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1. Introduction

In the nineteenth century it was realized that the orthogonal polynomials of Hermite, Jacobi, and Laguerre satisfy
differential equations of the Sturm-Liouville type. It was later realized that the differential equation can be written in the
form A*Ay = My, where A is a linear first order differential operator and the A* is its adjoint on a weighted L, space. The
action of the operator A decreases the degree of a polynomial by one while A* increases the degree by one. In the twentieth
century it was realized that the orthogonal polynomials are matrix elements of irreducible representations of certain groups
and that A* and A move you up and down the irreducible representations. It is also known that only the Hermite, Laguerre
and Jacobi polynomials satisfy the symmetric Sturm-Liouville type eigenvalue problem.

In the 1990s, the works [1-4] derived raising and lowering operators for polynomials orthogonal with respect to
absolutely continuous measures p under certain smoothness assumptions on . Then, they showed that the polynomials
satisfy Ty = 0 where T is a linear second order differential operator. Chen and Ismail [1] showed that T factors as
A*(1/An(x))A, for a certain function A, (x). Here A and its adjoint A* are linear first order differential operators. It was later
realized that a similar theory exists for polynomials orthogonal with respect to a measure with masses at the union of at
most two geometric progressions, {aq", bq"}, for some q € (0, 1), [5]. The corresponding theory for difference operators is
in [6]. This theory is included in [7]. The raising and lowering operators involve two functions A, (x) and B, (x) which satisfy
certain recurrence relations. In the case of differential operators, Ismail and Chen have demonstrated that the knowledge of
An(x) and B, (x) determines the polynomials uniquely in the cases of Hermite, Laguerre, and Jacobi polynomials, see [8]. This
is done through recovering the properties of the polynomials including the three term recurrence relation which generates
the polynomials. In [9], Chen and Ismail showed that orthogonal polynomials which arise from indeterminate moment
problems have similar properties but the coefficients A,(x) and B,(x) now have integral representations instead of series
representations. By composing the lowering and raising operators one can produce a second order equation satisfied by the
orthogonal polynomials.

This work started from the realization that the second order equations derived using the above-mentioned technique do
not reduce to the Sturm-Liouville type difference and g-difference equations for the classical polynomials. The purpose of
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this work is to produce another pair of raising and lowering operators and with the appropriate combinations to recover
the classical results.

The orthogonal polynomials which arise from indeterminate moment problems have discrete and absolutely continuous
orthogonality measures [10]. In many instances it is more convenient to work with absolutely continuous measures
[7, Chapter 21].In Section 2 we derive two pairs of raising and lowering operators for g-polynomials orthogonal with respect
to absolutely continuous measures. In Section 3 we use compositions of these operators to construct two second order
g-difference equations satisfied by the orthogonal polynomials and we find their solution bases.

We apply our results to the Stieltjes-Wigert polynomials in Section 4 and to the g-Laguerre polynomials in Section 5.

We shall assume that {p,(x)} are monic orthogonal polynomials, so that

o0
|| patopaoweody = g (1.1)
0
where w is a positive weight defined on (0, co) and such that
o0
/ x"w(x)dx < oo foralln > —1.
0

A weight function w leads to a potential u defined by

D,—1w(x
u(x) = —L(), (12)
w(x)
where Dy is the g-difference operator
flgx) — f(x)
Dyf (x) = . (1.3)
qx — X
Every monic sequence of orthogonal polynomials satisfies a three term recurrence relation of the form
(X = on)pn(X) = Pn1(X) + BaPn—1(x) (1.4)
with p_; := 0. A main result of [9] is that
Dgpn (%) = BnAn(X)Pn—1(X) — Br(X)pn(x), (1.5)
holds with
1 u(gx) —u(y)
ant = [ g /gu . (16)
&n Jo ax—y
1 % u(gx) —u(y)
B0 = — [ M /w0y, (17)
tn—1 Jo ax —y
Moreover Chen and Ismail [9] also established the supplementary relations
n
Bry1(X) + Ba(x) = (x — a)An(x) +x(q — 1) Y Aj(x) — u(qx), (1.8)
j=0
1+ (x — an)Bpy1(x) — (g% — an)Bn(X) = Bry1Ans1(x) — BrAn—1(x). (1.9)
In Section 2 we prove the following companion results:
Theorem 1.1. With
D
Y @, (1.10)
w(x)
and
q [ v —v(gy)
Gw =L [P @ may, (111)
nJo X—qy
q [ v —v(gy)
Do = = [ EO I g s(anw . (1.12)
n—1 Jo X—qy
we have

qupn(x) = BnCa(X)Pn—1(X) — Du(X)pp(X). (1.13)
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Moreover the functions C,(x) and D, (x) satisfy the recursions

Dp+1(X) + Dn(%) = (x — an)Gr(x) +x(1/q — 1) Z G(x) —v(), (1.14)
j=0
(X - an)Dn+1 (X) - (x/q - an)Dn(X) =-1+ :3n+1cn+1 (X) - ﬁncnfl(x)- (1-]5)
Note that
u(x)

14+ (1 —1/gxu)’

Theorem 1.1 will be proved in Section 2.
In Section 3 we provide two degree raising operators and their adjoint (degree lowering) operators with respect to the
inner product

(f.8) 2/ f(0) g(x) w(x)dx. (1.17)
0

The compositions of each raising operator with the adjoint of the other raising operator give a second order g-difference
equation for the polynomials p,, the other solution of which is a certain function of the second kind.
We shall use the g-analogue of the product rule

Dq(f (x)g(x)) = f(qx)Dgg (x) + g(X)Dgf (x). (1.18)
We shall also use the following property: For every polynomial s(x) of degree at most n,

/Oo Mw(t)dt:/w (M) p,,(t)w(t)dt—i—/ocww(t)dt:/www(t)dt (1.19)
0 x—t 0 0 xX—t 0 X—t

x—t

by the orthogonality relation (1.1) and the fact that (s(x) — s(t))/(s — t) is a polynomial of degree less than n.
The following lemma, whose proof is a calculus exercise, will be used in the proofs of our main results.

Lemma 1.2. If the integrals

© dx o0 dx
/ F0g0 Y and / Fog@™
0 X 0 X

exist, then the following g-analogue of integration by parts holds

o0 -1 o0
/ f(X)Dgg(x)dx = —a/ g()Dg-1f (x)dx. (1.20)
0 0
Immediate consequences of Lemma 1.2, (1.2), (1.1), (1.18) and (1.10) are the following relations:
f U()Pe)Pn(v/Dw()dy = O, (121)
0
h _(1—q"")g
; uW)Par1 P v/ Quy)dy = Tiog w (122)
/ v(qY)pa(¥)Pa(qy)w (y)dy = 0, (1.23)
0
oo 1— q7n71
f v(@Y)Pnr1 (V)P (@) w(y)dy = ﬁcn. (1.24)
o _

2. Proof of Theorem 1.1

We shall need the formula [7]

&n = CoB1Ba -+ Bn, (2.1)
and the Christoffel-Darboux identity [11, Theorem 3.2.2], [7]

n—1 _

Zpk OP) /2 = Pn(X)Pn—1(¥) pn(y)pnq(X)' (22)

k=0 a1 (x =)
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Proof of Theorem 1.1. Let D-1p,(x) = > i CuxPi(X). Then

Gnk = / Y)W, 1)y
0

Applying (1.18) and Lemma 1.2, (1.20), we see that
SkCnke = —¢ / Pn ) [w(¥)Dgpi(¥) + Pi(qy)Dew(y)] dy
0

o D
qf Pa(V)Pr(qy) <— qlﬂo’)) w(y)dy
0 w(y)

where the orthogonality was used in the last step. The definition (1.10) of v yields

gkcn,k

q / PPk (qy)v(gy)w(y)dy
0

= —q / Pn(Wpr(qy) (v(x) — v(qy)) w(y)dy,
0

where we again used the orthogonality property in the last step. Therefore, using the Christoffel-Darboux identity (2.2) we

obtain

a4
Cn—]
and (1.13) now follows from (2.1). Next we prove (1.14). It is clear that

q f‘” v(x) — v(qy)
0

Dypn) = = [ pu0) "= (5 01 @) — oo (9] w )
0 -

Dy11(X) + Dp(x) =

Sn X—qy
=hL+1h,
where
L=1 / v~ vi@y) (qy — an)pa(¥) Pn(qy)w(y)dy
¢ Jo X—qy
L=1 f v~ v(@y) [Pr+10)Pr(qY) — Pr(Y)Pnt1(qy) | w(y)dy,
¢ Jo X—qy

after Bnpn—1(qy) is replaced by (qy — o) pn(qy) — Pus1(qy) by (1.4). It is easy to see that I; is given by

h= 6= G+ / (0(@) — VE)PaYIPa@) W)y
nJo
= (x—anGX) — ¢ ),
where (1.23) and the fact that

pi(qy) = ¢'p;(y) + lower degree terms

were used. To evaluate I, first note that (2.3) implies

/ PP (@) wy)dy = .
0
Next, we apply the Christoffel-Darboux formula to

Prr1(MPn(qY) — Pa(Y)Pns1(qy)
and replace y — qy by (yg — x + x)(1 — q)/q. Thus we obtain

pj (y)p.;(qy) wy)dy

h=x(1-9/q)_ Gx —(1-q) / W& —vigy) )
j=0 0 j=0 b

pj(V)p‘,-(qy) wy)dy.

—x(1=0/a) G0~ - gue0 Y g+ (-0 [ van )
Jj=0 j=0 0 =0 g

[Prr1(V)Pa(qy) + Bubn(V)Pa—1(qy) w(y)dy

(2.3)
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The last integral vanishes by (1.23). Therefore I, is given by

n
Lh=x(1/q— 1)) GX + (@ — Do ).
j=0
Simplifying I; + I, we establish (1.14).
It remains to prove (1.15). From the definition of D, (x) we see that

[(x = Dy 1 (X) — (x/q — an)Da(¥)] /q = / T
0 X—qy

X — oy X/q— oy
X (( z )pn+1(y)pn(qy) - (ﬁ) pn(y)pnq(qy)> w(y)dy

*© 1 qy — oy
= / (v(x) —v(gy)) <f (1 + )pn+1(y)pn(qy) -
0 X—qy Cn—1

3
1 © 1 © —

S / 0(@)Pat W)Pa(@) W)y + — / 200 = V@) o pa(@)Pes Hw )y
gn 0 é—n 0 X—qy

” 1 v —
/ v(q@Y)pn(V)Pn-1(qy)w(y)dy — / V() —v(gy)
0 Cn—l 0 X—qy

X

_|_

¥ — )P Pn—1(qy)w(y)dy
qgn—l

_ 1=q! L1 /°° v(x) — v(qy)
q—1 &n Jo X—qy
ploat i/w YO Z V@) )+ Bupna )] B @)y
qq@—1 &1 Jo X—qy
=—1/q+ Bur1Cir 1) /q — BrnCi1(X) /q,
where we have used the orthogonality, (1.24), (1.4) and (2.1). This verifies (1.15). O

[Pr+1(qy) + BuPn—1(qy)]1 Pns1 ) w(y)dy

3. Second order g-difference equations and fundamental solution bases
We introduce two pairs of adjoint degree raising and lowering operators.
From (1.5) and (1.13) we obtain the lowering operators

Lin :==Dgq + By, L1 npn = BnAnbPn-1
and
Z],n = Dg-1 + Dy, i],npn = BnCaPn-1,
respectively. Next, from (1.4), (1.5) and (1.13) we have
Dgpy = An ((x — an)Pn — Pnt+1) — Bubns
qulpn = Gy (X — on)pn — Pnt1) — Dupn.
Thus, the corresponding raising operators can be defined as
Ly, = —(]/An)Dq + (X —ay — By/Av),  Lanbn = Pnt1
and
Z2,11 = _(]/Cn)qul + (x — oy — Dn/Co), iz.npn = Pn+1-
Then, p, is a zero of the second order operator

Lintilan = Bu1Ans1 = (Dg + Bus1) [—(1/C)Dy-1 + X — oty — Dn/Ca] — Bus1Antt

1 1 Bn+1> < Dn(qX)>
=———DD,-1 — Dy | =— ) + D1+ | gx —oap — D,
Calq) "1 ( "(cn) G )¢ "Gl )

+ [1 = Dg(Dn/Cn) + (x — 0ty — Dy /Co)Bus1 — Brs1Ans1]
where we used (1.18). Similarly, p, is a zero of the second order operator

Lintilon — Br1Cogr = (Dg-1 + Dny1) [—(1/An)Dg + X — &ty — Bo/An] = Bri1Casa

___ _ 1Y), Duns _ Bux/9)
= A P (Dq" (An>+ A )D"+<x/ a-n An<x/q)>D""

+ [1 = Dy-1(Ba/An) + (x — aty — Bo/An)Dpi1 — Bui1Coia] -

1 y—a
(7 +1=< )pn(wpnf](qy)) w(y)dy
q —qy

(3.1)

(32)

(3.6)
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The operators (3.5) and (3.6) generate two second order g-difference equations of the form

an i (X)f (gx) + bni(X)f (%) + cni(Of (x/q) =0,  i=1,2, (3.7)
respectively. Clearly f = p, satisfies these equations. The following formula is easily verified:

F(@192%) — f(q1%) — q1f (q2%) + q1f (%)

D,.D, = 38
0 Dauf ) @1 — D@ — g2 B8
As special cases of (3.8) we get
_ f@) = A+ f ) +qf (x/q)
PaDef () = (1 ’ (39)
Dq71qu(X) = ququf(X).
From (3.5), (3.6) and (3.9) it follows that
_ 1 1 _ Dalgx)
M T A TG (- g (qx o Cn(qX)) ’ 5.10)
_ q 1 l Dyy1
=g " aman (00 (3) ) G0
_ (1+9 q 1Y\ | Bay
b1 = (1= 0%Co(q0) | (1—gx (D" (C) e )
! Dn(gx) 1-D Dy Dy B A 3.12
A= ox (q"_“”_ cn<qx)) e ‘*(c?) * (’““”‘c?) vt = Pt 512
. q(1+q) 1 1 Dy
b2 = G D2A(x/q) (1 —q)x (D"" (A) T )
q Bﬂ(x/q) Bn Bn
T a—ox <X/q — oy — An(x/q)> +1—=Dg (an) + (X — oy — an) Dny1 — Bns1GCoyr, (3.13)
_ q _ q l Bniq
T T A S 02G @) (- gx (Dq (c) e ) ’ G149
7 q Bn(X/q)>
S —ay — ) 3.15
@2 = T e T (- ax (X/ = e G.19)

We will show that the second order equations (3.7) have the same solution basis.
In what follows we shall assume that there exists a domain D containing the open interval (0, c0) and such that for every
q € (0, 1), the weight w(x) has analytic continuation in D. The function of the second kind Q, is then defined by

1 /°° pa(0)
Q(x) = — w(t)dt, xe€ D\ [0, co). (3.16)
wx) Jo x—t

Theorem 3.1. The function of the second kind Q, is a zero of the operators defined in (3.5) and (3.6).
Proof. Using (1.19) it is easy to show that Q, (x) satisfies (1.4) for all n > 1, while

g
(= 2)Q(X) = Qi(¥) + ——.
w(x)
Thus, it suffices to show that Q,(x) satisfies the lowering relations (1.5) and (1.13).
Letx € D\ [0, 0o). First we show that

DqQn(x) = BrAn(X)Qn—1(X) — Ba(x)Qn(x). (3.17)
The left-hand side of (3.17) is
_ 1 * [(x — Hwx) — (gx — Hw(qx)]
e e G—o@—p  Ovod
1 © ((x—u(gx) — 1)
= v | o omo

_ 1 [ u(gx) —u(t) 1 [®((x—tut)—1)
= w(x)fo —t pn(Ow(t)dt + w(x)/o D@ =D pn(Dw(0)dt, (3.18)
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where on the second line we used that w(x) — w(gx) = —(1 — q)xu(gx)w(gx) which follows from (1.2). By (1.6) and (1.7)
the right-hand side of (3.17) times w(x) equals

L/w u(gx) — u(t) {/“’ [P (t/@)Pn-1() _p"—1(t/q)p”0’)]w(y)dy}p,,(t)w(r)dt
n-1Jo gx —t 0 x—y
-1 1 [ _ 00 —
7/ Mpk(t/q)pn(t) {/ (t/qy)pk(y)w(y)dy} w(t)dt, (3.19)
¢ gx—t 0 X=y

where we used (2.1) and (2.2). We apply the decomposition
t/a—y _ 1 _1/q
(gx—x—y) g—t x—y
in (3.19) and it becomes

{k / u(qX) w@) —uO e pa©w (bt / Pr(y)w(y)dy

n—1
- Zi / pk(y) w(y)dy / (u(gx) — u(t))pe(t/Qpa () w(t)de

k=0 (Kk X—
= f Mpn(t)w(t)dt -1, (3.20)
0 qx —t

where we used the orthogonality, and we denoted by I; the second line of (3.20). Replacing in Iy, u(gx) — u(t) by
u(gx) — u(qy) + u(qy) — u(t) we obtain

u(qX) - u(qy) o)
I, = =
! Q/o ,Z(; Ck

oo n—1
41 / o) : / (@) — u() p"(y)p’k‘(t/”pn(r)w<t)dr}dy
0

q =0

w () / Pu(OPK(t/Qw(O)dedy
0

_ /°° w(v; {/"o(u(qy) B u(t))[pn(y)pn_l(t/q) — Pa(t/@)Pn—1()]
0 - 0

n deyd
Cn-1(qy — t) pr(Ow® t} Y

_ /0 ﬂwn@)pn(w Bun)Par )] dy (321)

where we used the orthogonality, (2.2), (2.1), (1.7) and (1.6). Now we apply (1.5) and (1.20) to obtain

1 [o¢]
L = —/ () ——Dgpn(y)dy = f/ Pn(¥)Dg-1 (w—(y)) dy
0o X—Y qJo X—=Yy

_ 1/“’ [(x=y»wy/q) — x—y/Qw®)]
qJo x—=y&—=y/9(1/q— 1)y

1 [ Dq—lw(y) w(y) >

— n d

Q/o <x—y/q +(x—y)(x—y/q) Pn0)dy

_ /°° [~ —yu@) +1]
0

x—=y)(gx—y)

where (1.2) was also used. Combining (3.20) and (3.22) shows that the right-hand side of (3.17) equals its left-hand side
given by (3.18).
It remains to show that Q, (x) satisfies (1.13), that is,

Dy-1Qa(x) = BnCa(x)Qu—1(X) — Da(X)Qu(X). (3.23)

pn()dy

pn()w(y)dy (3.22)
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The left-hand side of (3.23) equals

_ i * [(x = W) — (x/q — Hw(x/g)]
P01 ®) = g D w/o c-owg-p  OvO«
_ F =) —
= o oo
4 [T v —v(g) q [ &—0v(g)—1
= 0w / ot POwOd /0 =t qp) PrOw L (3.24)

where we used that w(x) — w(x/q) = (1/q — 1)xv(x)w(x/q) which follows from (1.10). Using (1.11) and (1.12), the right-
hand side of (3.23) times w(x) can be written as

_a / * v(x) — v(qt) { f [P @0P-1 ) = Poo1 @R ) dy}pn OwEd
&1 Jo x—qt 0 X—y
n—1 1 00 00 .
= qZ—/ MP (qt)pn(t) {/ at ypk(y)w(y)dy} w(t)dt,
k=0 Ck X—= q X—=Yy

n—1
—ay - [ o ut [ powoy

X

—QZQ / pk(y) w(y)dy / (v(X) — v(@))Pr(@)Pa(t)w(t)dt

0
o [T, g, 525)
where we used (2.1), (2.2), the decomposition
qt —y 1 1
x—ghx—y)  x—q x-y

and the orthogonality relation. In the expression denoted by I, we replace v(x) — v(qt) by v(x) — v(y) + v(y) — v(qt) and
we apply the orthogonality relation. We get

00 00 n—1
L=g / v f W) —vi@e) 3 VPO Ly eyde | dy
o X—Y |Jo k=0

Ck
_ /°° w(y) {/ (W) — v(gh)) [Pn()Pn-1(qt) —pn(qt)pm(y)]pn(t)w(t)dt}dy
0 Cn—1(y — qt)
w(y)
= —[D WPa () = BuCapn—1)1dy, (3.26)
0

where we also used (2.2), (2.1),(1.12) and (1.11). Thus, from (1.13), (1.20) and (1.10) we obtain

L = —/ w(y)D mn(y)dy—q/ Pn(¥)Dq ( M) ly
0 y y

X —

pan()dy

_ q/“’ [x = y)wgy) — X — q)w )]
0 x=y)x—qy)(@— 1y

L))
=q/ ("“’(y)+ ) )pn(wdy
0 x—qy (x—y)x—qy)

o[ RO pweey. (327)
0 x=y)x—qy)

Now, (3.23) follows from (3.24), (3.25) and (3.27). O
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Since the functions p, and Q, satisfy both equations in (3.7), these equations have the same solution basis. Thus, we

obtain the following corollary.

Corollary 3.2. The functions defined with (3.10)-(3.15) satisfy

bni _ b2 _  Pa(@)Q(x/@) — pn(x/q)Qn(q%)
Un1 o2 Pn(X)Qu(x/q) — pn(X/0)Qn (%)

and

€1 _ G2 Pa®)Qn(qx) — pa(qx)Qn(x)

Qn,1 B an,2 B Pn()Qn(x/q) _pn(x/Q)Qn(X).

These identities give relations involving the functions A,, B,, C; and D,,.
The next theorem provides more simple and direct relations among A, B,,, G, and D,. We define

Pa(®)  pa(gx)

A =10,(x)  Qulgx)

, xeD\[0,00).

Theorem 3.3. Foreveryx € D\ [0, 00),
(1—qx (1—qx

Ap(x) = — CnAn(x) and Ap(x) = — 2nCa(gx).
w(X) w(gx)
In particular,
G0 = “ P a0,
w(x)
Furthermore,
Do) = 1= 20/4 = G JUTWO /WD | 10— o 0/g) — Bus (/) Tw (0w (x/q).

A+ 1/9)x — 201

Proof. Forx € D\ [0, co) we have

Ay = /‘”pn(X)pn(t)w(t)dt_ 1 /“’pn(qX)pn(t)w(t)dt
w(gx) Jo wx) Jo x—t

qx —t
o /"" Pot/OPn®) g / T P@OPO) ) ar
wign) o ax—t w® Jo - x—t
_ 1 f‘” Pa(OPA@D | e ] / T Pn@OP® e
w(g) Jo  x—t ww Joo Xt

_ 1 /"" [w)w(qt) — w(gx)w(t)]
w@)w(gx) Jo x—t
where (1.19) was used. From here we can proceed in two directions. First using (1.10) we write
wX)w(qt) —w(gw(t) = w)(w(gt) — w(t)) —wt)(wgx) — w(x))
= wX)(q — DtDgw(t) — w(t)(q — DxDyw(x)
= (1 —q [w®tw(t)v(g) — w(®)xw(x)v(gx)]
= (1= @uw®w(®)[tv(gt) — xv(gx)].
Substituting in (3.34) we obtain

(=g [ &v(gn) — tv(gt))

pa(gt)pa(t)dt,

An(x) = @) P pa(Opa(gw(t)dt
o _
1— 00 _

- _(w(qu / <U(qx,)( :(qt)>pn(t)l7n(qt)w(t)dt
o _

v(qt)pn (O)pn(qt)w(t)dt = —

nCn
w(gx) Jo w(qX)E (@)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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by (1.23) and (1.11). Next, by (1.2) we have w(gx) — w(x) = (1 — g)xu(gx)w(gx) and
wEw(gt) — wgw(t) = wgt)(wX) — w(gx)) + w(gx)(w(gt) — w(t))

—(1 = @xu(gx)w(gx)w(gt) + (1 — Qtu(gt) w(qt)w(gx)

—(1 = Qw(gx)w(qt) (xu(gx) — tu(qt)) .

Then, (3.34) leads to
(=g [ (xu(gx) — tu(qt))

Ap(x) = Pu(gt)pn(H)w(qt)dt
wx) Jo x—t
- (d-ox f @) Zu@h) ) eopaowad
wx) Jo x—t
1— 0 1-—
_1-9 u(qt)pn(qt)pa (H)w(gt)dt = _ﬂgnAn(x) (3.36)
U)(X) 0 U)(X)

since the last integral vanishes, which follows from the relation
u(@)w(gt) = (—Dy-1w(y))ly=qe = —Dgw(t) = v(gHw(t) (3.37)
and (1.23).
It remains to verify (3.33). From (1.14), (3.32), (3.37) and (1.8) we have
Dny1(q%) + Dn(qx) = [(qx — atn)An(X) + (1 — @)x Xn:Aj(X) — u(gx)Jw(gx)/w(x)
j=0
= [((1 4 @)x — 220)An(X) — Bry1 (%) — Bu(x) — 2u(gx)] w(gx)/w(x). (3.38)
Furthermore, from (1.15), (3.32) and (1.9) we obtain
(gx — atn)Dpy1(qx) — (x — an)Dn(gx) = —1 4 [Br1Ans1(X) — BrAn—1(X)w(qx) /w(x)
= =14 [1+ X — an)Bap1(X) — (g% — ) Br () Jw (gx) /w (). (3.39)
Multiplying Eq. (3.38) by x — «; and adding to Eq. (3.39) we obtain
((T+ @)x = 2an)Dnia(qx) = =1+ [1+ (x — an) (1 + Q)x — 20t0)An(X)
— ((T+ @)x — 2an)By (%) — 2(x — an)u(qx)] w(gx) /w(x).
From here, formula (3.33) follows by replacingnbyn — 1and xby x/q. O

Corollary 3.4. Assume that there exists a domain D containing (0, 0o), such that for every q € (0, 1) the weight w(x) is analytic
in D. Then, (3.32) and (3.33) hold on (0, 00).

Indeed, in this case u(x) and v(x) are analytic in D, and then by (1.6), (1.7), (1.11) and (1.12) the functions A, B, C, and
D,, are also analytic and therefore continuous in D.

4. The Stieltjes—Wigert polynomials

In this section we compute the functions A,, B,, C, and D, for the Stieltjes-Wigert polynomials. The Stieltjes-Wigert
polynomials are orthogonal with respect to the Stieltjes-Wigert weight which is defined on (0, co) by

_ 2 _
w(x) = cexp ((log(xq )" /@ logq)), ¢ = (2 log(1/g))~"/>. (4.1)
The corresponding indeterminate moment problem was studied in [ 12]. The monic orthogonal polynomials are given by [13]

n (_1)n—qu2xk

— .
P00 =4 (@5 @n ,; (@ Q1@ Dnic’ 42)
Furthermore,
a=10+qg=q"Hg >, Bu=(1-qHg ™, (43)
and
S

& = (q; Dnq
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Simple calculations show that

_ 49 (1 4 __X—4a
”@y‘l—q(x ﬂ)’ Y= G gn

R
An(x) = x—; where

1 o0 w(y)
Ry=—— n n —d s
a _q)gnfo Pa)Pn(y/q) ,

_ T'n (1 _qn)
T (1—qx

1 o0 w(y)
n=— 7 <. n n— —=dy,
r (1_q)§n_1/0 Pn)Pn-1(y/9) , Y

Ry
Gi(x) =

,  where

—, Wwhere
X
R4
" -9

7
Dy(x) = ;n, where

/0 Pn(¥)pa(qy)w(y)dy,

w(y)

f 1 / Pn(¥)Pn—1(qy) ——dy.
0 y

B T
Substituting in (1.9) and equating the coefficients of 1/x we obtain
Tng1 — qrn = —0pq"
or, equivalently, t,.1 — t;, = —a, with t, := r,,/q"~". In particular,

1 * w(y)
= = — d = —1 N
t1=rn a— 06 /0 (y — ao) y ly /4

where we used that oy = 1/q, {o = 1, the relation

w(gx) = xw(x)
which follows from (4.1), and the evaluation

/ ﬂﬂwzl/‘wwmwzj'wmmzmzm
0 y qJo 0

Thus,

1—qg™

=" (A+qq ¥ —q7) = 5
=0 —4q

and
(1-qHx+q™"
1-qx*
To compute R, we apply (1.8) and use (4.3). Equating the coefficients of 1/x? yields
Thy1 + 1 = —opRy +1/(1 — ).
Hence R, = (1/(1 —q) — rpy1 — 1) Jon = q*/(1 — q) and
An(®) = " /(1 — x*)
follows from (4.6), (4.3) and (4.4). Next, from (3.32), (4.5) and (4.8) we get

G0 =q""/((1 = g).

Bi(x) = —

(4.6)

(4.7)
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It remains to determine D,(x). One option is to apply (3.33), but we use (4.4) instead. Applying (1.15) and equating the
constant coefficients we obtain

far1 =Ta/q — 1.

Iteration of this relation yields

n—1 1\,—n
s e . (1—q"""q
Foi=q"H—y g7 =,
=0 (1_q)

where we used that

- q o w(y)
-1 _ dy = —1
" (1—Q)§0/0 - o) = =dy

as above. Thus,

(1—-q")q
Dy(x) = — 1 1
e S

(4.10)

5. The g-Laguerre polynomials

Here we derive formulas for the functions A, B,,, C, and D, for the g-Laguerre polynomials. A g-Laguerre weight is defined
on (0, o0) by [7]

w(X) = X" /(=X Qoo (5.1)
where @ > 0. The monic g-Laguerre orthogonal polynomials are given by [7]

n _ 1yn—k qak+k% k
(=D" " g* " x

n = —an—n® s a+1; n . 52
P =4 @d 9 k; (@ q** Qu(q; Pk 5-2)
Using (1.2), (1.10) and (5.1), it is easy to verify that
_ (x+q—q")q (499" -
u ) = —————, VX)) = —r—,
(1 —@x(x+q) (1—qx
and then
ulgy) —u@y) _ 1 u(y) — —-q)
ax—y qx+1) (1 —@x(x+ 1y’ (5.3)
v —v(@y) _ vy q" '
X—qy X (1—qx

We first compute C, and D,, and then we obtain A, and B, using Theorem 3.3. For C,, using (1.11), (5.3), (1.23) and the
orthogonality we get

q o qa+1 00 qcx+n+l
G =L / V@PIPa@) WY+~ / P IPa(@) W)y = . (5.4)
&nX Jo (1 =q@)ax Jo (1—gx
Similarly, for D, using (1.12), (5.3), (1.24) and the orthogonality we obtain
o] qa+1 00 (1 _ qfn)q
Da() = — / D @)PRIPrs @0y + — L f PP @)y = S99 (55
tn-1X Jo (1= @Q&u-1x Jo 1 —qx
Then, by (3.32) we get
_ __
An(%) = Ga(@OwX)/w(gx) = TR (56)
To compute B, we adopt the notation w, (x) for the g-Laguerre weight. From (1.7), (5.3) and (1.22) it follows that
-l o0
Bn = T < n n— o d
0=~ /O L) Pa V) Prr (/D0 )y
(1—q) / *© we (V)
- n n— d
1= D@t 1) Jy PP 0/@— =0
_ M@ (1—4g" (5.7)

Xx+1) (I—@@x+1)
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T w, )
() = 1 — (@) Jo Pn(YVPn—1/9) y

The coefficient o, () in (1.1) and the norm ¢, («) can be derived from [7]:

dy. (5.8)

an(e) = (14q— (14¢9g" Hg >,

T (@ Doo@T Dn 902 420n-n (5.9)
sin(rer)  (4; Qoo (@ O3 '
Next, we substitute (5.7) and (5.6) into the supplementary relation (1.8) and use the formula (which follows from (5.1) and

(1.2))

Snla) = —

(x+q—q""%q
(1 —x(x+q)
and (5.9) to derive

u(x) =

Tnp1(@) + (@) = (—ap(@)g" — 1+ ¢ /1 —q) =2 - A+qgq " Hg /1 —q). (5.10)

First we evaluate r(«) using (5.8). We have po(y) = 1, p1(y) = y — ap(«), and by the orthogonality relation (1.1) and (5.1),
o0
Jo wa(dy = ¢o() and

/ we (¥)/ydy = / We—1(Y)dy = oo — 1).
0 0

Then,
1/§o(0t)/ P1PoV/PDwe ) /ydy = 1 — ao() ol — 1)/o(@)
0
=1+ (1+@g* " =A+q)0%)/A—q)
=(1-qq* /A -q,
where we used (5.9). Thus, by (5.8) we get (o) = —q~*~!. We can now evaluate r,, (o) using a telescoping sum:
(@) = Y (=D"I(5(@) + 11 (@) + (1) 'y (@)
=2
—D'g (& . .
= VT (S - (g +1/g -1
(] - q) j=2
=(1-q"g*/(1-0q). (5.11)

Combining (5.7) and (5.11), we finally obtain

_(A=gHx+qg*™

) = = ke D)

(5.12)
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