2006; Zhang et al., 2005), deletion
1044 Cell 147, 1040–1053, November 23, 2011 ª2011 Elsevier Inc.
of EXO1 did not change the frequency of Msh6-mCherry foci

(Figures 2B and S2C).

As the exo1D and msh6-F33AF34A mutations each cause

weak mutator phenotypes and have different effects on Msh6

foci formation (Figure 2B), we investigated genetic interactions

between these two mutations. We tested the ability of different

MSH6 mutant plasmids to complement the MMR defect of

msh3D msh6D and msh3D msh6D exo1D mutants. As reported

(Shell et al., 2007), plasmids carrying wild-type MSH6, msh6-

F33AF34A, msh6-2-50D, and msh6-51-251D substantially

complemented the high mutation rates of the MMR-defective

msh3Dmsh6Dmutant (Figure 3A). In contrast, plasmids contain-

ing the msh6-F33AF34A mutation or the msh6-2-50D deletion

were completely defective for complementing the high mutation

rates of the MMR-defective msh3D msh6D exo1D mutant (Fig-

ure 3B). On the other hand, plasmids carrying MSH6 or the

msh6-51-251D internal deletion (which does not compromise



Table 1. Mutation Rate Analysis of exo1D in Combination with pol30-204 or with the Polymerase Mutant Alleles pol2-M644G and

pol3-L612M

Mutation Rate (Fold Increase)a

Relevant Genotype RDKY Strain Thr+ CanR

A Wild-type 3686 1.3 [0.5–1.8] 3 10�9 (1) 4.3 [2.9–5.7] 3 10�8 (1)

exo1D 7532 4.1 [2.2–8.8] 3 10�9 (3) 4.3 [3.1–6.1] 3 10�7 (10)

pol30-204 7539 2.6 [2.0–3.7] 3 10�7 (200) 5.0 [4.4–14.0] 3 10�7 (12)

exo1D pol30-204 7531 7.3 [4.3–13.8] 3 10�7 (562) 1.7 [1.2–2.0] 3 10�6 (40)

msh2D 5961 3.7 [3.0–5.2] 3 10�6 (2846) 3.5 [3.0–4.5] 3 10�6 (81)

B pol2-M644G 7537 3.2 [2.1–] 3 10�9 (3) 3.5 [2.6–5.2] 3 10�7 (8)

pol3-L612M 7538 3.1 [2.4–4.8] 3 10�9 (2) 3.4 [2.6–5.2] 3 10�7 (8)

pol2-M644G exo1D 7533 4.1 [2.4–5.3] 3 10�8 (32) 2.1 [1.6–2.7] 3 10�6 (49)

pol3-L612M exo1D 7534 3.6 [2.7–4.5] 3 10�7 (277) 7.7 [5.8–9.8] 3 10�6 (179)

pol2-M644G msh2D 7535 2.8 [1.7–4.6] 3 10�5 (21538) 5.5 [1.7–10.7] 3 10�5 (1279)

pol3-L612M msh2D 7536 4.4 [3.2–6.2] 3 10�5 (33846) 7.5 [3.5–10.1] 3 10�5 (1744)
aMedian rates of hom3-10 (Thr+) reversion and inactivation of CAN1 gene (CanR) with 95% confidence interval in square brackets and fold increase

relative to the wild-type in parentheses.
the PIP box) complemented the high mutation rates of the

msh3D msh6D exo1D mutant. Consistent with these results,

combining the pol30-204 (C81R) mutation, which disrupts the

Msh6-PCNA interaction, with an exo1D mutation also resulted

in a synergistic increase in mutation rates (Table 1A). These

results indicate that MMR is much more dependent on the

Msh6-PCNA interaction in the absence of Exo1 than in the pres-

ence of Exo1 and that MMR involving the Msh6-PCNA interac-

tion is at least partially redundant with Exo1-dependent MMR

pathway(s).

Exo1 Is Preferentially Required for Lagging-StrandMMR
Because Exo1 is more important for Msh6-PCNA interaction-

independent MMR than for Msh6-PCNA interaction-depen-

dent MMR (Figure 3 and Table 1A), and because of the

mechanistic differences between leading and lagging-strand

DNA synthesis, we investigated the role of Exo1 in leading

and lagging-strand MMR. We utilized the DNA polymerase

mutations pol2-M644G and pol3-L612M, which cause

increased misincorporation during leading and lagging-strand

DNA replication, respectively (Nick McElhinny et al., 2007; Pur-

sell et al., 2007). Combining an exo1 deletion with the lagging-

strand DNA polymerase pol3-L612M mutation resulted in

a synergistic increase in mutation rate in the hom3-10 frame-

shift reversion assay and the CAN1 inactivation assay (Tables

1A and 1B) (Marsischky et al., 1996), consistent with the

results observed when the pol3-L612M was combined with

deletions of MSH2 and PMS1 (Li et al., 2005). Similarly, the

nonessential lagging-strand polymerase subunit Pol32 was

previously identified as being required for MMR in the absence

of Exo1 but not in the presence of Exo1 (Amin et al., 2001). In

contrast, unlike mutations in other MMR genes, combining an

exo1 deletion with the leading-strand DNA polymerase muta-

tion pol2-M644G resulted in a much smaller increase in muta-

tion rates (Tables 1A and 1B). These results suggest that

lagging-strand MMR has a greater dependence on Exo1

than leading-strand MMR.
C

Pms1 Forms Foci that Rarely Colocalize with Msh6
After recognition of a mispair, Msh2-Msh6 andMsh2-Msh3 form

ternary complexes with Mlh1-Pms1 (Blackwell et al., 2001; Hab-

raken et al., 1997; Mendillo et al., 2005). We therefore deter-

mined whether replication-associated Msh6 foci also contain

Mlh1-Pms1. We constructed a Pms1-4GFP that was functional

in MMR even in combination with Msh6-mCherry (and in the

absence of MSH3) (Table S2); however, all attempts to tag

Mlh1 resulted in a nonfunctional protein (Smith et al., 2001).

We therefore used Pms1-4GFP as a reporter for the Mlh1-

Pms1 heterodimer in vivo (Prolla et al., 1994). Pms1-4GFP

formed distinct nuclear foci, similar to Msh2 and Msh6, although

at a significantly lower frequency of �10% of logarithmically

growing cells. Surprisingly, Pms1-4GFP foci rarely colocalized

with Msh6-mCherry foci (Figures 4A and 4B) or Msh2-mCherry

(data not shown). We also observed the same limited colocaliza-

tion between Pms1-GFP and Msh6-mCherry or between Pms1-

mCherry and Msh6-GFP (Figures S3D and S3E). This lack of

colocalization suggests that the Pms1-4GFP foci were not

present at replication factories. Consistent with this, Pms1-

4GFP foci also did not colocalize with Rfa1-mCherry foci

(Figure S3C).

We next tested whether the Pms1-4GFP foci were localized to

specific compartments/structures within the nucleus using

various nuclear structure markers, including Nic96 (nuclear

periphery), Sik1 (nucleolus), Cse4 and Cbf2 (centromere), and

the telomere-binding proteins Rap1, Rif1, Cdc13, and Sir3.

Pms1-4GFP foci did not colocalize with any of these nuclear

markers (Figure S3C and data not shown), suggesting that

Pms1 foci represent a previously unidentifiedMMR intermediate.

Analysis of the distribution of the Pms1-4GFP and Msh6-

mCherry foci according to bud size revealed that Pms1-4GFP

foci were most abundant in small and medium budded cells,

whereas Msh6-mCherry foci were mostly present in small

budded cells (Figures 4A and 4B). Given that Msh6 is present

at replication factories but rarely colocalizes with Pms1 foci,

this suggests that Pms1 foci are formed later than Msh6 foci.
ell 147, 1040–1053, November 23, 2011 ª2011 Elsevier Inc. 1045
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Figure 4. Pms1 Forms Foci that Rarely Colocalize with Msh6 Foci

(A) Cells expressing Msh6-mCherry and Pms1-4GFP were analyzed by deconvolution microscopy. Representative images illustrate Pms1-4GFP and Msh6-

mCherry foci that do not colocalize, do colocalize, or partially colocalize.

(B) Distribution of the percentage of nuclei containing Msh6-mCherry or Pms1-4GFP foci according to bud size (bud-size categories were done as in Figure 1B).

Error bars indicate the SEM, and ‘‘n’’ indicates the number of cells examined.

(C) Quantification of the average number of Msh6 or Pms1 molecules present per focus, using the centromere protein Cse4 as a standard.

(D) Time-lapse images of Pms1-4GFP were collected at the indicated intervals in a wild-type strain.
However, consistent with an S phase function, cells arrested in

G2/M with nocodazole had few Msh6 and Pms1 foci, and

a clb2D mutation that causes delay in G2/M and an increase in

G2/M cells reduced the frequency of Msh6 and Pms1 foci (Fig-

ure S4A). After comparing the bud size distribution of Msh6-

mCherry foci in the Pms1-4GFP colocalization experiment

(Figure 4B) with the bud size distribution in the Pol2-4GFP coloc-

alization experiment (Figure 1B), we noticed a small, reproduc-

ible reduction in the percentage of Msh6-mCherry foci, which

wasmore evident inmedium budded cells. We believe this differ-
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ence may be due to a slight delay in S phase progression due to

the presence of the 4GFP tag on Pol2.

The limited colocalization between Msh6 and Pms1 foci

suggests that these two types of foci might represent different

steps in the MMR reaction. To better understand these foci,

we quantified the number of Msh6 or Pms1 molecules present

in them using the centromere protein Cse4 as a fluorescence

standard (Joglekar et al., 2006). Quantitative analysis of fluores-

cence intensity revealed that, on average, Pms1 foci contain 11

± 5 molecules per focus (Figure 4C). Msh6 foci were more
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Figure 5. Pms1 Foci Are Sites of MMR

Pms1 foci were abolished in the absence of an Msh2-Msh6 complex and increased in response to induction of mispairs or downstream MMR-recognition

defects.

(A) Quantification of the percentage of total nuclei containing Pms1-4GFP foci in the wild-type and indicated mutants.

(B) Percentage of total nuclei containing Msh6 and/or Pms1 foci (and colocalization) for strains expressing Msh6-mCherry and Pms1-4GFP in addition to the

indicated polymerase mutations.

(C) Quantification of the Pms1-4GFP foci abundance for wild-type or exo1D, exo1D msh2D, pms1-E707K, or pms1-E707K msh2D mutants.

Error bars indicate the SEM, and ‘‘n’’ indicates the number of cells examined (for A–C).
difficult to quantify due to their less uniform nature. When

the most distinctive Msh6 foci were quantified, they contained

11 ± 4 molecules per focus (Figure 4C). These measurements

suggest that we should be able to visualize a focus containing

5–7 molecules of Msh6. The presence of Pms1 foci that are

not coincident with Msh6 foci therefore suggests that Pms1

foci do not contain stoichiometric amounts of Msh6.

We also used time-lapse imaging to determine the average

duration of a single Pms1-4GFP focus (Figure 4D). The Pms1-

4GFP foci often showed rapid movements within the nucleus,

indicating a dynamic behavior similar to that described for repli-

cation factories (Kitamura et al., 2006). The average duration of

a single Pms1-4GFP focus was �0.5–2.5 min (1.5 ± 1; mean ±

SD, n = 88). MMR reactions require excision and resynthesis of

relatively small tracks of mispair-containing DNA (up to 1 kb)

(Fang and Modrich, 1993) and can be accomplished in vitro in

about 15 min (Wang and Hays, 2002). Therefore, it is expected

that in vivo, individual repair reactions might occur over a short

period of time. The short lifetimes of Pms1-4GFP foci are there-

fore consistent with the idea that these foci represent an MMR

intermediate.
C

Formation of Pms1 Foci Is Dependent on a Functional
Msh2-Msh6 Complex
Given the low number of Pms1 foci in wild-type cells compared

to the number of Msh6 foci and their limited colocalization, we

tested whether upstream MMR components were required for

the formation of Pms1-4GFP foci. Deletion of MSH2, which

eliminates both the Msh2-Msh6 and Msh2-Msh3 mispair recog-

nition complexes, largely eliminated the Pms1-4GFP foci (Fig-

ure 5A), and reintroduction of the MSH2 gene on a low-copy

plasmid restored Pms1-4GFP foci to wild-type levels (Fig-

ure S4B). Analysis of Pms1-4GFP protein levels in msh2D and

wild-type strains revealed the same levels of Pms1-4GFP

(Figure S4C), excluding the possibility that deletion of MSH2

altered the levels of Pms1-4GFP. Deleting either MSH3 or

MSH6 alone caused no reduction in the percentage of cells con-

taining Pms1-4GFP foci (Figure 5A); in fact, there was a 2- to 3-

fold increase in the frequency of Pms1-4GFP foci in the strain

lackingMsh6. Simultaneous deletion ofMSH3 andMSH6 almost

completely eliminated the Pms1-4GFP foci, as observed

following deletion ofMSH2 (Figure 5A). These results are consis-

tent with the observed redundancy between theMsh6 andMsh3
ell 147, 1040–1053, November 23, 2011 ª2011 Elsevier Inc. 1047



subunits. Overall, these results indicate that Pms1-4GFP foci

depend on the presence of mispair recognition complexes and

that both the Msh2-Msh6 and Msh2-Msh3 complexes can

promote the formation of Pms1 foci.

To address whether Pms1-4GFP foci were dependent on the

formation of replication factory-associated Msh2-Msh6 foci, we

introduced the msh6-F33AF34A mutation that abolishes Msh2-

Msh6 foci formation (Figures 2A–2D) into anmsh3Dmutant strain

expressing Pms1-4GFP. The msh6-F33AF34A mutation had no

effect on the level of Pms1-4GFP foci (Figure 5A), indicating

that although the formation of Pms1-4GFP foci in an msh3D

mutant requires the Msh2-Msh6 complex, their formation was

independent of the association of Msh2-Msh6 with PCNA.

We next analyzed the effects of the msh6-G1142D, msh6-

G1067D, and msh6-S1036P mutations on the formation of

Pms1-4GFP foci in an msh3D mutant. Each of these mutations

results in normal levels (Figure S3B) of an Msh2-Msh6 complex

that recognizes mispaired bases normally; however, the Msh2-

Msh6-G1142D complex forms ternary complexes with Mlh1-

Pms1 but is defective for sliding clamp formation, whereas the

Msh2-Msh6-G1067D and Msh2-Msh6-S1036P complexes are

defective for both sliding clamp formation and assembly of

Mlh1-Pms1 ternary complexes (Hargreaves et al., 2010; Hess

et al., 2006). Each of these msh6 mutations reduced the level

of Pms1-4GFP foci to the same levels seen in the msh2D single

mutant and themsh3Dmsh6D double mutant (Figure 5A). These

results indicate that the ability of Msh2-Msh6 to recognize

mispaired bases and bind Mlh1-Pms1 is not sufficient for

Msh2-Msh6 to support the formation of Pms1-4GFP foci; in

addition to these activities, the conformational change under-

lying the ability of Msh2-Msh6 to form a sliding clamp is required.

Cumulatively, these results indicate that despite their limited

colocalization with replication factory-associated mispair recog-

nition complex foci, the formation of Pms1 foci requires the

Msh2-Msh6 or the Msh2-Msh3 complex.

Pms1 Foci Increase in Response to Induction
of Mispaired Bases
If Pms1-4GFP foci represent active sites of MMR, their

frequency should respond to increased levels of mispaired

bases. To test this, we used three DNA polymerase mutations

that cause increasedmisincorporation rates either due to amuta-

tion at the polymerase active site (pol3-L612M) (Li et al., 2005;

Nick McElhinny et al., 2008; Pursell et al., 2007) or due to inacti-

vation of the 30 exonuclease proofreading activity (pol2-04 and

pol3-01) (Morrison et al., 1991, 1993). All three mutations caused

a significant (2- to 3-fold) increase in the percentage of nuclei

containing Pms1-4GFP foci (Figure 5B). Furthermore, formation

of Pms1-4GFP foci in the pol3-L612M and pol2-04mutants was

MSH2 dependent (Figure S4D); we were unable to analyze the

MSH2 dependence of Pms1-4GFP foci in the pol3-01 mutant

as pol3-01 is lethal in combination with anmsh2Dmutation (Mor-

rison et al., 1993; Tran et al., 1999). These observations indicate

that Pms1 foci increase when mispairs increase and support the

idea that Pms1 foci represent active sites of MMR. Consistent

with this, when present in an msh3D mutant, the msh6-F337A

mutation that eliminates mispair binding (Bowers et al., 2000)

reduced the Pms1 foci (Figure 5A), whereas a rad52D mutation,
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which eliminates recombination intermediates (Zou and Roth-

stein, 1997), did not affect the frequency of Pms1 foci (Figure 5A).

We next analyzed whether the increased misincorporation

rates causedby thepol3-L612M,pol2-04, andpol3-01mutations

would increase colocalization of Msh6-mCherry foci with Pms1-

4GFP foci. The three mutations had no effect on the abundance

of Msh6-mCherry foci and only caused a modest increase in the

percentage of cells with colocalized Pms1-4GFP and Msh6-

mCherry foci, which may simply reflect the overall increase in

Pms1-4GFP foci abundance in these three mutants (Figure 5B).

Overall, these data suggest that Msh6 foci are present at replica-

tion factories at constitutive levels, whereas Pms1 foci rarely co-

localize with replication factory-associated Msh6 foci. Instead,

the abundance of Pms1 foci appears to be determined by the

frequency of mispairs generated by DNA polymerases that are

then detected by the mispair recognition complexes.

MMR Defects downstream of Mlh1-Pms1 Recruitment
Increase the Level of Pms1 Foci
To further characterize the properties of Pms1 foci, we tested the

effect of inhibiting MMR downstream of Mlh1-Pms1 on the prev-

alence of Pms1-4GFP foci. Deletion of EXO1 resulted in a 5-fold

increase in the percentage of cells containing Pms1-4GFP foci,

and these foci were MSH2 dependent (Figure 5C). In addition,

deletion of EXO1 also increased the number of Pms1-4GFP

foci per nucleus (Figure S4E). Consistent with the role of Exo1

downstream of mispair recognition, deletion of EXO1 did not

have any effect on the percentage of cells containing Msh6-

mCherry foci (Figure 2B).

Human Pms2 (Pms1 in S. cerevisiae) has an endonuclease

activity required for MMR (Kadyrov et al., 2006; Pluciennik

et al., 2010). The human pms2-E705K mutation (analogous to

S. cerevisiae pms1-E707K) changes an amino acid located in

the conserved motif DQHA(X)2E(X)4E, abolishes the endonu-

clease function of Pms2, and results in a defect inMMR (Kadyrov

et al., 2006). The pms2-E705K mutation does not affect

upstream steps during MMR, including mispair recognition and

assembly of Msh2-Msh6-Mlh1-Pms2 ternary complexes (Ka-

dyrov et al., 2006). As the equivalent S. cerevisiae pms1-E707K

mutation also results in an MMR defect (Deschênes et al.,

2007; Kadyrov et al., 2007), we tested the effect of the pms1-

E707Kmutation on the abundance of Pms1-4GFP foci. Introduc-

tion of the pms1-E707K mutation resulted in a 7-fold increase in

the percentage of cells with Pms1-4GFP foci, which wereMSH2

dependent (Figure 5C). These results are consistent with the idea

that, when the downstream Exo1 or Pms1 endonuclease func-

tions are compromised, Mlh1-Pms1 complexes do not turn

over, resulting in higher levels of Pms1-4GFP foci.

DISCUSSION

Much of our knowledge about MMR comes from genetic studies

and in vitro reconstitution experiments. Although a few attempts

to visualize MMR proteins under conditions of normal DNA repli-

cation in vivo have been reported, these studies have been

complicated by the use of overexpressed levels ofMMRproteins

(Elez et al., 2010) or the use of partially functional or nonfunc-

tional tagged MMR proteins (Smith et al., 2001) and only report



a limited analysis (Elez et al., 2010; Kleczkowska et al., 2001;

Smith et al., 2001). Here, we used fully functional GFP- or

mCherry-tagged versions of the MMR proteins Msh2, Msh6,

and Pms1, expressed at native levels, to visualize Msh2-Msh6

andMlh1-Pms1 complexes in living S. cerevisiae cells. We found

that Msh2-Msh6 formed nuclear foci in S phase cells that colo-

calized with replication factories. This colocalization was

completely dependent on the interaction between the Msh6

N-terminal PIP box and PCNA, and the N terminus of Msh6

was sufficient for this interaction. Mutations in POL2 and POL3

that increase the frequency of mispairs, a rad52D mutation that

eliminates recombination and replication-dependent recombi-

nation intermediates, and an msh3D mutation that eliminates

targeting of Msh2 to recombination intermediates did not affect

the frequency of Msh2-Msh6 foci. In addition, Rad52 foci, which

form at recombination and repair intermediates, occur in S phase

cells at less than 10% of the frequency of Msh2-Msh6 foci (Lisby

et al., 2001). Therefore, Msh2-Msh6 foci are not assembled in

response to mispaired bases or recombination and repair inter-

mediates but represent a mispair recognition system that is

constitutively present as an integral component of a significant

proportion of replication factories.

The formation ofMsh2-Msh6 foci and their localization to repli-

cation factories depended on the interaction between the PIP

box at the Msh6 N terminus and PCNA. However, mutations

that eliminate the interaction between Msh6 and PCNA only

cause a 10%–15% reduction in the efficiency of MMR. These

results suggest that there are additional redundant pathway(s)

for mispair recognition that do not involve the formation of

Msh2-Msh6 foci coupled to replication factories. These alterna-

tive pathways require Exo1 and an internal region of the Msh6

N-terminal leader sequence, as MMR in exo1D and msh6-51-

251D mutants was completely dependent on the interaction

between Msh6 and PCNA. The observation that the MMR

pathway coupled to DNA replication becomes essential for

preventing the accumulation of mutations in the absence of

Exo1 is consistent with the previous identification of mutations

that inactivate MMR only in the absence of Exo1 (Amin et al.,

2001), one of which was a deletion of POL32 that encodes

a nonessential subunit of DNA polymerase d. Furthermore,

lagging-strand MMR was significantly more dependent on

EXO1 than leading-strand MMR, providing additional evidence

for a specificMMRpathway(s) that depends on Exo1. An alterna-

tive explanation is that EXO1 deletion and Msh6-PCNA interac-

tion-defective mutants exhibit a synergistic MMR defect by

extending the time that is required to complete MMR past the

time it takes to reinitiate S phase in the next cell cycle.

We also used live-cell imaging to visualize MMR proteins that

function downstream from mismatch recognition. We found that

Mlh1-Pms1 also formed distinct S phase nuclear foci, but these

foci rarely colocalized with Msh2-Msh6 foci or replication facto-

ries and did not colocalize with telomeres, centromeres, the

nucleolus, or the nuclear periphery. Four main lines of evidence

indicate that these Mlh1-Pms1 foci represent sites where active

MMR is taking place. First, Mlh1-Pms1 foci were completely

abolished by mutations that eliminate the Msh2-Msh6 and

Msh2-Msh3 mispair recognition complexes or mispair recogni-

tion. In addition, msh6 mutations that do not affect mispair
C

recognition but prevent sliding clamp formation and the interac-

tion with Mlh1-Pms1 eliminated the Mlh1-Pms1 foci. Second,

the frequency of Mlh1-Pms1 foci was increased by mutations

in POL2 or POL3 that increase the frequency of mispaired bases

in cells. Third, mutations that inactivate MMR downstream of the

interaction of Mlh1-Pms1 with Msh2-Msh6, including a Pms1

endonuclease mutation and an exo1D mutation, resulted in

increased levels of Mlh1-Pms1 foci. Fourth, a rad52D mutation

that eliminates recombination and replication-dependent

recombination intermediates had no effect on Pms1 foci. These

results are consistent with Mlh1-Pms1 foci being an active inter-

mediate during MMR.

The observation that Mlh1-Pms1 foci do not colocalize with

Msh2-Msh6 foci or contain substoichiometric amounts of

Msh2-Msh6 that are below the limits of detection was surprising.

One possible explanation for this is that the action, or a step in

the action, of Mlh1-Pms1 in MMR is temporally separable from

the mispair-dependent interaction of Msh2-Msh6 with Mlh1-

Pms1 during MMR. Alternatively, once a mispaired base is

recognized by Msh2-Msh6, one or a few molecules of Msh2-

Msh6 catalytically load multiple Mlh1-Pms1 complexes onto

the DNA, resulting in the formation Mlh1-Pms1 foci. These

mechanisms are inconsistent with previous ideas proposing

that multiple Msh2-Msh6 complexes are recruited at the mispair

site, with each one of them able to interact with one Mlh1-Pms1

heterodimer. A number of studies have reported that MutL and

Mlh1-Pms1 can interact with DNA, although the biological signif-

icance of this has been questioned (Park et al., 2010); however,

the correlation of Mlh1-Pms1 foci with mispair levels suggests

that the interaction of Mlh1-Pms1 with DNA may reflect a mech-

anistic step in MMR.

We found that the msh6-G1142D mutation, which results in

a mutant Msh2-Msh6 complex that forms mispair-dependent

ternary complexes with Mlh1-Pms1 but does not form sliding

clamps, eliminated the formation of Mlh1-Pms1 foci. This result

indicates that the ability of Msh2-Msh6 to interact with Mlh1-

Pms1 is not sufficient for Mlh1-Pms1 foci formation. Rather, it

is likely that conformational changes of Msh2-Msh6 that occur

after mismatch recognition and Mlh1-Pms1 recruitment are

essential for loading multiple Mlh1-Pms1 complexes. We spec-

ulate that loading of multiple Mlh1-Pms1 complexes at the site

of themispair is a crucial step necessary to guarantee the subse-

quent degradation and repair of the mispair-containing strand.

This mechanism shares similarities with the one proposed for

double-strand break repair, where phosphorylation of several

H2A histonemolecules (Y-H2AX) adjacent to the site of the break

marks and amplifies the signal to ensure subsequent repair.

A model summarizing our results is presented in Figure 6. In

this model, Msh2-Msh6 can locate mismatches in two ways.

The first is as a component of replication factories, where it

acts as a sensor coupled to DNA replication by PCNA. Because

DNA replication mediates the disassembly of chromatin, this

coupling of MMR to replication provides a mechanism by which

MMR is able to overcome the barriers to repair presented by

chromatin structure. Alternatively, Msh2-Msh6 can scan the

genome for mispairs independently of its association with repli-

cation factories. The nature of this second pathway is unclear.

When a mispair is encountered, Msh2-Msh6 loads multiple
ell 147, 1040–1053, November 23, 2011 ª2011 Elsevier Inc. 1049



Figure 6. Model of MMR Pathways

Replication- and repair-associated foci are inter-

mediates of MMR. At least two independent

pathways act in preventing the accumulation of

mispairs; one is coupled to the replication

machinery through the interaction between Msh6

and PCNA and acts as a sensor of potential mis-

pairs. An alternative pathway might exist that does

not require the Msh2-Msh6 association to repli-

cation factories. After mispair recognition, Msh2-

Msh6 is able to recruit multiple molecules of Mlh1-

Pms1 to the site of the mispair. This is followed by

activation of the endonuclease activity of Pms1

and Exo1 recruitment. Inactivation of either of

these two last steps might lead to an accumulation

of these Pms1 foci intermediates.
molecules of Mlh1-Pms1 onto DNA, Mlh1-Pms1 is activated,

and Exo1, or other excision functions, is recruited for removal

of themispair-containing DNA strand followed by DNA resynthe-

sis and ligation. The ability to visualize and quantify MMR inter-

mediates provides an assay that can be used for identification

and analysis of MMR components in the alternative MMR

pathways.
EXPERIMENTAL PROCEDURES

Media, Strains, and Plasmids

S. cerevisiae strains were grown at 30�C in yeast extract-peptone-dextrose

media (YPD) or appropriate dextrose synthetic dropout media for selection

of plasmid markers and/or Lys+ or Thr+ revertants or canavanine-resistant
1050 Cell 147, 1040–1053, November 23, 2011 ª2011 Elsevier Inc.
(CanR) mutants. All strains used in this study (see

Table S1) were derivatives of the S288C strain

RDKY3686 MATa ura3-52 leu2D1 trp1D63

his3D200 hom3-10 lys2-10A (Amin et al., 2001).

Gene deletions or tagging were performed using

standard PCR-based recombination methods fol-

lowed by confirmation by PCR. Correct insertion

of tags, as well as absence of additional mutations,

was confirmed by sequencing. Specific point

mutations (msh6-G1142D, msh6-G1067D, msh6-

S1036P, msh6-F337A, pms1-E707K, pol30-201,

pol30-204, pol2-04, pol2-M644G, pol3-01, and

pol3-L612M) were introduced via the integration/

excision method using integrating plasmids (see

Extended Experimental Procedures), and the

presence of the desired mutation and absence of

additional mutations were confirmed by DNA

sequencing.

The msh6-NTR mutant alleles (msh6-

F33AF34A, msh6-2-50D, msh6-51-251D, msh6-

2-251D) were also expressed on a low-copy

number plasmid (Shell et al., 2007) to test their

ability to complement the MMR defects of the

RDKY4234 and RDKY7203 strains.

For microscopy studies, the C terminus of the

protein of interest was fluorescently tagged at

the endogenous gene locus with the green fluo-

rescent protein (GFP) or the red fluorescent

protein (mCherry), except in the case of low-

abundance proteins (i.e., Pol1, Pol2, Pol3, and

in some cases Pms1) that were tagged with four
tandem copies of GFP (4GFP) using the pSM1023 plasmid (gift of E. Schie-

bel). Because the DNA replication proteins analyzed in the present study are

essential, the absence of growth defects indicates that these tagged proteins

retain their functionality. Strains expressing the tagged mismatch repair

proteins were tested using mutator assays, which indicated that C-terminal

tagging of Msh2, Msh6, or Pms1 did not compromise their functionality

(Table S2).

Immunoblotting

S. cerevisiae whole-cell extracts were analyzed by 4%–15% SDS-PAGE (Bio-

Rad) and immunoblotting using anti-GFP or anti-Msh6 antibodies. Pgk1 was

monitored as loading control.

Genetic Assays

Mutation rates were determined using the hom3-10 and lys2-10A frame-

shift reversion and CAN1 inactivation assays by fluctuation analysis (Amin



et al., 2001; Marsischky et al., 1996). Mann-Whitney tests were performed

(http://faculty.vassar.edu/lowry/utest.html), and 95% confidence intervals

were calculated to evaluate statistical significance.

Live-Cell Imaging and Image Analysis

Exponentially growing cultures were washed and resuspended in water,

placed on minimal media agar pads, covered with a coverslip, and imaged

on a Deltavision (Applied Precision) microscope with an Olympus 1003

1.35NA objective. Fourteen 0.5 mm z sections were acquired and deconvolved

with softWoRx software. Experiments involving fluorescence quantification

were done as described previously (Joglekar et al., 2006). Further image pro-

cessing, including maximum intensity projections and intensity measurements

were performed using ImageJ. Msh6-Pms1 colocalization was scored if at

least one focus per nucleus displayed colocalization in the same z section.

Msh6-Pol2 colocalization and colocalization with other replication proteins

were scored if at least half of the Msh6 foci in a nucleus colocalized with

Pol2 foci. Images with the same fluorescent fusion protein in the same figure

have identical contrast adjustment.

Extended Experimental Procedures and a strain list are available in the

Supplemental Information.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

four figures, and two tables and can be found with this article online at

doi:10.1016/j.cell.2011.10.025.
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