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1. Introduction

Suppose G is a complex semisimple algebraic group and B is the flag variety of G . The Springer
resolution is the moment map μ : T ∗B → g∗ � g. The fibers of μ are equidimensional algebraic
varieties in the sense that all irreducible components of any given fiber have the same dimension.
The goal of this article is to describe a family of components of fibers for the classical groups Sp(2n)

and O (n). The description we give is very explicit and is similar to that given in [1] for the group
GL(n). Some examples for the classical groups Sp(2n) and O (n) are given in [2].

The family of components of Springer fibers considered here arises naturally in the theory of
Harish–Chandra modules. Suppose GR is a real linear semisimple Lie group and KR is a maximal
compact subgroup. Write g = k+p for the complexified Cartan decomposition and N for the nilpotent
cone in g. Then, letting K be the fixed point set of the complexification of the corresponding Cartan
involution of GR , K acts on B with a finite number of orbits. These K -orbits partition the components
of any Springer fiber μ−1( f ), with f ∈ N ∩ p, as follows. Denoting the conormal bundle in T ∗B to a
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K -orbit Q by T ∗
QB, each component is contained in T ∗

QB for exactly one Q. Now let Q be a closed

K -orbit in B and suppose that μ(T ∗
QB) = K · f , then we call f generic. We say that a component

C of μ−1( f ) contained in T ∗
QB is ‘associated’ to the closed orbit Q; these are the components we

describe in this article. The components associated to closed orbits are precisely the components that
play a role in the computation of associated cycles of discrete series representations [4].

We consider pairs (G, K ) of the following types:

(
Sp(2n),GL(n)

)
,(

O (n), O (p) × O (q)
)
, p + q = n. (1)

These pairs arise from the real groups Sp(2n,R) and O (p,q). An algorithm is given for finding a
generic f ; a similar algorithm is given in [11]. Theorem 26 describes μ−1( f ) ∩ T ∗

QB explicitly when
Q is a closed K -orbit in B. This is done in terms of a sequence of subgroups L = L0, L1, . . . , Lm of K .
These subgroups are naturally defined in terms of the closed K -orbit Q and root structure. The main
theorem (Theorem 26) states that μ−1( f ) ∩ T ∗

QB = Lm · · · L1L · b ⊂ B. The components are certain
translates of Lm,e · · · L1,e Le · b, where the subscript e indicates identity component.

2. Preliminaries

2.1. Generalities on Springer fibers

Let (G, K ) be as in (1), or more generally G may be any reductive complex algebraic group and K
the fixed point group of an involution Θ . Letting θ be the differential of Θ we write the decomposi-
tion of g into ±1 eigenspaces as g = k + p. Define Nθ = N ∩ p, the nilpotent elements lying in p. The
cotangent bundle of B may be identified with the homogeneous bundle G ×B n− , where b = h + n−
is some basepoint of B and B = NG(b). The moment map is given by μ(g, ξ) = Ad(g)ξ ∈ N .

The action of K on the flag variety B of G has a finite number of orbits. Consider one of these
orbits Q = K · b. Denote by γQ the restriction of μ to the closure of the conormal bundle T ∗

QB.

Suppose f ∈ Nθ . As described in [5], if C is an irreducible component of μ−1( f ) contained in T ∗
QB,

then K · C := ⋃
k∈K k · C is dense in T ∗

QB and

(K · C) ∩ μ−1( f ) =
⋃

z∈AK ( f )

z · C,

where AK ( f ) = Z K ( f )/Z K ( f )e , the component group of the centralizer of f in K . Furthermore, all
components of μ−1( f ) in T ∗

QB occur in this expression. (In other words, AK ( f ) acts transitively on

the set of components of μ−1( f ) contained in T ∗
QB.)

Now suppose that Q = K · b,b = h + n− , is a closed orbit in B. Then T ∗
QB = T ∗

QB. This conormal
bundle may be identified with the homogeneous bundle

T ∗
QB � K ×

B∩K

(
n− ∩ p

)
.

Then γQ is given by the formula γQ(k, ξ) = k · ξ . The image of γQ is K · (n− ∩ p), and there is an
f ∈ n− ∩ p so that K · f = im(γQ). We say that such an element f is generic in n− ∩ p. The fibers
may be identified with subvarieties of BK = K · b (the flag variety for K ) via the natural projection
π : K ×B∩K (n− ∩ p) → BK . It follows that

γ −1
Q ( f ) � NK

(
f ,n− ∩ p

)−1 · b,
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where

NK
(

f ,n− ∩ p
) := {

k ∈ K : k · f ∈ n− ∩ p
}
.

This is spelled out in more detail in [1, Section 2].
The above well-known facts allow us to conclude the following.

Proposition 2. If Q = K · b is a closed orbit and C is a component of μ−1( f ) ( f ∈ Nθ ) contained in T ∗
QB,

then

γ −1
Q ( f ) =

⋃
z∈AK ( f )

z · C .

One point still needs to be checked. Suppose b′ ∈ γ −1
Q ( f ). Then, since Q is closed, there is k ∈

NK ( f ,n− ∩p) so that b′ = k−1 ·b. Since we may assume that b ∈ C , it follows that b′ ∈ (K ·C)∩μ−1( f ).
Therefore, b′ ∈ ⋃

z∈AK ( f ) z · C .

2.2. Realizations of the pairs.

Each of the pairs (G, K ) of (1) fall into one of the five types(
Sp(2n),GL(n)

)
, (C)(

O (2n + 1), O (2p) × O (2q + 1)
)
, (B1)(

O (2n + 1), O (2p + 1) × O (2q)
)
, (B2)(

O (2n), O (2p) × O (2q)
)
, (D1)(

O (2n + 2), O (2p + 1) × O (2q + 1)
)
. (D2)

In each case n = p + q. We shall refer to these five pairs as being of types C, B1, B2, D1 and D2,
respectively.

In this section we give realizations of each of the pairs. For our realizations of the symplectic and
orthogonal groups we will use the r × r matrix

Sr :=

⎛⎜⎜⎜⎜⎝
1

1

. .
.

1
1

⎞⎟⎟⎟⎟⎠ (3)

for various values of r. This matrix gives an automorphism ηr(A) = −Ad(Sr)At of Mr×r(C). We also
use the matrix I p,q = diag(1, . . . ,1,−1, . . . ,−1), having p ones and q negative ones.

We consider each pair in a case by case manner and describe the realization we will use. Weight
vectors in p are written down explicitly.

Type C. Consider (G, K ) = (Sp(2n,C),GL(n,C)). Let Sn be the n ×n-matrix of (3). We take G to be the
complex symplectic group defined by the symplectic form ω having matrix

J =
(

0 Sn

−S 0

)
(4)
n
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with respect to a basis {ei} of C2n . Therefore,

g =
{(

A B
C ηn(A)

)
: A, B, C ∈ gl(n,C),ηn(B) = −B and ηn(C) = −C

}
.

Let Θ be conjugation of G by In,n and θ = Ad(In,n). It follows that

K = GΘ =
{(

a 0
0 (Ad(Sn)at)−1

)}
� GL(n,C) and

p =
{(

0 B
C 0

)
: ηn(B) = −B and ηn(C) = −C

}
.

Then

h = {
diag(t1, . . . , tn,−tn, . . . ,−t1): ti ∈ C

}
is a Cartan subalgebra of both g and k. Let μi ∈ t∗ be defined by

μi
(
diag(t1, . . . , tn,−tn, . . . ,−t1)

) = ti, for 1 � i � n.

We fix a positive system of roots in k by setting

	+
c := {μi − μ j: 1 � i < j � n}.

The set of weights of h in p is

	(p) = {±(μi + μ j): 1 � i � j � n
}
.

Let Ei, j be the standard basis for M2n×2n(C), i.e., Ei, j is the matrix having 1 in the (i, j) place and 0’s
elsewhere. Then a choice of h-weight vectors in p is given by

Xi+ j := Ei,2n− j+1 + E j,2n−i+1, for i 	= j,

X2·i := Ei,2n−i+1, for 1 � i � n,

X−(i+ j) := (Xi+ j)
t and X−2·i := (X2·i)t . (5)

The weight vectors act on the basis {ek} by

Xi+ j(ek) = δ2n−i+1,ke j + δ2n− j+1,kei,

X−(i+ j)(ek) = δi,ke2n− j+1 + δ j,ke2n−i+1. (6)

There is an involution τ of {1,2, . . . ,2n} defined by eτ (i) = ± J (ei). (Therefore τ (i) = 2n − i + 1.)
The following observation will be used. Suppose that S1 is a τ -invariant subset of {1,2, . . . ,2n}. Set
W1 := spanC{ei: i ∈ S1}. Since S1 is τ -invariant, ω is nondegenerate on W1 and C2n = V 1 ⊕ W1,
where V 1 := (W1)

⊥ = spanC{ei: i /∈ S1}.
We now turn to the orthogonal cases (O (n̂), O (p̂) × O (q̂)). Consider the matrices S p̂ and Sq̂ , and

the corresponding automorphisms ηp̂ and ηq̂ . The orthogonal group O (n̂) is realized as the isometry
group of the nondegenerate symmetric form ( , ) having matrix
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(
S p̂ 0
0 Sq̂

)
(7)

with respect to a basis {ek}. Then the Lie algebra may be written in block form as

g =
{(

A B
−Sq̂ Bt S p̂ D

)
: ηp̂(A) = A and ηq̂(D) = D

}
.

Observe that ηp̂(A) = A means that A is ‘skew symmetric with respect to the anti-diagonal’.
Let Θ be conjugation of G by I p̂,q̂ , so θ = Ad(I p̂,q̂). Then

K =
{(

a 0
0 d

)
: aS p̂at = S p̂ and dSq̂dt = Sq̂

}
� O (p̂) × O (q̂),

p =
{(

0 B
−Sq̂ Bt S p̂ 0

)
: B ∈ Mp̂×q̂(C)

}
and the diagonal matrices in g form a Cartan subalgebra h of k.

There is an involution τ of {1,2, . . . , n̂}, given by

τ (i) =
{

p̂ − i + 1, 1 � i � p̂,

n̂ − (i − p̂) + 1, p̂ + 1 � i � n̂,

having the properties that if S1 ⊂ {1,2, . . . , n̂} is τ -stable, then the symmetric form defining G is
nondegenerate on W1 = spanC{ei: i ∈ S1} and V 1 := W ⊥

1 = spanC{ei: i /∈ S1}.
For each of the four orthogonal cases we fix a positive system of roots of h in k and we specify a

basis of h-weight vectors in p.

Type B1. The pair is (O (2n + 1), O (2p) × O (2q + 1)). The Cartan subalgebra h is

h = {
diag(t1, . . . , tp,−tp, . . . ,−t1, tp+1, . . . , tn,0,−tn, . . . ,−tp+1): ti ∈ C

}
.

Set

μi
(
diag(t1, . . . , tp,−tp, . . . ,−t1, tp+1, . . . , tn,0,−tn, . . . ,−tp+1)

) = ti,

for 1 � i � n. We let

	+
c := {μi ± μ j: 1 � i < j � p or p + 1 � i < j � n} ∪ {μ j: p + 1 � j � n}

be our fixed positive system of roots in k. The set of h-weights in p is

	(p) = {±(μi ± μ j): 1 � i � p < j � n
} ∪ {μi: 1 � i � p}.

We choose the following weight vectors in p:

Xi− j := Ei,p+ j − E2n+p− j+2,2p−i+1

Xi+ j := Ei,2n+p− j+2 − E p+ j,2p−i+1,

Xi := Ei,n+p+1 − En+p+1,2p−i+1,

X−(i± j) := (Xi± j)
t and X−i := (Xi)

t , (8)

for 1 � i � p < j � n. Formulas analogous to (6) hold.
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Type B2. The pair is (O (2n + 1), O (2p + 1) × O (2q)). Now the Cartan subalgebra h is

h = {
diag(t1, . . . , tp,0,−tp, . . . ,−t1, tp+1, . . . , tn,−tn, . . . ,−tp+1)

}
.

Set

μi
(
diag(t1, . . . , tp,0,−tp, . . . ,−t1, tp+1, . . . , tn,−tn, . . . ,−tp+1)

) = ti,

for 1 � i � n. We fix a positive system of roots in k by

	+
c := {μi ± μ j: 1 � i < j � p or p + 1 � i < j � n} ∪ {μi: 1 � i � p}.

The set of h-weights in p is

	(p) = {±(μi ± μ j): 1 � i � p < j � n
} ∪ {±μ j: p + 1 � j � n}.

A basis of weight vectors in p may be written as

Xi− j := Ei,p+ j+1 − E2n+p− j+2,2p−i+2,

Xi+ j := Ei,2n+p− j+2 − E p+ j+1,2p−i+2,

X j := E p+1,2n+p− j+2 − E p+ j+1,p+1,

X−(i± j) := (Xi± j)
t and X− j := (X j)

t,

for 1 � i � p < j � n.

Type D1. The pair is (O (2n), O (2p) × O (2q)), n = p + q. The Cartan subalgebra h is

h = {
diag(t1, . . . , tp,−tp, . . . ,−t1, tp+1, . . . , tn,−tn, . . . ,−tp+1)

}
.

Set

μi
(
diag(t1, . . . , tp,−tp, . . . ,−t1, tp+1, . . . , tn,−tn, . . . ,−tp+1)

) = ti,

for 1 � i � n. We fix a positive system of roots of h in k by

	+
c := {μi ± μ j: 1 � i < j � p or p + 1 � i < j � n}.

The set of weights of h in p is

	(p) = {±(μi ± μ j): 1 � i � p < j � n
}
.

A basis of weight vectors may be written as

Xi− j := Ei,p+ j − E2n+p− j+1,2p−i+1,

Xi+ j := Ei,2n+p− j+1 − E p+ j,2p−i+1, and

X−(i± j) := (Xi± j)
t , (9)

for 1 � i � p < j � n.



L. Barchini, R. Zierau / Journal of Algebra 345 (2011) 109–136 115
Type D2. The pair is (O (2n + 2), O (2p + 1) × O (2q + 1)), n = p + q. The Cartan subalgebra h of k is

h = {
diag(t1, . . . , tp,0,−tp, . . . ,−t1, tp+1, . . . , tn,0,−tn, . . . ,−tp+1)

}
.

Note that unlike the other cases, h is not a Cartan subalgebra of g. Set

μi
(
diag(t1, . . . , tp,0,−tp, . . . ,−t1, tp+1, . . . , tn,0,−tn, . . . ,−tp+1)

) = ti,

for 1 � i � n. We fix a positive system of roots of h in k by

	+
c := {μi ± μ j: 1 � i < j � p or p + 1 � i < j � n} ∪ {μk: 1 � k � n}.

The set of weights of h in p is

	(p) = {±(μi ± μ j): 1 � i � p < j � n
} ∪ {±μk: 1 � k � n} ∪ {0}.

A basis of weight vectors may be written as

Xi− j := Ei,p+ j+1 − E2n+p− j+3,2p−i+2,

Xi+ j := Ei,2n+p− j+3 − E p+ j+1,2p−i+2,

Xi := Ei,n+p+2 − En+p+2,2p−i+2,

X j := E p+1,2n+p− j+3 − E p+ j+1,p+1,

X0 := E p+1,n+p+2 − En+p+2,p+1,

X−(i± j) := (Xi± j)
t and X−k := (Xk)

t,

for 1 � i � p < j � n and 1 � k � n.

2.3. Embeddings of (G, K ) into (GL(n̂),GL(p̂) × GL(q̂))

Consider the pair

(Ĝ, K̂ ) = (
GL(n̂),GL(p̂) × GL(q̂)

)
, (10)

where K̂ is the fixed point group of conjugation by I p̂,q̂ . By embedding each of our pairs (G, K ) into

a pair (Ĝ, K̂ ), for appropriate choices of p̂, q̂ and n̂, we will be able to apply results of [1] to our
study of (G, K ). Our realizations of the pairs given in Section 2.2 give G ⊂ Ĝ and K = K̂ ∩ G . Here the
appropriate choices of p̂, q̂ and n̂ are n,n,2n for type C, 2p,2q+1,2n+1 for type B1, 2p+1,2q,2n+1
for type B2, 2p,2q,2n for type D1, and 2p + 1,2q + 1,2n + 2 for type D2. We record some properties
of this embedding below.

First, consider the pair (Ĝ, K̂ ) and let ĥ be the subalgebra of diagonal matrices. Then ĥ is a Cartan
subalgebra of both ĝ and k̂. Let εi ∈ ĥ∗ be defined by εi(diag(t1, . . . , tn̂)) = ti . Then the root systems
for ĝ and k̂ are, respectively,

	̂ = 	(ĥ, ĝ) = {±(εi − ε j): 1 � i < j � n̂
}

and

	̂c = 	(ĥ, k̂) = {±(εi − ε j): 1 � i < j � p̂ or p̂ + 1 � i < j � n̂
}
.
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We fix once and for all a positive system of roots in k by setting

	̂+
c = {εi − ε j: 1 � i < j � p̂ or p̂ + 1 � i < j � n̂}.

For the Cartan subalgebras h of k and fixed positive systems 	+
c for each type, as given in Sec-

tion 2.2, the following properties are apparent.

(1) h = ĥ ∩ k.
(2) Root vectors for g are either root vectors for ĝ or sums of two root vectors for ĝ.
(3) 	+

c = {α|h: α ∈ 	̂+
c }.

Now suppose that b is a Borel subalgebra of g containing h. Then there is a regular λ ∈ h∗ that
defines b in the sense that

b = h + n−, n− =
∑

〈λ,α〉>0

g(−α).

In fact, it suffices to consider only λ’s that are Weyl group conjugates of (n,n − 1, . . . ,2,1) =∑
(n − i + 1)μi . For each such λ there exists a regular λ̂ ∈ ĥ∗ so that λ̂|h = λ. A Borel subalgebra

b̂ is thus determined by λ̂. It follows that b = b̂ ∩ g. In the five cases λ̂ is given by

λ̂ = 1

2
(λ1, . . . , λn | −λn, . . . ,−λ1), in type C,

λ̂ = 1

2
(λ1, . . . , λp,−λp, . . . ,−λ1 | λp+1, . . . , λn,0,−λn, . . . ,−λp+1), in type B1,

λ̂ = 1

2
(λ1, . . . , λp,0,−λp, . . . ,−λ1 | λp+1, . . . , λn,−λn, . . . ,−λp+1), in type B2,

λ̂ = 1

2
(λ1, . . . , λp,−λp, . . . ,−λ1 | λp+1, . . . , λn,−λn, . . . ,−λp+1), in type D1,

λ̂ = 1

2
(λ1, . . . , λp, ε,−λp, . . . ,−λ1 | λp+1, . . . , λn,−ε,−λn, . . . ,−λp+1), in type D2.

In the last case |ε| < λi , for all i. Note that there are two choices for λ̂, corresponding to ε being
positive or negative.

Recall that B is the flag variety for G and let B̂ be the flag variety for Ĝ . Then we may view B as
a closed subvariety of B̂. If λ, λ̂ are as above, and b, b̂ are the corresponding Borel subalgebras, then
the K -orbit Q = K · b in B satisfies Q = Q̂ ∩ B, where Q̂ = K̂ · b̂. We have described a natural way to
associate to each closed K -orbit in B a closed K̂ -orbit in B̂.

2.4. Nilpotent orbits

We recall the parameterization of K -orbits in Nθ in terms of signed tableaux for each of
our five pairs. This may be found, for example, in [6]. Let Y ∈ Nθ and let {X, H, Y } be a stan-
dard triple with X ∈ p and H ∈ h. Denote the copy of sl(2) spanned by {X, H, Y } by sl(2)Y .
Write the decomposition of Cn̂ into irreducible sl(2)Y subrepresentations as ⊕W i . Order the con-
stituents so that dim(W i) � dim(W i+1). Then the tableau associated to K · Y has dim(W i) boxes
in the ith row. The parameterization of K -orbits in Nθ differs for the symplectic and orthogonal
cases.

Type C. In this case the number of rows of a given odd length is even. The W i may be chosen to be
stable under In,n . Then the sign in the first box of the ith row is the sign of the eigenvalue of In,n on
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the lowest weight vector of the sl(2)Y -representation W i . Signs are then filled in so as to alternate
along each row. Of the even number of odd length rows, half will begin with a + sign and half with
a − sign.

Types B1, B2, D1 and D2. In this case the number of rows of a given even length is even. The W i
may be chosen to be stable under I2p+1,2q , I2p,2q+1, I2p,2q or I2p+1,2q+1 (depending on the type). The
signs are placed in exactly the same manner as for type C. Of the even number of even length rows,
half will begin with a + sign and half with a − sign.

In all cases there is a one-to-one correspondence between the set of K -orbits in Nθ and the set
of such signed tableaux, up to permutation of the rows of a given length.

3. Generic elements

3.1. The algorithm for finding a generic element

We continue to consider pairs (G, K ) having types C, B1, B2, D1 and D2 and begin by parameter-
izing the closed K -orbits in B.

A K -orbit Q in the flag variety B is closed if and only if each Borel subalgebra in Q is θ -
stable (and contains a fundamental Cartan subalgebra); see for example [9, Lemma 5.9]. When
rank(k) = rank(g), each closed orbit is therefore K · b, where b = h + n− , with h a compact Car-
tan subalgebra. One easily sees in this case (from, for example, [9, Lemma 5.3]) that the closed
K -orbits are parameterized by W /W (K ), where W = NG(h)/ZG (h) and W (K ) = NK (h)/Z K (h), the
Weyl groups in G and K . We consider our pairs (1) and take h to be the compact Cartan sub-
algebra specified in Section 2.2. For type C, W (resp., W (K )) is the Weyl group of the root sys-
tem 	 (resp., 	c), so the closed orbits are in one-to-one correspondence with the W -conjugates of
(n,n − 1, . . . ,2,1) that are 	+

c -dominant. In types B1, B2 and D1, both W and W (K ) contain all
sign changes of the εi , due to the disconnectedness of G and K . Letting Sn denote the group of
permutations of the εi (and similarly for S p and Sq), it follows that W /W (K ) � Sn/S p × Sq . There-
fore, the K -orbits are in one-to-one correspondence with the Sn-conjugates of (n,n − 1, . . . ,2,1)

that are 	+
c dominant. A little more needs to be said for type D2, since rank(k) 	= rank(g). Let

a = {a(E p+1,p+1 − En+p+2,n+p+2): a ∈ C}. Then h + a is a θ -stable fundamental Cartan subalge-
bra of g. We consider W = NG(h + a)/ZG(h + a) and W (K ) = NK (h + a)/Z K (h + a). The closed
orbits are of the form K · b, b = (h + a) + n− , with n− corresponding to a θ -stable positive
system 	+ . Suppose 	+ is defined by the (regular) element (n,n − 1, . . . ,2,1) ∈ h∗ . Then for
w ∈ W , w	+ is θ -stable if and only if θ · w = w; we denote these Weyl group elements by W θ .
But θ · w = w implies that w(h∗) = h∗ and w(a∗) = a∗ . It follows that w	+ is defined by the
(regular) element w(n,n − 1, . . . ,2,1) ∈ h∗ . Again, owing to the disconnectedness of G and K ,
all sign changes are in both W θ and W (K ), and W θ /W (K ) � Sn/S p × Sq . It follows that the
closed orbits are again the Sn-conjugates of (n,n − 1, . . . ,2,1) that are 	+

c -dominant. Therefore,
we let

λ = (a1, . . . ,ap | b1, . . . ,bq) with

a1 > · · · > ap > 0 > b1 > · · · > bq (for some p,q), for type C,

a1 > · · · > ap > 0 and b1 > · · · > bq > 0,otherwise. (11)

Then λ determines a positive system of roots 	+ = {α : 〈λ,α〉 > 0}. This gives a Borel subalge-
bra b = h + n− , n− := ∑

	+ g(−α) and a closed K -orbit Q = K · b ⊂ B. Note that α ∈ 	+ implies
α|h ∈ 	+

c .
In order to construct a generic element f in n− ∩p we associate to λ an array of n numbered dots.

This array consists of two horizontal rows of dots as follows. Begin with the coordinate of λ having
greatest absolute value. (The absolute value is an issue only in type C.) Note that this coordinate is
either the first or the last in type C, and is either a1 or b1 otherwise. Begin the array by placing a
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dot in the upper row if this coordinate is among the ai ’s and in the lower row otherwise. Next locate
the coordinate with next greatest absolute value (equal to n − 1) and place a dot to the right of the
first dot, and in the upper row if this coordinate is among the ai ’s and in the lower row otherwise.
Continue in this manner until there are no more coordinates (and n dots have been placed in the
array).

Now label each dot with the index and sign of the corresponding coordinate. This amounts to
always labelling the dots in the top row with 1,2, . . . , p from left to right. In type C label the dots of
the lower row by −n,−(n − 1), . . . ,−(p + 1) from left to right; in the other types label the dots of
the lower row by p + 1, p + 2, . . .n from left to right.

Here are two examples. In type C take λ = (7,6,4,3,−1,−2,−5). Then p = 4 and q = 3, and the
corresponding array is

�

1
�

2

�

−7

�

3
�

4

�

−6

�

−5
.

For the other four types, let λ = (8,5,4,1 | 7,6,3,2). Then the array is

�

1

�

5

�

6

�

2
�

3

�

7

�

8

�

4

.

We define a block in the array to be a maximal set of consecutive dots lying in just one row. The
blocks in the first example above are the sets of dots with labels {1,2}, {−7}, {3,4} and {−5,−6}. A
string through the array will be a sequence of dots with at most one dot in each block; they will have
slightly different forms for the five types.

The algorithm for constructing our generic f in n− ∩ p begins by specifying f0. Then there is a
reduction to a smaller array, where f1 is chosen. This is continued to obtain f0, f1, . . . , and f =
f0 + f1 + · · · . Therefore it suffices to specify f0 and the smaller array (and the type for this smaller
array). There are slight differences for the five types, so we will do this separately for each type.

Type C. Form a string through the array by choosing the dot in each block that is farthest to the right
in the block. Let k1, . . . ,kl be the labels of the dots in the string, ordered so that each ki is to the left
of ki+1 in the array. Set

f0 =
(

l−1∑
i=1

Xki+1−ki

)
+ X−2kl . (12)

Note that the weight vectors are in n− ∩ p. Also note that if there is just one block, then the string
will have just one dot (so l = 1 and f0 = X−2kl ). In the example, connecting the dots in the string, we
have:

�

1
�

2

�
�
��

−7

������
�

3
�

4
�������

−6

�

−5
.

(13)
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Also {k1,k2,k3,k4} = {2,−7,4,−5} and

f0 = X−(2+7) + X7+4 + X−(4+5) + X2·5.

The smaller array is obtained by deleting all dots in the string; this smaller array is considered to
be of type C.

Type B1. Here there are two subcases depending on whether the last dot in the array is in the upper
or lower row. When the last dot is in the upper row, form a string exactly as above. List the labels of
the string as above, then

f0 =
(

l−1∑
i=1

Xki+1−ki

)
+ X−kl . (14)

In the earlier example (which is (G, K ) = (O (17), O (8) × O (9)) in type B1) the array with string is

�

1
�������

5

�

6

������
�

2
�

3
�������

7

�

8

�
�
�

�

4

.

Then f0 = X6−1 + X3−6 + X8−3 + X4−8 + X−4.
In the subcase for which the last dot lies in the lower row, form a string as above except that

the string passes through all blocks other than the last (farthest right) block. Listing the labels of the
string as above, f0 is given by formula (14). (Note that in this case, if we were to allow the string to
pass through the last block, then X−kl would lie in k, not in p.)

In both subcases the smaller array is obtained by deleting the dots of the string; this smaller array
is treated as type D1.

Type B2. There are also two subcases here. If the last dot in the array occurs in the upper row then
the string does not pass through the last block. In the other case it does. The formula for f0 is exactly
as in (14).

Again the smaller array is obtained by deleting the dots of the string; this smaller array is treated
as type D1.

Type D1. Form a string passing through each block, including the last, however if there is just one
block then no string is to be formed. Listing the labels as above

f0 =
(

l−1∑
i=1

Xki+1−ki

)
+ X−(kl−1+kl).

Again the smaller array is obtained by deleting the dots of the string. This smaller array is treated as
type B1 (resp., B2) when the last dot in the string is in the lower (resp., upper) row.

Type D2. Form a string passing through each block and list the labels as in the other cases. Then

f0 =
(

l−1∑
Xki+1−ki

)
+ X−kl .
i=1
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Delete the dots of the string; the smaller array is to be treated as type B1 (resp., B2) if the last dot in
the string is in the lower (resp., upper) row.

For each type, f is essentially constructed by choosing f1 in the smaller array in the same way
that f0 was chosen in the original array. However, there is an identification needed here. When (G, K )

is of type D1, the smaller array is of type B1 or B2. The algorithm calls for a weight vector of the type
X−kl , which does not appear to lie in the even orthogonal Lie algebra. The point is that in type D1, the
reduction to type B1 or B2 (as specified above) comes from an embedding of an odd orthogonal group
into the even orthogonal group; this is spelled out carefully in Section 3.2. The weight vector X−kl is
in fact a sum of two root vectors in the even orthogonal Lie algebra g. Therefore, when constructing
the f i, i > 0, we must do the following when f i−1 is constructed from an array of type D1. The weight
vector X−kl of (14) must be replaced by Xk′−kl − X−(k′+kl) , where k′ is the label of the last dot in the
string for the previous (type D1) array.

In this way we construct f0, f1, . . . , and f = f0 + f1 + · · · .
Here is an example. Consider type B1 with λ = (10,8,7,6,2,1 | 9,5,4,3). The pair is therefore

(G, K ) = (O (21), O (12) × O (9)). The array with the first string indicated is

�

1

�
�
��

7

����������

2
�

3
�

4
����������

8

�

9

�

10

������
�

5
�

6

.

The recipe for type B1 gives

f0 = X7−1 + X4−7 + X10−4 + X6−10 + X−6.

The smaller array is the following, and is treated as type D1:

�

2
�

3
�������

8

�

9

�
�
�

�

5

.

Therefore, f1 = X9−3 + X5−9 + X−(5+9). Since the array for f1 is of type D1, our smaller array is
treated as type B2. The smaller array is

�

2

�
�
��

8
.

Eq. (14) calls for f2 = X8−2 + X−8, however we must replace X−8 by X5−8 − X−(5+8) . Therefore,
f2 = X8−2 + X5−8 − X−(5+8) . We have now determined f = f0 + f1 + f2.

The proof of the following proposition is given in Section 3.3.

Proposition 15. Given λ as in (11) and a corresponding closed orbit Q = K ·b in B, the element f constructed
above is generic in n− ∩ p.
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3.2. The doubled arrays

To understand the algorithm for the construction of f of the previous section, as well as our
description of components of the fiber (given in Section 4), it is extremely useful to consider the
embeddings of (G, K ) into (Ĝ, K̂ ). This leads to the formation of a ‘doubled array’. This doubled array
is in fact an array for the closed orbit Q̂ in B̂ (cf. Section 2.3). Furthermore we will see that our
f ∈ n− ∩ p is (essentially) the generic element in n̂− ∩ p̂ constructed in [1, Section 3]. This will allow
us to prove that f is generic in n− ∩ p.

Recall from Section 2.3 that given λ (a conjugate of (n,n − 1, . . . ,2,1)) and the corresponding
closed K -orbit Q in B, there is λ̂ ∈ ĥ∗ and a closed K̂ -orbit Q̂ = K̂ · b̂ in B̂. We have seen how an
array is determined by λ. We refer to the array for λ̂ (constructed in [1] for the general linear group
Ĝ) as the doubled array.

For each of the five types we describe the following.

(1) The doubled array.
(2) The ‘first’ string through the doubled array.
(3) A subgroup G1 ⊂ G , which forms the basis of our later induction arguments.

Type C. The doubled array is formed from the original array by reflecting about a point to the right
of the array. The dots in the upper row are labelled with 1,2, . . . ,n (from left to right) and the dots
in the lower row are labelled with n + 1,n + 2, . . . ,2n.

In our earlier example

λ = (7,6,4,3 | −1,−2,−5),

λ̂ = (7,6,4,3,−1,−2,−5 | 5,2,1,−3,−4,−6,−7)

and the doubled array is

�

1
�

2

�

8

�

3
�

4

�

9

�

10

+
�

5
�

6

�

11

�

12

�

7

�

13

�

14
.

(Note that the original array has been reflected about the ‘+’ sign.)
A string is formed through the doubled array by passing through the rightmost dot in each block

left of center and through the leftmost dot in each block right of center. In the example this is

�

1
�

2

�
�
��

8

	
	
	

		
�

3
�

4









�

9

�

10

�
�
�+

�

5











�

6

�

11

	
	

	
		

�

12

�

7

�
�
��

13

�

14
.

Therefore, the string in (13) is reflected, then connected in the middle.
The crucial observation is the following. Let the labels of the dots in the string through the doubled

array be j1, j2, . . . , j2l (with the dot labelled by ji appearing left of the dot labelled by ji+1); recall
that k1, . . . ,kl are the labels of the dots of the string in the original array. Then by Eqs. (5) we have

f0 =
l−1∑

Xki+1−ki + X−2kl =
2l−1∑

E ji+1, ji
i=1 i=1
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Note that

f0(e ji ) = e ji+1 , if i = 1,2, . . . ,2l − 1,

f0(ek) = 0, otherwise. (16)

Continuing with the construction of f1, f2, . . . we conclude that the tableau of f coincides with
that of the generic element of [1].

By the symmetry of the string, the set S1 = { j1, . . . , j2l} is τ -stable. It follows that the symplectic
form is nondegenerate on

W1 = spanC{ek: k ∈ S1}.

Therefore, C2n = W1 ⊕ V 1, with V 1 := W ⊥
1 = spanC{e j: j /∈ S1}. Set

G ′
1 = {

g ∈ G: g(W1) ⊂ W1 and g|V 1 = IdV 1

}
,

G1 = {
g ∈ G: g(V 1) ⊂ V 1 and g|W1 = IdW1

}
.

Thus G1 and G ′
1 are commuting complex symplectic groups of ranks n − l and l.

Since f0 lies in g′
1, we may choose a normal triple {e0,h0, f0} inside g′

1. Therefore, the sl(2) f0 :=
spanC{e0,h0, f0} is contained in g′

1. Since the rank of f0 is 2l − 1 (by (16)), f0 is a principal nilpotent
element in g′

1.
Now consider G1 acting on V 1 and identify V 1 with C2(n−l) using the ordered basis {e1, e2,

. . . , e2n} \ S1. Then the symplectic form defined by (4) restricted to V 1 has matrix of the same form as
(4) (with respect to the ordered basis). Setting K1 = K ∩ G1, we see that the pair (G1, K1) is identified
with a lower rank pair of type C. Furthermore,

Ĝ1 = {
g ∈ Ĝ: g(V 1) ⊂ V 1 and g|W1 = IdW1

}
may be identified with a general linear group and we have an embedding of (G1, K1) into (Ĝ1, K̂1).
One also sees that the restriction of λ gives a λ1, and the array for λ1 is obtained from that of λ

by deleting dots for the first string, as described in Section 3.1. One easily checks that b1 := b ∩ g1
(resp., h1 := h ∩ g1) is a Borel (resp., Cartan) subalgebra of g1. In fact b1 is defined by λ1. Write
n

−
1 = n− ∩ g1, then b1 = h1 + n

−
1 . Then f1 was chosen in n

−
1 ∩ p by the same procedure that f0 was

chosen in n− ∩ p.

Type B1. The doubled array is formed by reflecting the original array about a vertical line to the right
of the array and placing an additional dot in the lower row along the vertical line. The dots are to be
numbered with 1,2, . . . ,2p along the upper row and with 2p + 1,2p + 2, . . . ,2n + 1 along the lower
row. In the example of the previous section

λ = (8,5,4,1 | 7,6,3,2),

λ̂ = (8,5,4,1,−1,−4,−5,−8 | 7,6,3,2,0,−2,−3,−6,−8)

and the doubled array is
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�

1

�

9

�

10

�

2
�

3

�

11

�

12

�

4

�

13

�

5

�

14

�

15

�

6
�

7

�

16

�

17

�

8

.

The first string is formed so as to pass through the blocks as for type C and to pass through the
middle dot of the center block. In the example we have

�

1










�

9

�

10

	
	
	

		
�

2
�

3









�

11

�

12

�
�
�
�

4

�
�
��
13

�
�
�
�

5

�
�
��
14

	
	
	

		

�

15

�

6












�

7

�

16

	
	
	

		

�

17

�

8

.

Note the symmetry of the string.
It is worth considering a second example. Take

λ = (6,5,2 | 4,3,1),

λ̂ = (6,5,2,−2,−5,−6 | 4,3,1,0,−1,−3,−4)

and the doubled array is

�

1
�

2










�

7

�

8

�
�
�
�

3









�

9

�

10

	
	

	
		

�

11

�

4

�
�
��

12

	
	
	

		

�

13

�

5
�

6

.

Let S1 = { j1, j2, . . . , j2l+1} be the labels of the dots in the string (listed as they appear from left to
right in the doubled array). Note that jl+1 labels the dot in the middle of the center block. By Eq. (8)

f0 =
l∑

i=1

E ji+1, ji −
2l∑

i=l+1

E ji+1, ji

and

f0(e ji ) =
{

e ji+1 if i = 1, . . . , l,

−e ji+1 if i = l + 1, . . . ,2l.

Therefore, as for type C, the string for f0 passes through each block in the doubled array.
Note that the two examples illustrate the difference between the two subcases in the algorithm

for type B1.
By the symmetry of the string, the set S1 is τ -stable. Therefore the symmetric form is nondegen-

erate on

W1 = spanC{e j1 , . . . , e j2l+1} and

V 1 = (W1)
⊥ = spanC{e j: j /∈ S1}.
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Set

G ′
1 = {

g ∈ G: g(W1) ⊂ W1 and g|V 1 = IdV 1

}
,

G1 = {
g ∈ G: g(V 1) ⊂ V 1 and g|W1 = IdW1

}
.

Then G ′
1 and G1 are commuting complex groups; G ′

1 is an odd orthogonal group of rank l and G1 is
an even orthogonal group of rank n − l.

As in the type C case, one may form sl(2) f0 , a copy of sl(2) which is contained in g′
1 and con-

tains f0. Since W1 is irreducible for sl(2) f0 , we see that f0 is a principal nilpotent element in g′
1.

Now consider G1 acting on V 1. Identify V 1 with C2(n−l) using the ordered basis {e1, e2,

. . . , e2n+1} \ S1. Then the symmetric form defined by (7), restricted to V 1, has matrix of the same
form as (7) (with respect to the ordered basis). Setting K1 = K ∩ G1, we see that the pair (G1, K1) is
identified with a pair of type D1. Furthermore,

Ĝ1 = {
g ∈ Ĝ: g(V 1) ⊂ V 1 and g|W1 = IdW1

}
may be identified with a general linear group and we have an embedding of (G1, K1) into (Ĝ1, K̂1).
One also sees that the restriction of λ gives a λ1, and the array for λ1 is obtained from that of λ by
deleting dots for the first string, as described in Section 3.1. A similar comment holds for λ̂ and the
doubled array.

Type B2. This case is entirely analogous to the type B1 case. There is one difference. Although the
doubled array is formed by reflecting the array about a vertical line right of the array, as above, the
additional dot is placed in the center of the upper row.

Type D1. This case is slightly more complicated than the previous cases. The doubled array is formed
by reflecting the array about a vertical line to the right of the array. The dots are numbered with
1,2, . . . ,2p along the upper row and by 2p + 1,2p + 2, . . . ,2n along the lower row.

In the earlier example

λ = (8,5,4,1 | 7,6,3,2),

λ̂ = (8,5,4,1,−1,−4,−5,−8 | 7,6,3,2,−2,−3,−6,−7)

and the doubled array is

�

1

�

9

�

10

�

2
�

3

�

11

�

12

�

4
�

5

�

13

�

14

�

6
�

7

�

15

�

16

�

8

.

A string through the array is slightly different from the other cases. The string passes through
the rightmost dot in each block left of the center block and through the leftmost dot in the blocks
right of center, as in the other cases. However, the two dots closest to the vertical line in the cen-
ter (those labelled by either p, p + 1 or 2p + q,2p + q + 1) are each connected to both dots in
the string which lie in the two blocks adjoining the center block. This is illustrated in the exam-
ple by
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�

1










�

9

�

10

	
	
	

		
�

2
�

3









�

11

�

12

�
�
�

������
�

4
������

�

5

�
�
��

13

	
	
	

		

�

14

�

6











�

7

�

15

	
	

	
		

�

16

�

8

.

Let S1 = { j1, j2, . . . , j2l} be the labels of the dots in the string (listed from left to right). Then,
using Eq. (9) and the algorithm for finding f0, we have

f0 =
l−1∑
i=1

E ji+1, ji ± (E jl+1, jl−1 − E jl+2, jl ) −
2l−1∑

i=l+2

E ji+1, ji .

With + (resp., −) occurring when the dot labelled by kl (that is the middle block of the doubled
array) is in the lower (resp., upper) row. The ± signs in the following three paragraphs follow the
same convention.

One easily checks that

f0(e ji ) = e ji+1 , for i = 1,2, . . . , l − 2,

f0(e jl−1) = e jl ± e jl+1 ,

f0(e jl ± e jl+1) = ∓2e jl+2 ,

f0(e ji ) = −e ji+1 , for i = l + 2, . . . ,2l − 1, (17)

and the kernel of f0 is spanned by

e jl ∓ e jl+1 , e j2l , and e j, j /∈ S1.

It is a consequence that f 2l−2
0 	= 0 and f 2l−1

0 = 0.
Now we describe how to pass to a lower rank orthogonal group. Note that S1 is τ -stable. Let

W1 = spanC{e j1 , . . . , e jl−1, e jl ± e jl+1 , e jl+2 , . . . , e j2l },
V 1 = (W1)

⊥ = spanC
({e jl ∓ e jl+1} ∪ {e j: j /∈ S1}

)
and set

G ′
1 = {

g ∈ G: g(W1) ⊂ W1 and g|V 1 = IdV 1

}
,

G1 = {
g ∈ G: g(V 1) ⊂ V 1 and g|W1 = IdW1

}
.

We have several easily verified facts. G1 and G ′
1 are commuting odd orthogonal groups having ranks

n − l and l − 1. h′
1 = h ∩ g′

1 is a Cartan subalgebra of g′
1. As in the other cases, there is a copy

of sl(2), which we call sl(2) f0 , contained in g′
1 that contains f0. Also, W1 is an irreducible sl(2) f0

representation, by (17). Therefore, f0 is a principal nilpotent element in g′
1.

Identifying V 1 with C2(n−l)+1 using the ordered basis

{
e1, . . . , ekl−1,

ekl ∓ ekl+1√ , ekl+2, . . . , e2n

}
\ {ek: k ∈ S1}
±2
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the symmetric form is as in (7). Thus, (G1, K1) is of type B1 (resp., B2) when the center block is in
the lower (resp., upper) row. One easily sees that h1 = h∩g1 is a Cartan subalgebra of g1. The weights
and a choice of weight vectors for p ∩ g1 are

±(μi ± μ j); X±(i± j), for i � p < j, i, j /∈ S1,

±μi; Xi−kl − Xi+kl ; X−(i−kl) − X−(i+kl), for i /∈ S1.

Type D2. To form the doubled array reflect the array about a vertical line to the right of the array.
Then add two dots, one in the upper row just left of the vertical line and one in the lower row just
right of the vertical line. Then number the doubled array as in the other orthogonal cases.

Form a string through the doubled array by reflecting the original string about the vertical line and
connecting the two pieces by passing through one of the two new dots in the middle so as to continue
to alternate between upper and lower rows. Now write the labels of the string as j1, j2, . . . , j2l+1.
Then

f0 =
l∑

i=1

E ji+1, ji −
2l∑

l+1

E ji+1, ji

and

f0(e ji ) =
⎧⎨⎩

e ji+1 , i = 1, . . . , l,

−e ji+1 , i = l + 1, . . . ,2l,

0, i = 2l + 1.

Define W1, V 1, G1, Ĝ1, . . . as for types B1 and B2.
Here is an example. Let λ = (6,5,2 | 4,3,1). Then the array with string is

�

1
�

2









�

4

�

5

�
�
�
�

3

�
�
��

6

.

The doubled array with string is

�

1
�

2










�

8

�

9

�
�
�
�

3

�
�
��

10

�
�
�
�

4









�

11

�

12

�
�
�
�

5

�
�
��

13

	
	
	

		

�

14

�

6
�

7

.

Note that G1 is of type B1.

For all types we now define a sequence of subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gm , which ends when
the algorithm gives fm = 0. This is done inductively. The subgroup G1 has already been defined. The
definition of G1 uses the orthogonal subspaces W1 and V 1 of V = Cn̂ . To define Gi inside Gi−1, we
first form W i, V i ⊂ V i−1 by the same procedure that was used to define W1, V 1. Then

G ′
i = {

g ∈ Gi−1: g(W i) ⊂ W i and g|V i = IdV i

}
,

Gi = {
g ∈ Gi−1: g(V i) ⊂ V i and g|W i = IdW i

}
.
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Setting Ki = K ∩ Gi , we get pairs (Gi, Ki) as in (1). It is easy to check that hi = h ∩ gi is a Cartan
subalgebra of ki . Also, λi = λ|hi is regular for gi and therefore defines a positive system 	+(hi,gi)

and a Borel subalgebra bi , which equals b ∩ gi .
We may conclude the following from this discussion.

(i) For each i there is a standard triple ei,hi, f i contained in g′
i+1.

(ii) Each f i is a principal nilpotent element in g′
i+1.

(iii) Each f i commutes with g j , for j � i + 1. In particular, the f i are mutually commuting.
(v) f i + f i+1 + · · · fm−1 is the generic element constructed by the algorithm applied to the pair

(Gi, Ki).

Define

Ĝ i := {
g ∈ Ĝ i−1: g(V i) ⊂ V i and g|W i = IdW i

}
and K̂ i := K̂ ∩ Ĝ i . Then Ĝ i is a general linear group and (Gi, Ki) embeds into (Ĝ i, K̂ i).

3.3. Proof of Proposition 15

We first check that f is generic in n̂− ∩ p̂. The construction of [1, Section 3] says that the generic
elements in n̂− ∩ p̂ have tableau for which the number of boxes in the ith row is the number of
blocks in the array for ĝi−1. Since the sl(2) f i (= spanC{ei,hi, f i}) mutually commute we may form
a standard triple {e,h, f } by e = ∑

ei and h = ∑
hi . Let sl(2) f denote the span of this triple. Then

each W i is an irreducible sl(2) f representation. It follows that the tableau of f has dim(W i) boxes
in the ith row. This is exactly the number of blocks in the array for gi−1. Therefore, f is generic
in n̂− ∩ p̂.

Now we need to show that f is generic in n− ∩ p. Suppose that f ′ ∈ n− ∩ p. Then f ′ ∈ n̂− ∩ p̂,

so f ′ ∈ K̂ · f ⊂ Ĝ · f . By [6, Section 6.2], applied to gl(2n,C), rank(( f ′)k) � rank( f k), for all k ∈ Z�0.
Applying the same closure condition to sp(2n,C) we conclude f ′ ∈ G · f . In particular, dim(G · f ′) �
dim(G · f ); so dim(K · f ′) � dim(K · f ). Therefore, K · f is the orbit of greatest dimension meeting
n− ∩ p, so f is generic in n− ∩ p.

Remark 18. The shape of the tableau for K · f is described above. To describe the signed tableau
we need to fill in the signs. This is done by beginning the ith row with a + sign if the last dot
in the ith string (that is, the string in the doubled array constructed in gi ) is in the upper row,
and a − sign otherwise. Observe that in the symplectic case there are always an even number
of blocks in the doubled array, so all rows in the tableau have even length. Furthermore, any two
rows of the same length must begin with the same sign. In the orthogonal case all rows have odd
length and any two of the same length must begin with the same sign. One may see that any
signed tableau described above occurs as K · f with f generic for some closed K -orbit Q in the
flag variety.

4. Description of the components

Let Q = K · b be any closed orbit and let f be the generic element in n− ∩ p constructed in Section
3. As mentioned in the introduction, the components of μ−1( f ) ‘associated’ to Q are those that lie in
the conormal bundle T ∗

QB. In this section we explicitly describe these components. The statement is
contained in Theorem 26.

4.1. Parabolic subgroups

Recall from Section 3.1 that each closed K -orbit Q in B is associated to a positive system of roots
	+ with respect to a Cartan subalgebra h + a (with a 	= 0 only in type D2) and a Borel subalgebra
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b = (h + a) + n− . Let Π be the set of simple roots and S the set of roots in Π that are compact (in
the sense that g(α) ⊂ k). Note that in type D2, if a root α is compact then α|a = 0, so we may identify
α with a root of h in k. Define 〈S〉 to be the set of (compact) roots in the span of S . The subset S
determines a parabolic subalgebra q̃ of g containing b:

q̃ =
(

h + a +
∑

β∈〈S〉
g(β)

)
+

∑
β∈	+\〈S〉

g(−β) = l̃ + ũ−,

and parabolic subgroup Q̃ = NG (̃q) of G .
Now define a parabolic subgroup Q of K by

Q := NG (̃q) ∩ K = NK (̃q).

The Lie algebra of Q is

q =
(

h +
∑

β∈〈S〉
g(β)

)
+

∑
β∈	+

c \〈S〉
g(−β) = l + u−. (19)

One easily sees that Q ⊂ NK (q) and that equality fails in general.
Similarly define parabolic subgroups Q̃ i of Gi and Q i of Ki . Write qi = li +u

−
i as in (19). Using the

convention that G0 = G , K0 = K and Q 0 = Q , and similarly for the Lie algebras, we now state several
very simple properties of these parabolics.

Lemma 20. The following hold.

(1) Li normalizes n
−
i ∩ p, i = 0, . . . ,m.

(2) Ri := Li ∩ Q i−1 is a parabolic subgroup of Li , i = 1,2, . . . ,m − 1.
(3) u

−
i ⊂ u

−
i−1 , i = 1,2, . . . ,m − 1.

Proof. Note that Li ⊂ Q̃ i , so Li normalizes ũ
−
i . Since Li ⊂ Ki , Li also normalizes ũ

−
i ∩ p. But ũ

−
i ∩ p =

n
−
i ∩ p. Statement (1) follows.

Since qi−1 contains the Borel subalgebra bi−1 ∩ ki−1 = b ∩ ki−1, ri contains the Borel subalgebra
bi ∩ li . This proves that li ∩ qi−1 is a parabolic subalgebra of li .

Part (3) follows from the fact that li−1 ∩ ki ⊂ li , which is verified for each case by considering the
compact roots simple for gi−1 and gi . For example, in type C, if a root −(ε j − ε j+1) is simple for gi−1
then j, j + 1 or − j,−( j + 1) are in the same block in the array for gi−1. But if the root space for
−(ε j − ε j+1) is in ki , then both j, j + 1 or − j,−( j + 1) are also in the same block in the array for gi ,
so −(ε j − ε j+1) is simple and compact for gi . �
Remark 21. It is not always the case that Li ⊂ Li−1. A simple example occurs when (G, K ) =
(Sp(10),GL(5)) and λ = (5,4,2,1,−3). Then L1 � L0 = L, since 	(l) = {±(ε1 − ε2),±(ε3 − ε4)}, but
	(l1) = {±(ε1 − ε3)}. This is roughly because in passing from the original array to the array obtained
by removing the first string, the two blocks in the upper row ‘collapse’ down to one block.

Remark 22. The sequence G = G0 ⊃ G1 ⊃ · · · ends when Gm = Km .

Remark 23. For each of the five types, the simple roots that are compact (i.e., the roots in S) may be
read off the array. For type C, the set S consists of εi − εi+1 when i and i + 1 are labels of dots in the
same block. For the orthogonal cases, these same roots are in S along with one more in the following
cases:
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εn in type B1 when the last dot is in the lower row,

εp in type B2 when the last dot is in the upper row,

εn−1 + εn in type D1 when the last two dots are in the lower row,

εp−1 + εp in type D1 when the last two dots are in the upper row.

The Levi factors L have the following form. Let � be the number of blocks in the array (so � = l for
types C, D1 and D2, and � = l or l + 1 for the two subcases of types B1 and B2). We let b1, . . . ,b� be
the sizes of the blocks in the array:

Type C, L � GL(b1) × · · · × GL(b�).

Types B1/B2, L � GL(b1) × · · · × GL(b�) × O (1) or

L � GL(b1) × · · · × GL(b�−1) × O (2b� + 1).

Type D1, L � GL(b1) × · · · × GL(b�−1) × O (2b�).

Type D2, L � GL(b1) × · · · × GL(b�) × O (1) × O (1).

The two subcases for types B1/B2 correspond to the two subcases in the construction of the strings
in Section 3.1. By considering each case, one sees that l ∩ l1 is as follows:

Type C, gl(b1 − 1) ⊕ · · · ⊕ gl(b� − 1).

Types B1/B2, gl(b1 − 1) ⊕ · · · ⊕ gl(b� − 1) or

gl(b1 − 1) ⊕ · · · ⊕ gl(b�−1 − 1) ⊕ so(2b�).

Type D1, gl(b1 − 1) ⊕ · · · ⊕ gl(b�−1 − 1) ⊕ so(2b� − 1).

Type D2, gl(b1 − 1) ⊕ · · · ⊕ gl(b� − 1).

A useful description of the parabolic subalgebras qi may be given in terms of stabilizers of certain
flags in Cn̂ . To describe this it suffices to see how q = q0 in k is the stabilizer of a flag; the same
description applies to qi in ki .

Let (G, K ) be any of the five types. Let l be the length of the first string through the array (as in
Section 3.1). Now consider the doubled array. Define an isotropic flag

{0} = F0 � F1 � · · · � Fl � Cn̂, types C, B1, B2 and D2,

{0} = F0 � F1 � · · · � Fl−1 � Cn̂, type D1 (24)

by

F j = spanC{ei: i is the label of a dot in one of the j rightmost blocks}.
It is easy to verify that q (resp., q̃) is the stabilizer in k (resp., g) of this flag.

The following is also easily checked.

Lemma 25. The stabilizer of the flag (24) in K is contained in Q .

This lemma will be used in the proof of Lemma 31 below.
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4.2. The main theorem

The structure of the components of Springer fibers associated to closed K -orbits in B is given
by the following theorem. We continue with a closed K -orbit in B and the generic element f as
constructed in Section 3. Let Li,e (resp. Q i,e) denote the identity component of Li (resp., Q i). Define
C f := Lm,e · · · L1,e Le · b.

Theorem 26. C f is a component of the Springer fiber μ−1( f ) that is contained in γ −1
Q ( f ). Furthermore,

γ −1
Q ( f ) =

⋃
z∈AK ( f )

zC f = Lm · · · L1L · b.

The proof of this theorem follows from several lemmas. The argument is to see that (a) C f is a
closed irreducible subset of γ −1

Q ( f ) and (b) dim(C f ) = dim(μ−1( f )). Then we show AK ( f ) · C f =
Lm · · · L1L · b.

Since each Li,e is irreducible, so is C f . In order to show that C f is closed in B we apply [7, Section
0.15]. In particular, the statement we use is that if a connected reductive algebraic group H acts on a
variety B and A is a closed subset of B that is stable under a parabolic subgroup of H , then H · A is
closed in B .

Lemma 27. The following hold for i = 0,1,2, . . . ,m.

(1) Li,e · · · L1,e L · b = Q i,e · · · Q 1,e Q e · b.
(2) Ri,e = Li,e ∩ Q i−1,e stabilizes Li−1,e · · · L1,e L · b, i > 0.
(3) Li,e · · · L1,e Le · b is closed in B.

Proof. The proof of (1) is by induction on i. The i = 0 case is Le · b = Q e · b, which is immediate since
U− ⊂ B . Assume Li−1,e · · · L1,e Le · b = Q i−1,e · · · Q 1,e Q e · b. Then

Q i,e · · · Q 1,e Q e · b = Li,eU−
i Q i−1,e · · · Q 1,e Q e · b

= Li,e Q i−1,e · · · Q 1,e Q e · b, by Lemma 20(3),

= Li,e Li−1,e · · · L1,e Le · b, by induction.

Now (2) is immediate.
Part (3) is also proved by induction on i, using the comments preceding the statement of the

lemma. The i = 0 case is clear since Le · b is a flag variety. The inductive hypothesis is that
Li−1,e · · · L1,e Le · b is closed. By (2) this set is also Ri,e-stable. Since Ri,e is a parabolic subgroup of
Li,e (by Lemma 20(2)), it follows that Li,e · · · L1,e Le · b is closed. �
Lemma 28. Lm · · · L1L · b ⊂ γ −1

Q ( f ).

Proof. It is enough to show that LL1 · · · Lm ⊂ N( f ,n− ∩ p) (cf. Section 2.1). We apply induction on
dim(G). Let � ∈ L, �i ∈ Li, i = 1,2, . . . ,m − 1. Since Gi , i > 0, stabilizes f0

��1 · · · �m · f = �
(

f0 + �1 · · ·�m · ( f1 + · · · + fm)
)

This lies in � · ( f0 +n
−
1 ∩p) by induction. But f0 ∈ n− ∩p, which is normalized by L (by Lemma 20(3)),

and n
−
1 ∩ p ⊂ n− ∩ p. Therefore, ��1 · · ·�m · f ∈ n− ∩ p. �
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Lemma 29. The dimension of μ−1( f ) equals

dim(L/L ∩ B) +
m∑

j=1

dim(L j/R j).

Proof. For this proof we set di equal to the number of boxes in the ith row of the tableau corre-
sponding to f , so di = dim(W i). Let r be the number of rows. As in Remark 23, � is the number of
blocks in the array. Note that d1 = 2l in type C, d1 = 2l + 1 in types B1, B2 and D2, and d1 = 2l − 1 in
type D1. We also use the temporary notation f 1 for f − f0 = f1 + f2 +· · · . Note that f 1 is the generic
element in n

−
1 ∩ p constructed by our algorithm and the tableau of f 1 is the tableau of f with the

first row removed.

Claim 1.

dim
(

ZG( f )
) − dim

(
ZG1

(
f 1)) =

{
dim(l) − dim(l ∩ l1), types C, B1, B2, D1,

dim(l) − dim(l ∩ l1) + 1, type D2.

The proof is case by case. In type C the formula

dim
(

ZG( f )
) = 1

2
dim(V ) +

r∑
i=1

(i − 1)di,

with V = Cn̂ = C2n , is well known and may be found in [8, Section 3]. Applying this formula also to
f 1 ∈ g1 gives

dim
(

ZG( f )
) − dim

(
ZG1

(
f 1)) = 1

2
dim(V ) +

r∑
i=1

(i − 1)di − 1

2

(
dim(V ) − d1

) −
r∑

i=2

(i − 2)di

= d1

2
+

r∑
i=2

di

= dim(V ) − d1

2
= 2n − �.

By Remark 23, with bi equal to the number of dots in the ith block, we have

dim(l) − dim(l ∩ l1) =
�∑

i=1

b2
i −

�∑
i=1

(bi − 1)2 = 2
�∑

i=1

bi − � = 2n − �.

This proves the claim for type C.
In the orthogonal cases the formula for the dimension of the centralizer is also given in [8, Sec-

tion 3]. Since the tableau of f has only rows of odd length, the formula says

dim
(

ZG( f )
) = 1

2
dim(V ) +

r∑
(i − 1)di − r

2
.

i=1
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Applying this formula to f 1 we get

dim
(

ZG( f )
) − dim

(
ZG1

(
f 1)) = dim(V ) − d1 + 1

2
.

In types B1 and B2 (again using Remark 23) we get

dim(l) − dim(l ∩ l1) =
{

dim(V ) − (� + 1),

dim(V ) − �

for the two subcases. As noted above, 1
2 (d1 + 1) = � + 1, � in the two subcases. For types D1 and D2

dim(l) − dim(l ∩ l1) =
{

dim(V ) − �, type D1,

dim(V ) − � − 2, type D2.

In these cases 1
2 (d1 + 1) = �, � + 1. The claim now follows for types B1, B2, D1 and D2.

Claim 2.

dim
(

ZG( f )
) =

{
dim(l) + 2

∑m
i=1 dim(li ∩ ui−1), types C, B1, B2, D1,

dim(l) + 2
∑m

i=1 dim(li ∩ ui−1) + 1, type D2.

We prove this by induction on m. Consider the cases of types C, B1, B2 and D1. In these cases all pairs
(Gi, Ki) have type C, B1, B2 or D1.

dim
(

ZG( f )
) = dim

(
ZG1

(
f 1)) + dim(l) − dim(l ∩ l1), by Claim 1,

=
(

dim(l1) + 2
m∑

i=2

dim(li ∩ ui−1)

)
+ dim(l) − dim(l ∩ l1), by induction,

= dim(l) + 2
m∑

i=2

dim(li ∩ ui−1) + 2 dim(l1 ∩ u0), since l0 ∩ l1 + l1 ∩ u0 is

a Levi decomposition of a parabolic subalgebra r1 of l1.

The case of type D2 is proved in the same way.
Now we are ready to prove the lemma. The components of μ−1( f ) all have the same dimension

[10]. This dimension is given by dim(n) − 1
2 dim(G · f ), a formula of Springer and Steinberg (see [7,

Chapter 6] for a discussion of this formula). Note that

dim(n) − 1

2

(
dim(g) − dim(l)

) = 1

2

(
dim(l) − rank(g)

)
=

{
dim(L/L ∩ B), types C, B1, B2, D1,

dim(L/L ∩ B) − 1
2 , type D2.
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Therefore, in all cases,

dim
(
γ −1

Q ( f )
) = dim(n) − 1

2

(
dim(G) − dim

(
ZG( f )

))
= dim(n) − 1

2

(
dim(g) − dim(l)

) + 1

2

(
dim

(
ZG( f )

) − dim(l)
)

= dim(L/L ∩ B) +
m∑

i=1

dim(li ∩ ui−1).

The lemma now follows by noting that

dim(Li/Ri) = dim(Li/Li ∩ Q i−1) = dim(li ∩ ui−1). �
Lemma 30.

dim(C f ) = dim(L/L ∩ B) +
m∑

j=1

dim(L j/R j).

Proof. By Lemma 28, C f ⊂ γ −1
Q ( f ), so it suffices to prove that the left-hand side is greater than or

equal to the right-hand side. Consider li ∩ ui−1 (which has the same dimension as Li/Ri ), where ui−1
is opposite to u

−
i−1. Let 	(i) be the compact roots β so that g(β) ⊂ li ∩ ui−1 and let 	(0) be the

roots β so that g(β) ⊂ l ∩ n. Then 	(0),	(1), . . . ,	(m) are pairwise disjoint and
∑m

i=0 |	(i)| equals
the right-hand side of the expression in the statement of the lemma. Write N for the connected
group with Lie algebra

∑
β∈	+ g(β) . Then the map ϕ : N → N · b,ϕ(n) = n · b is an isomorphism of

varieties. Enumerating the roots in
⋃m

i=0 	(i) as β1, β2, . . . , βd , listing roots in 	(m) first, then those
in 	(m − 1), etc., gives a map

Uβ1 × · · · × Uβd → N,

(u1, . . . , ud) → u1 · · · ud,

where Uβ = exp(CXβ). By [3, Section 14.4] the image of this map is the d-dimensional subvariety
Uβ1 Uβ2 · · · Uβd . Therefore, ϕ(Uβ1 Uβ2 · · · Uβd ) is a d-dimensional subvariety of B contained in C f . �

At this point we conclude that C f is an irreducible component of μ−1( f ). This proves the first
part of the theorem. By Proposition 2, the second part of the theorem will follow if we show that
AK ( f ) · C f ⊂ Lm · · · L1L ·b. Since each element of AK ( f ) is represented by an element of the reductive
part of Z K ( f ), it suffices to prove the following lemma.

Lemma 31. If k ∈ Z K ( f )red, then k · C f ⊂ Lm · · · L1L · b.

Proof. The reductive part of Z K ( f ) is the set of k ∈ K that commute with sl(2) f , that is, the set of

intertwining operators for the representation of sl(2) f on V (= Cn̂) coming from K .
Recall that V = W1 ⊕ · · · ⊕ Wr as sl(2) f -representation, with W i as at the end of Section 3.2. An

intertwining operator must preserve isotypic subspaces and is a product of intertwining operators,
each acting by the identity on all isotypic subspaces except one. Therefore we may assume that k is
of this form. Therefore, assume that k preserves an isotypic subspace W i ⊕ W i+1 ⊕· · ·⊕ W j , for some
i < j, and acts by the identity on other isotypic subspaces. Then k commutes with G j, G j+1, . . . , Gm .
We claim that Li−1 ⊃ · · · ⊃ L j−2 ⊃ L j−1 and k ∈ Li−1. If this is the case, then
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k · C f = kLm . . . L1L · b
= Lm . . . L j(kL j−1 . . . Li−1)Li−2 . . . L · b
= Lm . . . L j(kLi−1)Li−2 . . . L · b
= Lm . . . L j(Li−1)Li−2 . . . L · b
= C f ,

and the lemma will be proved.
By working in the pair (Gi−1, Ki−1) we may assume that k acts on the isotypic component for the

sl(2) f -subrepresentation of greatest dimension. Therefore, the isotypic component is W1 ⊕ · · · ⊕ W j ,
for some j, and the claim is that

L = L0 ⊃ L1 ⊃ · · · ⊃ L j−1 and k ∈ L.

We prove this claim.
If j = 1 then k acts as a scalar and lies in the diagonal Cartan subgroup H , which is in L, and the

claim is proved. Suppose that j > 1. As noted earlier, it is not always the case that L ⊃ L1. However,
in the present situation the subspaces W1, . . . , W j all have the same dimension. This means that in
passing from an array to the smaller array, no blocks collapse, i.e., the arrays for G, G1, . . . , G j−1 all
have the same number of blocks. In particular, by considering the flags preserved by the Q i , we see
that Q = Q 0 ⊃ Q 1 ⊃ · · · ⊃ Q j−1. The first part of the claim follows. For the second part, note that k
preserves weight spaces of the sl(2) f action. Since the first j strings pass through the same blocks,
any weight space in W1 ⊕ · · · ⊕ W j is contained in the span of all ei with i in a given block. By
considering the description of Q in terms of flags, we see that k ∈ L. �

The theorem is now proved, by the remarks following its statement. �
There are several consequences of the theorem worth mentioning. Recall that γ −1

Q ( f ) =
N( f ,n− ∩ p)−1 · b, with N( f ,n− ∩ p) = {k ∈ K : k · f ∈ n− ∩ p}.

Corollary 32. The following hold.

(1) N( f ,n− ∩ p) = (B ∩ K )LL1 · · · Lm.
(2) Suppose Y is generic in n− ∩ p, then there exist b ∈ B ∩ K , � ∈ L and �i ∈ Li so that Y = b��1 · · ·�m · f .

Proof. Suppose k ∈ N( f ,n− ∩ p). Then k−1 · b ∈ γ −1
Q ( f ) = Lm · · · L1L · b, so k�m · · ·�1� ∈ B ∩ K . This

proves (1).
For (2) note that the set of generic elements in n− ∩ p is (K · f ) ∩ (n− ∩ p), so k · f is generic if

and only if k ∈ N( f ,n− ∩ p). �
The statement of the theorem can be improved slightly for the symplectic group.

Corollary 33. For the pair (Sp(2n),GL(n)), there is just one component associated to each closed K -orbit in
B, i.e., C f = Lm · · · L1L · b.

Proof. This follows from the theorem because AK ( f ) = {e}. The stated form of C f follows since K
and all Ki are connected, so L and Li are also connected. �
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5. Associated cycles of discrete series representations

The description of γ −1
Q ( f ) given in Theorem 26, along with a theorem of J.-T. Chang, allows us

to compute associated cycles of discrete series representations of the groups Sp(2n,R) and S O e(p,q)

(with pq even). In the case of SU (p,q), this is discussed is some detail in [1, Section 6]. We do not
repeat this discussion here, but we give the algorithm for the computation.

Let Xλ be the Harish–Chandra module of a discrete series representation with Harish–Chandra
parameter λ (which we may assume is 	+

c -dominant). Therefore Xλ has infinitesimal character λ and
the lowest K -type has highest weight τ = λ + ρ − 2ρc . Since λ is regular, we may associate to λ a
positive system 	+ and a closed K -orbit Q = K · b, b = h + n− . This gives a generic element f in
n− ∩ p as in Section 3. The associated cycle is AC(Xλ) = mQ(λ)K · f . Chang’s theorem says that the
multiplicity mQ(λ) is given as follows. The weight τ determines a K -equivariant line bundle Lτ → Q.
Then

mQ(λ) = dim
(

H0(γ −1
Q ( f ), O(Lτ |γ −1

Q ( f ))
))

.

Our description of γ −1
Q ( f ) is used to compute the dimension of this space of sections.

Assume for the moment that (G, K ) = (Sp(2n),GL(n)). In this case each Li is a general linear group
and is therefore connected. The Borel–Weil Theorem states that H0(Q, O(Lτ )) � (W−τ )∗ , where W−τ

is the irreducible finite dimensional representation of K having lowest weight −τ . Letting w−τ be a
lowest weight vector in W−τ ,

dim
(

H0(γ −1
Q ( f ), O(Lτ |γ −1

Q ( f ))
)) = dim

(
spanC

{
k−1 w−τ : k ∈ N

(
f ,n− ∩ p

)})
.

Using our description of N( f ,n− ∩ p) given in Corollary 32 we have

dim
(

H0(γ −1
Q ( f ), O(Lτ |γ −1

Q ( f ))
)) = dim

(
spanC{Lm . . . L1L · w−τ }).

This may be computed inductively as follows. Write

spanC{Li . . . L1L · w−τ } =
∑

j

F−τ j ,

with F−τ j the irreducible representation of Li of lowest weight −τ j . Then decompose each F−τ j under
the action of Li ∩ Li+1. Write this as

F−τ j |Li∩Li+1 =
∑

k

U−τ jk ,

with U−τ jk the irreducible Li ∩ Li+1-representation of lowest weight −τ jk . The following lemma shows
that the span of Li+1 ·U−τ jk is the irreducible Li+1-representation E−τ jk of lowest weight −τ jk . It then
follows that

spanC{Li+1 . . . L1L · w−τ } =
∑

j,k

E−τ jk .

Lemma 34. For each i, spanC{Li+1 . . . L1L · w−τ } is annihilated by li+1 ∩ u
−
i .
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Proof. It suffices to show that (Li+1 ∩ U−
i )Li . . . L1L · w−τ ⊂ Li . . . L1L · w−τ . We show this by applying

induction on i to show that

Q i Li−1 . . . L1L ⊂ Li . . . L1L(B ∩ K ).

We have

Q i Li−1 . . . L1L = Li U
−
i Li−1 . . . L1L

⊂ Li U
−
i−1Li−1 . . . L1L, by Lemma 20(3),

= Li Q i−1Li−2 . . . L1L,

⊂ Li Li−1 . . . L1L(B ∩ K ), by induction. �
Note that the form of the subgroups Li (Remark (23)) shows that the branching rules needed are

those for GL(r − 1) ⊂ GL(r).
In the orthogonal group cases the same holds, except there are minor complications due to the fact

that the Li that appear are not necessarily connected. In this case branching rules for and S O (r −1) ⊂
S O (r) are also used.
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[9] D. Milic̆ić, Algebraic D-modules and representation theory of semisimple Lie groups, in: J.A. Wolf, M. Eastwood, R. Zierau

(Eds.), The Penrose Transform and Analytic Cohomology in Representation Theory, in: Contemp. Math., vol. 154, Amer.
Math. Soc., Providence, RI, 1993, pp. 133–168.

[10] N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology 16 (1977)
203–204.

[11] P. Trapa, Richardson orbits for real classical groups, J. Algebra 286 (2005) 386–404.


	Components of Springer ﬁbers associated to closed orbits for the symmetric pairs (Sp(2n),GL(n)) and (O(n),O(p)xO(q)) I
	1 Introduction
	2 Preliminaries
	2.1 Generalities on Springer ﬁbers
	2.2 Realizations of the pairs.
	2.3 Embeddings of (G,K) into (GL(n̂),GL(p̂)xGL(q̂))
	2.4 Nilpotent orbits

	3 Generic elements
	3.1 The algorithm for ﬁnding a generic element
	3.2 The doubled arrays
	3.3 Proof of Proposition 15

	4 Description of the components
	4.1 Parabolic subgroups
	4.2 The main theorem

	5 Associated cycles of discrete series representations
	References


