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1. Introduction

In the nineteenth century it was realized that the orthogonal polynomials of Hermite, Jacobi, and Laguerre satisfy
differential equations of the Sturm–Liouville type. It was later realized that the differential equation can be written in the
form A∗Ay = λy, where A is a linear first order differential operator and the A∗ is its adjoint on a weighted L2 space. The
action of the operator A decreases the degree of a polynomial by one while A∗ increases the degree by one. In the twentieth
century it was realized that the orthogonal polynomials arematrix elements of irreducible representations of certain groups
and that A∗ and Amove you up and down the irreducible representations. It is also known that only the Hermite, Laguerre
and Jacobi polynomials satisfy the symmetric Sturm–Liouville type eigenvalue problem.
In the 1990s, the works [1–4] derived raising and lowering operators for polynomials orthogonal with respect to

absolutely continuous measures µ under certain smoothness assumptions on µ′. Then, they showed that the polynomials
satisfy Ty = 0 where T is a linear second order differential operator. Chen and Ismail [1] showed that T factors as
A∗(1/An(x))A, for a certain function An(x). Here A and its adjoint A∗ are linear first order differential operators. It was later
realized that a similar theory exists for polynomials orthogonal with respect to a measure with masses at the union of at
most two geometric progressions, {aqn, bqn}, for some q ∈ (0, 1), [5]. The corresponding theory for difference operators is
in [6]. This theory is included in [7]. The raising and lowering operators involve two functions An(x) and Bn(x)which satisfy
certain recurrence relations. In the case of differential operators, Ismail and Chen have demonstrated that the knowledge of
An(x) and Bn(x) determines the polynomials uniquely in the cases of Hermite, Laguerre, and Jacobi polynomials, see [8]. This
is done through recovering the properties of the polynomials including the three term recurrence relation which generates
the polynomials. In [9], Chen and Ismail showed that orthogonal polynomials which arise from indeterminate moment
problems have similar properties but the coefficients An(x) and Bn(x) now have integral representations instead of series
representations. By composing the lowering and raising operators one can produce a second order equation satisfied by the
orthogonal polynomials.
This work started from the realization that the second order equations derived using the above-mentioned technique do

not reduce to the Sturm–Liouville type difference and q-difference equations for the classical polynomials. The purpose of
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this work is to produce another pair of raising and lowering operators and with the appropriate combinations to recover
the classical results.
The orthogonal polynomials which arise from indeterminate moment problems have discrete and absolutely continuous

orthogonality measures [10]. In many instances it is more convenient to work with absolutely continuous measures
[7, Chapter 21]. In Section 2we derive two pairs of raising and lowering operators for q-polynomials orthogonal with respect
to absolutely continuous measures. In Section 3 we use compositions of these operators to construct two second order
q-difference equations satisfied by the orthogonal polynomials and we find their solution bases.
We apply our results to the Stieltjes–Wigert polynomials in Section 4 and to the q-Laguerre polynomials in Section 5.
We shall assume that {pn(x)} are monic orthogonal polynomials, so that∫

∞

0
pm(x)pn(x)w(x)dx = ζnδm,n (1.1)

wherew is a positive weight defined on (0,∞) and such that∫
∞

0
xnw(x)dx <∞ for all n ≥ −1.

A weight functionw leads to a potential u defined by

u(x) = −
Dq−1w(x)
w(x)

, (1.2)

where Dq is the q-difference operator

Dqf (x) =
f (qx)− f (x)
qx− x

. (1.3)

Every monic sequence of orthogonal polynomials satisfies a three term recurrence relation of the form

(x− αn)pn(x) = pn+1(x)+ βnpn−1(x) (1.4)

with p−1 := 0. A main result of [9] is that

Dqpn(x) = βnAn(x)pn−1(x)− Bn(x)pn(x), (1.5)

holds with

An(x) :=
1
ζn

∫
∞

0

u(qx)− u(y)
qx− y

pn(y)pn(y/q)w(y)dy, (1.6)

Bn(x) :=
1
ζn−1

∫
∞

0

u(qx)− u(y)
qx− y

pn(y)pn−1(y/q)w(y)dy. (1.7)

Moreover Chen and Ismail [9] also established the supplementary relations

Bn+1(x)+ Bn(x) = (x− αn)An(x)+ x(q− 1)
n∑
j=0

Aj(x)− u(qx), (1.8)

1+ (x− αn)Bn+1(x)− (qx− αn)Bn(x) = βn+1An+1(x)− βnAn−1(x). (1.9)

In Section 2 we prove the following companion results:

Theorem 1.1. With

Dqw(x)
w(x)

= −v(qx), (1.10)

and

Cn(x) :=
q
ζn

∫
∞

0

v(x)− v(qy)
x− qy

pn(y)pn(qy)w(y)dy, (1.11)

Dn(x) :=
q
ζn−1

∫
∞

0

v(x)− v(qy)
x− qy

pn(y)pn−1(qy)w(y)dy, (1.12)

we have

Dq−1pn(x) = βnCn(x)pn−1(x)− Dn(x)pn(x). (1.13)
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Moreover the functions Cn(x) and Dn(x) satisfy the recursions

Dn+1(x)+ Dn(x) = (x− αn)Cn(x)+ x(1/q− 1)
n∑
j=0

Cj(x)− v(x), (1.14)

(x− αn)Dn+1(x)− (x/q− αn)Dn(x) = −1+ βn+1Cn+1(x)− βnCn−1(x). (1.15)

Note that

v(x) =
u(x)

1+ (1− 1/q)xu(x)
. (1.16)

Theorem 1.1 will be proved in Section 2.
In Section 3 we provide two degree raising operators and their adjoint (degree lowering) operators with respect to the

inner product

〈f , g〉 =
∫
∞

0
f (x) g(x) w(x)dx. (1.17)

The compositions of each raising operator with the adjoint of the other raising operator give a second order q-difference
equation for the polynomials pn, the other solution of which is a certain function of the second kind.
We shall use the q-analogue of the product rule

Dq(f (x)g(x)) = f (qx)Dqg(x)+ g(x)Dqf (x). (1.18)

We shall also use the following property: For every polynomial s(x) of degree at most n,∫
∞

0

s(x)pn(t)
x− t

w(t)dt =
∫
∞

0

(
s(x)− s(t)
x− t

)
pn(t)w(t)dt +

∫
∞

0

s(t)pn(t)
x− t

w(t)dt =
∫
∞

0

s(t)pn(t)
x− t

w(t)dt (1.19)

by the orthogonality relation (1.1) and the fact that (s(x)− s(t))/(s− t) is a polynomial of degree less than n.
The following lemma, whose proof is a calculus exercise, will be used in the proofs of our main results.

Lemma 1.2. If the integrals∫
∞

0
f (x)g(x)

dx
x
and

∫
∞

0
f (x)g(qx)

dx
x

exist, then the following q-analogue of integration by parts holds∫
∞

0
f (x)Dqg(x)dx = −

1
q

∫
∞

0
g(x)Dq−1 f (x)dx. (1.20)

Immediate consequences of Lemma 1.2, (1.2), (1.1), (1.18) and (1.10) are the following relations:∫
∞

0
u(y)pn(y)pn(y/q)w(y)dy = 0, (1.21)∫

∞

0
u(y)pn+1(y)pn(y/q)w(y)dy =

(1− qn+1)q
1− q

ζn, (1.22)∫
∞

0
v(qy)pn(y)pn(qy)w(y)dy = 0, (1.23)∫

∞

0
v(qy)pn+1(y)pn(qy)w(y)dy =

1− q−n−1

q− 1
ζn. (1.24)

2. Proof of Theorem 1.1

We shall need the formula [7]

ζn = ζ0β1β2 · · ·βn, (2.1)

and the Christoffel–Darboux identity [11, Theorem 3.2.2], [7]

n−1∑
k=0

pk(x)pk(y)/ζk =
pn(x)pn−1(y)− pn(y)pn−1(x)

ζn−1(x− y)
. (2.2)
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Proof of Theorem 1.1. Let Dq−1pn(x) =
∑n−1
k=0 cn,kpk(x). Then

ζkcn,k =
∫
∞

0
pk(y)w(y)Dq−1pn(y)dy.

Applying (1.18) and Lemma 1.2, (1.20), we see that

ζkcn,k = −q
∫
∞

0
pn(y)

[
w(y)Dqpk(y)+ pk(qy)Dqw(y)

]
dy

= q
∫
∞

0
pn(y)pk(qy)

(
−
Dqw(y)
w(y)

)
w(y)dy

where the orthogonality was used in the last step. The definition (1.10) of v yields

ζkcn,k = q
∫
∞

0
pn(y)pk(qy)v(qy)w(y)dy

= −q
∫
∞

0
pn(y)pk(qy) (v(x)− v(qy)) w(y)dy,

where we again used the orthogonality property in the last step. Therefore, using the Christoffel–Darboux identity (2.2) we
obtain

Dq−1pn(x) = −
q
ζn−1

∫
∞

0
pn(y)

v(x)− v(qy)
x− qy

[pn(x)pn−1(qy)− pn(qy)pn−1(x)]w(y)dy

and (1.13) now follows from (2.1). Next we prove (1.14). It is clear that

Dn+1(x)+ Dn(x) =
q
ζn

∫
∞

0

v(x)− v(qy)
x− qy

[pn+1(y)pn(qy)+ βnpn(y)pn−1(qy)]w(y)dy

= I1 + I2,

where

I1 :=
q
ζn

∫
∞

0

v(x)− v(qy)
x− qy

(qy− αn)pn(y) pn(qy)w(y)dy

I2 :=
q
ζn

∫
∞

0

v(x)− v(qy)
x− qy

[pn+1(y)pn(qy)− pn(y)pn+1(qy)]w(y)dy,

after βnpn−1(qy) is replaced by (qy− αn)pn(qy)− pn+1(qy) by (1.4). It is easy to see that I1 is given by

I1 = (x− αn)Cn(x)+
q
ζn

∫
∞

0
(v(qy)− v(x))pn(y)pn(qy)w(y)dy

= (x− αn)Cn(x)− qn+1v(x),

where (1.23) and the fact that

pj(qy) = qjpj(y)+ lower degree terms (2.3)

were used. To evaluate I2, first note that (2.3) implies∫
∞

0
pj(y)pj(qy)w(y)dy = ζjqj.

Next, we apply the Christoffel–Darboux formula to

pn+1(y)pn(qy)− pn(y)pn+1(qy)

and replace y− qy by (yq− x+ x)(1− q)/q. Thus we obtain

I2 = x(1− q)/q
n∑
j=0

Cj(x)− (1− q)
∫
∞

0
(v(x)− v(qy))

n∑
j=0

pj(y)pj(qy)
ζj

w(y)dy

= x(1− q)/q
n∑
j=0

Cj(x)− (1− q)v(x)
n∑
j=0

qj + (1− q)
∫
∞

0
v(qy)

n∑
j=0

pj(y)pj(qy)
ζj

w(y)dy.
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The last integral vanishes by (1.23). Therefore I2 is given by

I2 = x(1/q− 1)
n∑
j=0

Cj(x)+ (qn+1 − 1)v(x).

Simplifying I1 + I2 we establish (1.14).
It remains to prove (1.15). From the definition of Dn(x)we see that

[(x− αn)Dn+1(x)− (x/q− αn)Dn(x)] /q =
∫
∞

0

v(x)− v(qy)
x− qy

×

((
x− αn
ζn

)
pn+1(y)pn(qy)−

(
x/q− αn
ζn−1

)
pn(y)pn−1(qy)

)
w(y)dy

=

∫
∞

0
(v(x)− v(qy))

(
1
ζn

(
1+

qy− αn
x− qy

)
pn+1(y)pn(qy)−

1
ζn−1

(
1
q
+
y− αn
x− qy

)
pn(y)pn−1(qy)

)
w(y)dy

= −
1
ζn

∫
∞

0
v(qy)pn+1(y)pn(qy)w(y)dy+

1
ζn

∫
∞

0

v(x)− v(qy)
x− qy

(qy− αn)pn(qy)pn+1(y)w(y)dy

+
1
qζn−1

∫
∞

0
v(qy)pn(y)pn−1(qy)w(y)dy−

1
ζn−1

∫
∞

0

v(x)− v(qy)
x− qy

(y− αn)pn(y)pn−1(qy)w(y)dy

= −
1− q−n−1

q− 1
+
1
ζn

∫
∞

0

v(x)− v(qy)
x− qy

[pn+1(qy)+ βnpn−1(qy)] pn+1(y)w(y)dy

+
1− q−n

q(q− 1)
−

1
ζn−1

∫
∞

0

v(x)− v(qy)
x− qy

[pn+1(y)+ βnpn−1(y)] pn−1(qy)w(y)dy

= −1/q+ βn+1Cn+1(x)/q− βnCn−1(x)/q, (2.4)

where we have used the orthogonality, (1.24), (1.4) and (2.1). This verifies (1.15). �

3. Second order q-difference equations and fundamental solution bases

We introduce two pairs of adjoint degree raising and lowering operators.
From (1.5) and (1.13) we obtain the lowering operators

L1,n := Dq + Bn, L1,npn = βnAnpn−1 (3.1)

and

L̃1,n := Dq−1 + Dn, L̃1,npn = βnCnpn−1, (3.2)

respectively. Next, from (1.4), (1.5) and (1.13) we have

Dqpn = An ((x− αn)pn − pn+1)− Bnpn,
Dq−1pn = Cn ((x− αn)pn − pn+1)− Dnpn.

Thus, the corresponding raising operators can be defined as

L2,n := −(1/An)Dq + (x− αn − Bn/An), L2,npn = pn+1 (3.3)

and

L̃2,n := −(1/Cn)Dq−1 + (x− αn − Dn/Cn), L̃2,npn = pn+1. (3.4)

Then, pn is a zero of the second order operator

L1,n+1L̃2,n − βn+1An+1 = (Dq + Bn+1)
[
−(1/Cn)Dq−1 + x− αn − Dn/Cn

]
− βn+1An+1

= −
1

Cn(qx)
DqDq−1 −

(
Dq

(
1
Cn

)
+
Bn+1
Cn

)
Dq−1 +

(
qx− αn −

Dn(qx)
Cn(qx)

)
Dq

+
[
1− Dq(Dn/Cn)+ (x− αn − Dn/Cn)Bn+1 − βn+1An+1

]
(3.5)

where we used (1.18). Similarly, pn is a zero of the second order operator

L̃1,n+1L2,n − βn+1Cn+1 = (Dq−1 + Dn+1)
[
−(1/An)Dq + x− αn − Bn/An

]
− βn+1Cn+1

= −
1

An(x/q)
Dq−1Dq −

(
Dq−1

(
1
An

)
+
Dn+1
An

)
Dq +

(
x/q− αn −

Bn(x/q)
An(x/q)

)
Dq−1

+
[
1− Dq−1(Bn/An)+ (x− αn − Bn/An)Dn+1 − βn+1Cn+1

]
. (3.6)
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The operators (3.5) and (3.6) generate two second order q-difference equations of the form

an,i(x)f (qx)+ bn,i(x)f (x)+ cn,i(x)f (x/q) = 0, i = 1, 2, (3.7)

respectively. Clearly f = pn satisfies these equations. The following formula is easily verified:

Dq1Dq2 f (x) =
f (q1q2x)− f (q1x)− q1f (q2x)+ q1f (x)

(q1 − 1)(q2 − 1)q1x2
. (3.8)

As special cases of (3.8) we get

DqDq−1 f (x) =
f (qx)− (1+ q)f (x)+ qf (x/q)

(1− q)2x2
,

Dq−1Dqf (x) = qDqDq−1 f (x).
(3.9)

From (3.5), (3.6) and (3.9) it follows that

an,1 = −
1

(1− q)2x2Cn(qx)
−

1
(1− q)x

(
qx− αn −

Dn(qx)
Cn(qx)

)
, (3.10)

an,2 = −
q

(1− q)2x2An(x/q)
+

1
(1− q)x

(
Dq−1

(
1
An

)
+
Dn+1
An

)
, (3.11)

bn,1 =
(1+ q)

(1− q)2x2Cn(qx)
+

q
(1− q)x

(
Dq

(
1
Cn

)
+
Bn+1
Cn

)
+

1
(1− q)x

(
qx− αn −

Dn(qx)
Cn(qx)

)
+ 1− Dq

(
Dn
Cn

)
+

(
x− αn −

Dn
Cn

)
Bn+1 − βn+1An+1, (3.12)

bn,2 =
q(1+ q)

(1− q)2x2An(x/q)
−

1
(1− q)x

(
Dq−1

(
1
An

)
+
Dn+1
An

)
−

q
(1− q)x

(
x/q− αn −

Bn(x/q)
An(x/q)

)
+ 1− Dq−1

(
Bn
An

)
+

(
x− αn −

Bn
An

)
Dn+1 − βn+1Cn+1, (3.13)

cn,1 = −
q

(1− q)2x2Cn(qx)
−

q
(1− q)x

(
Dq

(
1
Cn

)
+
Bn+1
Cn

)
, (3.14)

cn,2 = −
q2

(1− q)2x2An(x/q)
+

q
(1− q)x

(
x/q− αn −

Bn(x/q)
An(x/q)

)
. (3.15)

We will show that the second order equations (3.7) have the same solution basis.
In what followswe shall assume that there exists a domain D containing the open interval (0,∞) and such that for every

q ∈ (0, 1), the weightw(x) has analytic continuation in D. The function of the second kind Qn is then defined by

Qn(x) :=
1

w(x)

∫
∞

0

pn(t)
x− t

w(t)dt, x ∈ D \ [0,∞). (3.16)

Theorem 3.1. The function of the second kind Qn is a zero of the operators defined in (3.5) and (3.6).

Proof. Using (1.19) it is easy to show that Qn(x) satisfies (1.4) for all n ≥ 1, while

(x− α0)Q0(x) = Q1(x)+
ζ0

w(x)
.

Thus, it suffices to show that Qn(x) satisfies the lowering relations (1.5) and (1.13).
Let x ∈ D \ [0,∞). First we show that

DqQn(x) = βnAn(x)Qn−1(x)− Bn(x)Qn(x). (3.17)

The left-hand side of (3.17) is

DqQn(x) =
1

(q− 1)xw(x)w(qx)

∫
∞

0

[(x− t)w(x)− (qx− t)w(qx)]
(x− t)(qx− t)

pn(t)w(t)dt

=
1

w(x)

∫
∞

0

((x− t)u(qx)− 1)
(x− t)(qx− t)

pn(t)w(t)dt

=
1

w(x)

∫
∞

0

u(qx)− u(t)
qx− t

pn(t)w(t)dt +
1

w(x)

∫
∞

0

((x− t)u(t)− 1)
(x− t)(qx− t)

pn(t)w(t)dt, (3.18)
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where on the second line we used that w(x) − w(qx) = −(1 − q)xu(qx)w(qx) which follows from (1.2). By (1.6) and (1.7)
the right-hand side of (3.17) timesw(x) equals

1
ζn−1

∫
∞

0

u(qx)− u(t)
qx− t

{∫
∞

0

[pn(t/q)pn−1(y)− pn−1(t/q)pn(y)]
x− y

w(y)dy
}
pn(t)w(t)dt

=

n−1∑
k=0

1
ζk

∫
∞

0

u(qx)− u(t)
qx− t

pk(t/q)pn(t)
{∫

∞

0

(t/q− y)
x− y

pk(y)w(y)dy
}
w(t)dt, (3.19)

where we used (2.1) and (2.2). We apply the decomposition

t/q− y
(qx− t)(x− y)

=
1

qx− t
−
1/q
x− y

in (3.19) and it becomes

n−1∑
k=0

1
ζk

∫
∞

0

u(qx)− u(t)
qx− t

pk(t/q)pn(t)w(t)dt
∫
∞

0
pk(y)w(y)dy

−

n−1∑
k=0

1
qζk

∫
∞

0

pk(y)
x− y

w(y)dy
∫
∞

0
(u(qx)− u(t))pk(t/q)pn(t)w(t)dt

=

∫
∞

0

u(qx)− u(t)
qx− t

pn(t)w(t)dt − I1, (3.20)

where we used the orthogonality, and we denoted by I1 the second line of (3.20). Replacing in I1, u(qx) − u(t) by
u(qx)− u(qy)+ u(qy)− u(t)we obtain

I1 =
1
q

∫
∞

0

u(qx)− u(qy)
x− y

n−1∑
k=0

pk(y)
ζk

w(y)
∫
∞

0
pn(t)pk(t/q)w(t)dtdy

+
1
q

∫
∞

0

w(y)
x− y

{∫
∞

0
(u(qy)− u(t))

n−1∑
k=0

pk(y)pk(t/q)
ζk

pn(t)w(t)dt

}
dy

=

∫
∞

0

w(y)
x− y

{∫
∞

0
(u(qy)− u(t))

[pn(y)pn−1(t/q)− pn(t/q)pn−1(y)]
ζn−1(qy− t)

pn(t)w(t)dt
}
dy

=

∫
∞

0

w(y)
x− y

[Bn(y)pn(y)− βnAn(y)pn−1(y)] dy (3.21)

where we used the orthogonality, (2.2), (2.1), (1.7) and (1.6). Now we apply (1.5) and (1.20) to obtain

I1 = −
∫
∞

0

w(y)
x− y

Dqpn(y)dy =
1
q

∫
∞

0
pn(y)Dq−1

(
w(y)
x− y

)
dy

=
1
q

∫
∞

0

[(x− y)w(y/q)− (x− y/q)w(y)]
(x− y)(x− y/q)(1/q− 1)y

pn(y)dy

=
1
q

∫
∞

0

(
Dq−1w(y)
x− y/q

+
w(y)

(x− y)(x− y/q)

)
pn(y)dy

=

∫
∞

0

[−(x− y)u(y)+ 1]
(x− y)(qx− y)

pn(y)w(y)dy (3.22)

where (1.2) was also used. Combining (3.20) and (3.22) shows that the right-hand side of (3.17) equals its left-hand side
given by (3.18).
It remains to show that Qn(x) satisfies (1.13), that is,

Dq−1Qn(x) = βnCn(x)Qn−1(x)− Dn(x)Qn(x). (3.23)
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The left-hand side of (3.23) equals

Dq−1Qn(x) =
1

(1/q− 1)xw(x)w(x/q)

∫
∞

0

[(x− t)w(x)− (x/q− t)w(x/q)]
(x− t)(x/q− t)

pn(t)w(t)dt

=
1

w(x)

∫
∞

0

(x− t)v(x)− 1
(x− t)(x/q− t)

pn(t)w(t)dt

=
q

w(x)

∫
∞

0

v(x)− v(qt)
x− qt

pn(t)w(t)dt +
q

w(x)

∫
∞

0

(x− t)v(qt)− 1
(x− t)(x− qt)

pn(t)w(t)dt, (3.24)

where we used thatw(x)− w(x/q) = (1/q− 1)xv(x)w(x/q)which follows from (1.10). Using (1.11) and (1.12), the right-
hand side of (3.23) timesw(x) can be written as

q
ζn−1

∫
∞

0

v(x)− v(qt)
x− qt

{∫
∞

0

[pn(qt)pn−1(y)− pn−1(qt)pn(y)]
x− y

w(y)dy
}
pn(t)w(t)dt

= q
n−1∑
k=0

1
ζk

∫
∞

0

v(x)− v(qt)
x− qt

pk(qt)pn(t)
{∫

∞

0

qt − y
x− y

pk(y)w(y)dy
}
w(t)dt,

= q
n−1∑
k=0

1
ζk

∫
∞

0

v(x)− v(qt)
x− qt

pk(qt)pn(t)w(t)dt
∫
∞

0
pk(y)w(y)dy

− q
n−1∑
k=0

1
ζk

∫
∞

0

pk(y)
x− y

w(y)dy
∫
∞

0
(v(x)− v(qt))pk(qt)pn(t)w(t)dt

= q
∫
∞

0

v(x)− v(qt)
x− qt

pn(t)w(t)dt − I2, (3.25)

where we used (2.1), (2.2), the decomposition

qt − y
(x− qt)(x− y)

=
1

x− qt
−

1
x− y

,

and the orthogonality relation. In the expression denoted by I2 we replace v(x)− v(qt) by v(x)− v(y)+ v(y)− v(qt) and
we apply the orthogonality relation. We get

I2 = q
∫
∞

0

w(y)
x− y

{∫
∞

0
(v(y)− v(qt))

n−1∑
k=0

pk(y)pk(qt)
ζk

pn(t)w(t)dt

}
dy

= q
∫
∞

0

w(y)
x− y

{∫
∞

0
(v(y)− v(qt))

[pn(y)pn−1(qt)− pn(qt)pn−1(y)]
ζn−1(y− qt)

pn(t)w(t)dt
}
dy

=

∫
∞

0

w(y)
x− y

[Dn(y)pn(y)− βnCn(y)pn−1(y)] dy, (3.26)

where we also used (2.2), (2.1), (1.12) and (1.11). Thus, from (1.13), (1.20) and (1.10) we obtain

I2 = −
∫
∞

0

w(y)
x− y

Dq−1pn(y)dy = q
∫
∞

0
pn(y)Dq

(
w(y)
x− y

)
dy

= q
∫
∞

0

[(x− y)w(qy)− (x− qy)w(y)]
(x− y)(x− qy)(q− 1)y

pn(y)dy

= q
∫
∞

0

(
Dqw(y)
x− qy

+
w(y)

(x− y)(x− qy)

)
pn(y)dy

= q
∫
∞

0

[−(x− y)v(qy)+ 1]
(x− y)(x− qy)

pn(y)w(y)dy. (3.27)

Now, (3.23) follows from (3.24), (3.25) and (3.27). �
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Since the functions pn and Qn satisfy both equations in (3.7), these equations have the same solution basis. Thus, we
obtain the following corollary.

Corollary 3.2. The functions defined with (3.10)–(3.15) satisfy

bn,1
an,1
=
bn,2
an,2
= −

pn(qx)Qn(x/q)− pn(x/q)Qn(qx)
pn(x)Qn(x/q)− pn(x/q)Qn(x)

(3.28)

and

cn,1
an,1
=
cn,2
an,2
= −

pn(x)Qn(qx)− pn(qx)Qn(x)
pn(x)Qn(x/q)− pn(x/q)Qn(x)

. (3.29)

These identities give relations involving the functions An, Bn, Cn and Dn.
The next theorem provides more simple and direct relations among An, Bn, Cn and Dn. We define

∆n(x) :=
∣∣∣∣pn(x) pn(qx)
Qn(x) Qn(qx)

∣∣∣∣ , x ∈ D \ [0,∞). (3.30)

Theorem 3.3. For every x ∈ D \ [0,∞),

∆n(x) = −
(1− q)x
w(x)

ζnAn(x) and ∆n(x) = −
(1− q)x
w(qx)

ζnCn(qx). (3.31)

In particular,

Cn(qx) =
w(qx)
w(x)

An(x). (3.32)

Furthermore,

Dn(x) =
−1+ [1− 2(x/q− αn−1)u(x)]w(x)/w(x/q)

(1+ 1/q)x− 2αn−1
+ [(x/q− αn−1)An−1(x/q)− Bn−1(x/q)]w(x)/w(x/q). (3.33)

Proof. For x ∈ D \ [0,∞)we have

∆n(x) =
1

w(qx)

∫
∞

0

pn(x)pn(t)
qx− t

w(t)dt −
1

w(x)

∫
∞

0

pn(qx)pn(t)
x− t

w(t)dt

=
1

w(qx)

∫
∞

0

pn(t/q)pn(t)
qx− t

w(t)dt −
1

w(x)

∫
∞

0

pn(qt)pn(t)
x− t

w(t)dt

=
1

w(qx)

∫
∞

0

pn(t)pn(qt)
x− t

w(qt)dt −
1

w(x)

∫
∞

0

pn(qt)pn(t)
x− t

w(t)dt

=
1

w(x)w(qx)

∫
∞

0

[w(x)w(qt)− w(qx)w(t)]
x− t

pn(qt)pn(t)dt, (3.34)

where (1.19) was used. From here we can proceed in two directions. First using (1.10) we write

w(x)w(qt)− w(qx)w(t) = w(x)(w(qt)− w(t))− w(t)(w(qx)− w(x))
= w(x)(q− 1)tDqw(t)− w(t)(q− 1)xDqw(x)
= (1− q) [w(x)tw(t)v(qt)− w(t)xw(x)v(qx)]
= (1− q)w(x)w(t) [tv(qt)− xv(qx)] .

Substituting in (3.34) we obtain

∆n(x) = −
(1− q)
w(qx)

∫
∞

0

(xv(qx)− tv(qt))
x− t

pn(t)pn(qt)w(t)dt

= −
(1− q)x
w(qx)

∫
∞

0

(
v(qx)− v(qt)

x− t

)
pn(t)pn(qt)w(t)dt

−
(1− q)
w(qx)

∫
∞

0
v(qt)pn(t)pn(qt)w(t)dt = −

(1− q)x
w(qx)

ζnCn(qx) (3.35)
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by (1.23) and (1.11). Next, by (1.2) we havew(qx)− w(x) = (1− q)xu(qx)w(qx) and

w(x)w(qt)− w(qx)w(t) = w(qt)(w(x)− w(qx))+ w(qx)(w(qt)− w(t))

= −(1− q)xu(qx)w(qx)w(qt)+ (1− q)tu(qt)w(qt)w(qx)

= −(1− q)w(qx)w(qt) (xu(qx)− tu(qt)) .

Then, (3.34) leads to

∆n(x) = −
(1− q)
w(x)

∫
∞

0

(xu(qx)− tu(qt))
x− t

pn(qt)pn(t)w(qt)dt

= −
(1− q)x
w(x)

∫
∞

0

(u(qx)− u(qt))
x− t

pn(qt)pn(t)w(qt)dt

−
(1− q)
w(x)

∫
∞

0
u(qt)pn(qt)pn(t)w(qt)dt = −

(1− q)x
w(x)

ζnAn(x) (3.36)

since the last integral vanishes, which follows from the relation

u(qt)w(qt) = (−Dq−1w(y))|y=qt = −Dqw(t) = v(qt)w(t) (3.37)

and (1.23).
It remains to verify (3.33). From (1.14), (3.32), (3.37) and (1.8) we have

Dn+1(qx)+ Dn(qx) = [(qx− αn)An(x)+ (1− q)x
n∑
j=0

Aj(x)− u(qx)]w(qx)/w(x)

= [((1+ q)x− 2αn)An(x)− Bn+1(x)− Bn(x)− 2u(qx)]w(qx)/w(x). (3.38)

Furthermore, from (1.15), (3.32) and (1.9) we obtain

(qx− αn)Dn+1(qx)− (x− αn)Dn(qx) = −1+ [βn+1An+1(x)− βnAn−1(x)]w(qx)/w(x)

= −1+ [1+ (x− αn)Bn+1(x)− (qx− αn)Bn(x)]w(qx)/w(x). (3.39)

Multiplying Eq. (3.38) by x− αn and adding to Eq. (3.39) we obtain

((1+ q)x− 2αn)Dn+1(qx) = −1+ [1+ (x− αn)((1+ q)x− 2αn)An(x)

− ((1+ q)x− 2αn)Bn(x)− 2(x− αn)u(qx)]w(qx)/w(x).

From here, formula (3.33) follows by replacing n by n− 1 and x by x/q. �

Corollary 3.4. Assume that there exists a domain D containing (0,∞), such that for every q ∈ (0, 1) the weight w(x) is analytic
in D. Then, (3.32) and (3.33) hold on (0,∞).

Indeed, in this case u(x) and v(x) are analytic in D, and then by (1.6), (1.7), (1.11) and (1.12) the functions An, Bn, Cn and
Dn are also analytic and therefore continuous in D.

4. The Stieltjes–Wigert polynomials

In this section we compute the functions An, Bn, Cn and Dn for the Stieltjes–Wigert polynomials. The Stieltjes–Wigert
polynomials are orthogonal with respect to the Stieltjes–Wigert weight which is defined on (0,∞) by

w(x) = c exp
((
log(xq−1/2)

)2
/(2 log q)

)
, c = (2π log(1/q))−1/2. (4.1)

The corresponding indeterminatemoment problemwas studied in [12]. Themonic orthogonal polynomials are given by [13]

pn(x) = q−n
2
(q; q)n

n∑
k=0

(−1)n−kqk
2
xk

(q; q)k(q; q)n−k
. (4.2)

Furthermore,

αn = (1+ q− qn+1)q−2n−1, βn = (1− qn)q−4n+1, (4.3)

and

ζn = (q; q)nq−2n
2
−n.
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Simple calculations show that

u(x) =
q
1− q

(
1
x
−
q
x2

)
, v(x) =

x− q
(1− q)x

,

An(x) =
Rn
x2
, where

Rn =
1

(1− q)ζn

∫
∞

0
pn(y)pn(y/q)

w(y)
y
dy,

Bn(x) =
rn
x2
−
(1− qn)
(1− q)x

, where

rn =
1

(1− q)ζn−1

∫
∞

0
pn(y)pn−1(y/q)

w(y)
y
dy,

Cn(x) =
R̃n
x
, where

R̃n =
q

(1− q)ζn

∫
∞

0
pn(y)pn(qy)w(y)dy,

Dn(x) =
r̃n
x
, where

r̃n =
q

(1− q)ζn−1

∫
∞

0
pn(y)pn−1(qy)

w(y)
y
dy.

(4.4)

Substituting in (1.9) and equating the coefficients of 1/xwe obtain

rn+1 − qrn = −αnqn

or, equivalently, tn+1 − tn = −αn with tn := rn/qn−1. In particular,

t1 = r1 =
1

(1− q)ζ0

∫
∞

0
(y− α0)

w(y)
y
dy = −1/q,

where we used that α0 = 1/q, ζ0 = 1, the relation

w(qx) = xw(x) (4.5)

which follows from (4.1), and the evaluation∫
∞

0

w(y)
y
dy =

1
q

∫
∞

0
w(y/q)dy =

∫
∞

0
w(t)dt = ζ0 = 1.

Thus,

rn = qn−1tn = qn−1
(
t1 −

n−1∑
j=1

αj

)

= −qn−1
n−1∑
j=0

(
(1+ q)q−2j−1 − q−j

)
=
1− q−n

1− q
(4.6)

and

Bn(x) = −
(1− qn)(x+ q−n)

(1− q)x2
. (4.7)

To compute Rn we apply (1.8) and use (4.3). Equating the coefficients of 1/x2 yields

rn+1 + rn = −αnRn + 1/(1− q).

Hence Rn = (1/(1− q)− rn+1 − rn) /αn = qn/(1− q) and

An(x) = qn/((1− q)x2) (4.8)

follows from (4.6), (4.3) and (4.4). Next, from (3.32), (4.5) and (4.8) we get

Cn(x) = qn+1/((1− q)x). (4.9)
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It remains to determine Dn(x). One option is to apply (3.33), but we use (4.4) instead. Applying (1.15) and equating the
constant coefficients we obtain

r̃n+1 = r̃n/q− 1.

Iteration of this relation yields

r̃n+1 = q−n r̃1 −
n−1∑
j=0

q−j = −
(1− qn+1)q−n

(1− q)
,

where we used that

r̃1 =
q

(1− q)ζ0

∫
∞

0
(y− α0)

w(y)
y
dy = −1

as above. Thus,

Dn(x) =
(1− q−n)q
(1− q)x

. (4.10)

5. The q-Laguerre polynomials

Herewe derive formulas for the functions An, Bn, Cn andDn for the q-Laguerre polynomials. A q-Laguerreweight is defined
on (0,∞) by [7]

w(x) = xα/(−x; q)∞, (5.1)

where α > 0. The monic q-Laguerre orthogonal polynomials are given by [7]

pn(x) = q−αn−n
2
(q, qα+1; q)n

n∑
k=0

(−1)n−kqαk+k
2
xk

(q, qα+1; q)k(q; q)n−k
. (5.2)

Using (1.2), (1.10) and (5.1), it is easy to verify that

u(x) =
(x+ q− q1−α)q
(1− q)x(x+ q)

, v(x) =
((x+ q)qα − q)

(1− q)x
,

and then

u(qx)− u(y)
qx− y

= −
1

q(x+ 1)
u(y)−

(1− q−α)
(1− q)x(x+ 1)y

,

v(x)− v(qy)
x− qy

= −
v(qy)
x
+

qα

(1− q)x
.

(5.3)

We first compute Cn and Dn, and then we obtain An and Bn using Theorem 3.3. For Cn, using (1.11), (5.3), (1.23) and the
orthogonality we get

Cn(x) = −
q
ζnx

∫
∞

0
v(qy)pn(y)pn(qy)w(y)dy+

qα+1

(1− q)ζnx

∫
∞

0
pn(y)pn(qy)w(y)dy =

qα+n+1

(1− q)x
. (5.4)

Similarly, for Dn, using (1.12), (5.3), (1.24) and the orthogonality we obtain

Dn(x) = −
q

ζn−1x

∫
∞

0
v(qy)pn(y)pn−1(qy)w(y)dy+

qα+1

(1− q)ζn−1x

∫
∞

0
pn(y)pn−1(qy)w(y)dy =

(1− q−n)q
(1− q)x

. (5.5)

Then, by (3.32) we get

An(x) = Cn(qx)w(x)/w(qx) =
qn

(1− q)x(x+ 1)
. (5.6)

To compute Bn we adopt the notationwα(x) for the q-Laguerre weight. From (1.7), (5.3) and (1.22) it follows that

Bn(x) = −
1

qζn−1(α)(x+ 1)

∫
∞

0
u(y)pn(y)pn−1(y/q)wα(y)dy

−
(1− q−α)

(1− q)ζn−1(α)x(x+ 1)

∫
∞

0
pn(y)pn−1(y/q)

wα(y)
y
dy

=
rn(α)
x(x+ 1)

−
(1− qn)

(1− q)(x+ 1)
, (5.7)
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where

rn(α) := −
(1− q−α)

(1− q)ζn−1(α)

∫
∞

0
pn(y)pn−1(y/q)

wα(y)
y
dy. (5.8)

The coefficient αn(α) in (1.1) and the norm ζn(α) can be derived from [7]:

αn(α) = (1+ q− (1+ qα)qn+1)q−2n−α−1,

ζn(α) = −
π

sin(πα)
(q−α; q)∞(qα+1; q)n
(q; q)∞(q; q)3n

q2n
2
+2αn−n.

(5.9)

Next, we substitute (5.7) and (5.6) into the supplementary relation (1.8) and use the formula (which follows from (5.1) and
(1.2))

u(x) =
(x+ q− q1−α)q
(1− q)x(x+ q)

and (5.9) to derive

rn+1(α)+ rn(α) = (−αn(α)qn − 1+ q−α)/(1− q) = (2− (1+ q)q−n−1)q−α/(1− q). (5.10)

First we evaluate r1(α) using (5.8). We have p0(y) = 1, p1(y) = y− α0(α), and by the orthogonality relation (1.1) and (5.1),∫
∞

0 wα(y)dy = ζ0(α) and∫
∞

0
wα(y)/ydy =

∫
∞

0
wα−1(y)dy = ζ0(α − 1).

Then,

1/ζ0(α)
∫
∞

0
p1(y)p0(y/q)wα(y)/ydy = 1− α0(α)ζ0(α − 1)/ζ0(α)

= 1+
(
(1+ q)q−α−1 − (1+ qα)q−α

)
/(1− q−α)

= (1− q)q−α−1/(1− q−α),

where we used (5.9). Thus, by (5.8) we get r1(α) = −q−α−1. We can now evaluate rn(α) using a telescoping sum:

rn(α) =
n∑
j=2

(−1)n−j(rj(α)+ rj−1(α))+ (−1)n−1r1(α)

=
(−1)nq−α

(1− q)

(
n∑
j=2

(−1)j(2− (1+ q)q−j)+ 1/q− 1

)
= (1− q−n)q−α/(1− q). (5.11)

Combining (5.7) and (5.11), we finally obtain

Bn(x) = −
(1− qn)(x+ q−α−n)
(1− q)x(x+ 1)

. (5.12)
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