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ABSTRACT Protein stability cannot be understood without the correct description of the unfolded state. We present here an
efficient method for accurate calculation of atomic solvent exposures for denatured protein ensembles. The method used to
generate the ensembles has been shown to reproduce diverse biophysical experimental data corresponding to natively and
chemically unfolded proteins. Using a data set of 19 nonhomologous proteins containing from 98 to 579 residues, we report
average accessibilities for all residue types. These averaged accessibilities are considerably lower than those previously
reported for tripeptides and close to the lower limit reported by Creamer and co-workers. Of importance, we observe remarkable
sequence dependence for the exposure to solvent of all residue types, which indicates that average residue solvent exposures
can be inappropriate to interpret mutational studies. In addition, we observe smaller influences of both protein size and protein
amino acid composition in the averaged residue solvent exposures for individual proteins. Calculating residue-specific solvent
accessibilities within the context of real sequences is thus necessary and feasible. The approach presented here may allow a
more precise parameterization of protein energetics as a function of polar- and apolar-area burial and opens new ways to
investigate the energetics of the unfolded state of proteins.

INTRODUCTION

The unfolded state of proteins is as important as the native

state in determining protein stability and the mechanism of

the protein folding reaction (1–2). However, most folding

studies are focused on the native state due to the increased

facility of studying folded proteins.

The thermodynamic stability of proteins is dependent on a

delicate balance between different interactions involving

protein and solvent atoms in both the native and unfolded

states (2–3). However, there is still no general agreement on

the net contribution of the different fundamental interactions,

such as hydrogen bonds, van der Waals, etc. (3–7). On the

other hand, the hydrophobic effect, which describes the

observed tendency of apolar compounds to minimize their

exposure to water, is widely acknowledged as stabilizing the

native state (8–11). The experimental quantification of the

contribution of the hydrophobic effect to protein stability is

not trivial, one reason being that, unlike in the native state,

the side-chain solvent exposures in the unfolded state are

hard to estimate due to the large number of discrete confor-

mations available to the main chain. So far, side-chain acces-

sibilities have been approximated by calculations performed

on different models of the unfolded state, including Gly-X-

Gly extended tripeptides (12), Gly-X-Gly peptides with

dihedral angles characteristic of protein structures (13,14),

and Ala-X-Ala simulated ensembles (15), or, more recently,

by averages of peptide-fragment collections extracted from

native structures (16,17). Large differences in solvent

exposures have been reported depending on the model.

Until now, reported exposures have tended to be residue-

type averages, rather than residue-specific exposures calcu-

lated in specific sequences. The solvent accessibility in the

unfolded state is intimately linked to the conformational

sampling occurring on the backbone, and it has been shown

that neighboring residues limit the conformational space

sampled by certain amino acids (18,19). In addition, large

amino acids may bury the chain from the solvent more

effectively. Therefore, it is clear that both the interpretation

of stability mutational studies (20) and the parameterization

of protein stability calculations (21) could benefit from using

sequence-specific solvent exposure data calculated from

accurate models of unfolded protein ensembles.

The consensus view of the unfolded state is that of a large

ensemble of more or less randomized conformations in fast

equilibrium, although certain bias toward the native confor-

mation (22,23) or toward certain types of secondary struc-

ture, especially the polyproline II, has been reported in some

cases (24,25). At present, diverse structural techniques can

provide valuable structural information about highly disor-

dered proteins. Nuclear magnetic resonance, by measuring

residual dipolar couplings in partially aligned proteins (26),

has provided insight into the conformational sampling

observed in intrinsically and chemically unfolded proteins

(22,23,27–32). Paramagnetic relaxation enhancement exper-

iments measured in spin-labeled mutants of several proteins
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have provided information about the presence of long-range

contacts in unstructured chains (33–36). Small-angle x-ray

scattering experiments have become an important tool for the

study of size characteristics of the unfolded state (37–39).

Recently, we developed an algorithm, Flexible-Meccano,

which generates ensembles of realistic atomic models that

are compatible with biophysical data measured using NMR

and small-angle x-ray scattering (31).

We present here a fast method that provides sequence-

specific solvent exposures for any residue in a given unfolded

ensemble based on the flexible-Meccano algorithm (31).

Large differences in solvent exposures are observed for res-

idue types, depending essentially on the different primary

sequence context and, to a lesser extent, on the length of the

protein and its global amino acid composition.

METHODS

Generation of the conformational ensemble

The flexible-Meccano algorithm samples efficiently the conformational space

representing the unfolded state using a Monte Carlo technique based on

residue-specific propensity and specific side-chain volume (31). Consecutive

peptide planes and tetrahedral junctions are constructed from the primary

sequence starting from the C-terminus. The position of the peptide plane (i) is

defined in terms of the Ca and C9 atoms of plane (i 1 1), the selected f/c

combination and the tetrahedral angle (set to 109�). Amino-acid-specific f/c

combinations used to create the main chain are randomly extracted from a

database built from 500 high-resolution x-ray structures with resolutions of

,1.8 Å and B factors ,30 Å2, from which all residues in a-helices and

b-sheets were removed (40). Residues preceding a proline are considered

additional residue types because of their restricted conformational sampling

(41). Moreover, the available conformational space for Gly derived from the

database was made symmetric. A residue-specific exclusion volume is also

introduced, placing at each Cb (or Ca for Gly) atom spheres of volumes

derived from the Levitt’s simplified force field (42). In the case of steric clash

with another residue of the chain, the flexible-Meccano algorithm rejects a

given f/c pair and another set of f/c dihedral angles is selected, until no

overlap is found or 500 f/c combinations have been tested; otherwise, a

completely new structure is calculated from the last residue. In a second step

(Fig. 1), side chains are incorporated to the ensemble using the program

Sccomp, which places and optimizes side-chain conformations in a fixed

protein backbone (43). Although Sccomp has been developed and tested for

folded proteins, it has been demonstrated to be especially accurate for partially

exposed side chains, due to the inclusion of a solvent-accessible term that

accounts for the solvation free energy. Additionally, a different version of the

flexible-Meccano algorithm, which builds the chain from the N-terminus, has

been used to test whether the calculated solvent exposures are influenced by

the directionality of chain growth.

Calculation of the solvent exposures

The program Naccess has been used for the calculation of solvent exposures

for each individual conformation using a probe of radius 1.4 Å (44). The

solvent exposure for each amino acid of each protein was obtained by

averaging over the 2000 conformations generated that represent the unfolded

ensemble of the protein. This averaging was not applied to the first and last

four residues of the chain because their accessibilities essentially reflect their

terminal location.

All calculations, for both the generation of the unfolded ensembles and quan-

tification of solvent accessibilities, have been done on the computation center

at the Biocomputation and Complex Systems Physics Institute in Zaragoza.

Protein sequences used

A set of 19 proteins corresponding to Set3 from Eyal et al. (43) was used

for the calculation of solvent exposures. The PDB codes and residue lengths

of the proteins are shown in Table 3. This set was originally collected based

on the structural characteristics of the proteins. Of importance for our study,

the proteins included in the set share,20% sequence identity. This implies a

variety of amino acid contexts that should provide enough cases to derive

reliable solvent-exposure statistics, as well as to reveal sequence-specific

solvation characteristics. The total number of amino acid residues in the

database was 4346. Notice that cysteine residues are simulated in their

reduced form. For each one of these 19 amino acid sequences, an ensemble

of 2000 conformations was generated using the flexible-Meccano algorithm.

In parallel, polyalanine chains from 51 to 601 residues, built following

the procedure explained above, were simulated to test the effect of protein

length on solvent exposure.

RESULTS AND DISCUSSION

Tests for the robustness of the modeling and
solvent-exposure calculation protocol

Fig. 2 shows the individual solvent accessibilities calculated

in 1000 conformations for two different residues, Lys-65 and

Ala-179, of protein 1FCQ. Large variations in solvent ex-

posure were found among the conformations. For the extrac-

tion of reliable averaged solvent exposures, the ensembles

calculated have to be large enough to guarantee convergence.

Two tests were performed to confirm the robustness of the

calculated solvent accessibilities with respect to the number of

conformations in the ensemble. First, a calculation was

performed on 1FCQ, a protein comprising 350 amino acid

residues, using 4000 conformations in the ensemble instead of

the usual 2000. Residue-specific solvent exposures calculated

from the 2000 conformations were equivalent, within 0.5%,

to those calculated using 4000 conformations. In a second

test, the whole calculation and averaging over all conforma-

tions of each of the 19 proteins was repeated from indepen-

dently generated ensembles. The resulting residue-type

averaged solvent exposures from the two calculations were

FIGURE 1 Flow-chart of the programs used for generation of denatured-

state ensembles (flexible-Meccano and Sccomp) and for the calculation of

the atom- and residue-specific solvent exposures (Naccess).
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equivalent within 0.2%. These results indicate that ensembles

of 2000 conformations are large enough to ensure the

convergence of the solvent exposures. On the other hand, it

was possible that building conformations in one direction

could bias the resulting ensemble because in the growing

chain, each residue added could have, on average, a sig-

nificantly smaller volume available to occupy. To testwhether

there is a directionality effect in the solvent exposures

calculated for specific residues in the unfolded ensemble we

have developed a new version of the flexible-Meccano

algorithm that builds the chain from the N-terminus. The

accessibilities calculated for the different residues in a given

proteinwhose unfolded ensemble is built from theC-terminus

correlate with those derived from the unfolded ensemble built

from theN-terminuswith r. 0.99 and slopes of 1.0, and there

is no systematic deviation in the accessibilities toward either

the N- or the C-terminus (see Supplementary Material).

Average residue solvent exposures in
denatured ensembles

The calculated solvent exposures of the 20 proteinogenic

residues, shown in Table 1, represent the average over all the

residues of the same type found in the 19 proteins of the set.

Averaged solvent exposures for each residue type were calcu-

lated from the individual exposures of at least 51 residues for

the rare cysteine, and up to 408 residues for leucine. As

expected, average solvent exposures scale with residue size,

so that arginines and tryptophans display the largest solvent-

exposed areas and glycine the smallest. Compared to earlier

reports, the exposures calculated in the denatured ensembles

are much lower. Early models of the unfolded state based on

FIGURE 2 Individual solvent exposures of residues Lys-65 and Ala-179

in 1FCQ, calculated in 1000 conformations representing the denatured state

of the protein. Dashed lines represent the averaged surface accessibilities of

the two residues: 157.57 and 68.72 Å2, respectively.

TABLE 1 Solvent accessibilities (Å2) of amino acid residues in protein unfolded ensembles

This work Creamer et al. (17)*
Zielenkiewicz &

Saenger (15)y Miller et al. (12)z Rose et al. (14)§Residue N{ Average** Minimumyy Maximumzz % difference§§ Minimum Maximum

Ala 350 73.1 58.1 83.6 30.5 66.4 99.5 111.6 113 118.1

Arg 234 178.6 154.8 193.7 20.1 174.0 218.3 231.4 241 256.0

Asn 199 109.1 91.6 123.4 25.8 102.1 128.3 151.2 158 165.5

Asp 255 102.0 83.0 117.6 29.4 97.3 128.7 154.7 151 158.7

Cys 51 88.3 76.0 97.7 22.2 81.1 117.5 136.9 140 146.1

Glu 292 125.9 108.4 145.5 25.5 120.7 157.4 179.9 183 186.2

Gln 171 125.6 107.1 140.4 23.7 122.2 162.1 183.2 189 193.2

Gly 312 54.2 36.2 65.5 44.7 54.6 75.7 75.6 85 88.1

His 115 129.3 109.3 140.2 22.0 118.8 152.5 187.2 194 202.5

Ile 230 122.2 106.4 136.2 21.8 115.3 158.8 188.4 182 181.0

Leu 408 131.5 108.8 146.1 25.5 116.1 148.4 192.2 180 193.1

Lys 249 149.8 130.9 167.3 21.8 160.8 192.6 209.9 211 225.8

Met 103 133.6 121.5 148.6 18.3 122.0 173.3 196.6 204 203.4

Phe 175 146.1 131.3 160.9 18.4 134.0 173.1 210.6 218 222.8

Pro 217 100.0 81.0 121.9 33.6 102.4 116.6 146.2 143 146.8

Ser 199 75.8 59.2 89.9 34.2 83.5 108.3 123.2 122 129.8

Thr 246 93.2 78.1 109.2 28.5 95.9 120.7 145.8 146 152.5

Trp 71 173.0 160.4 185.5 13.5 169.8 190.4 242.1 259 266.3

Tyr 149 156.8 141.5 172.2 17.8 148.7 185.8 218.0 229 236.8

Val 320 102.0 84.0 116.1 27.6 97.7 135.8 164.8 160 164.5

Mean 118 101 133 25 114 147 172 175 182

*Calculated using atomic radii from Richards (48).
yCalculated using atomic radii from Schrake and Rupley (49).
zCalculated using atomic radii from Chothia (50).
§Calculated using atomic radii from Lee and Richards (51).
{Total number of residues of that kind found in the 19 proteins simulated.

**Residue-specific solvent exposure averages.
yyMinimum solvent exposure found in one of the 19 denatured ensembles.
zzMaximum solvent exposure found in one of the 19 denatured ensembles.
§§Percentage difference found between the maximum and minimum solvent exposures for one residue type: (max � min)/max 3 100.
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Gly-X-Gly tripeptides (12–14) yielded a mean solvent

exposure (averaged over the 20 residue types) of 175–

182 Å2 (Table 1). These values were later lowered to around

172 Å2 by includingAla-X-Ala tripeptides (15). A further and

more substantial reduction took place when extended con-

formations of natural sequences corresponding to a data set of

43 proteins were used (17); which set the mean exposure to

147 Å2. As explained by Creamer and co-workers (17), those

polypeptide models were expected to display lower solvent

exposures than the ones calculated from the tripeptidemodels,

and were considered as upper bounds for residue-specific

solvent exposures. Lower boundswere calculated by the same

authors from 3- to 45-residue-long chain segments excised

from native protein conformations, which gave rise to a mean

exposure of 114 Å2 (Table 1). Intermediate solvent exposures

in the unfolded state between these upper and lower bounds

have been recently described (19). According to our data on

unfolded ensembles, the mean exposure is;118 Å2/residue,

lying between the two bounds proposed by Creamer et al.

(17), but much closer to the lower than to the upper bound. In

fact, there is a good correlation between Creamer’s lower-

bound exposures of each of the 20 residues (Cr) and the

corresponding averaged exposures calculated in the unfolded

ensembles reported here (Ue): (Ue ¼ 3.01 1.0113 Cr; r ¼
0.98, not shown.Althoughmost residue types are, on average,

more exposed to solvent in the unfolded ensembles than in

Creamer’s lower bound, there are noticeable exceptions, such

as Ser and Lys. It is worth noting that Creamer’s lower bounds

are probably sensitive to the natural propensity of the different

residues to appear in secondary structural elements. There-

fore, in Creamer’s lower bounds, those residues with a higher

probability of appearing in loops could be biased to display

larger solvent exposures. In fact, those residue types that have

a lower solvent accessibility when using our methodology

than Creamer’s lower-bound one—Gly, Lys, Pro, Ser, and

Thr—are either disruptors of secondary-structure elements or

have amoderately low tendency to be in them according to the

Chou-Fasman classification (45).

Table 2 displays the backbone and side-chain contribu-

tions to the averaged residue solvent exposures. The con-

tribution of backbone atoms is very similar for all residues

except for glycine, as expected. The polar and apolar ex-

posed surfaces for the different residues are also shown in

Table 2. All residue types expose significant amounts of both

apolar and polar area to solvent (at least 30 and 13 Å2,

respectively) in the denatured ensemble. Atom-specific av-

eraged solvent exposures for each residue type are provided

in Supporting Material.

Large sequence dependence of
solvent exposures

Unlike previous calculations of solvent exposures in the

unfolded state, the ensembles described here allow a

practical way to calculate sequence-specific solvent expo-

sures for every residue of any particular protein. This is

interesting, because it allows one to evaluate the extent to

which different combinations of neighboring residues influ-

ence solvent exposures. The analysis of the unfolded en-

sembles corresponding to the 19 proteins modeled (Table 1)

indicates that the solvent exposure of any residue type is

strongly dependent on the sequence context. On average,

there is a 26% difference in exposure for a given residue

depending on the sequence. However, not all amino acid

types show the same variability. The two extreme cases are

Trp, with the smallest variation, 14%, and Gly, with the

largest, 45%. This large neighboring effect clearly shows that

any interpretation of the energetics of mutational experi-

ments in terms of solvent-exposed area will benefit from

knowledge of the exposures of the specific mutated residues

in the denatured state, within their sequence contexts.

The sequences flanking the least and most exposed residue

of each type are shown in Fig. 3 a. A statistical analysis has

been performed to compare the enrichment of sequences in

certain residues with respect to their overall abundance in the

proteins studied (Fig. 3 b). A general prevalence of Pro

immediately after poorly exposed residues was found. This is

due to the proximity of the Pro Cd atom, which also imposes

the special conformational restriction to X-Pro residues (41).

In addition to Pro, the sequences flanking the least exposed

residues are rich in the three aromatic residues, Trp, Tyr and

Phe, which, due to their size, can easily screen neighboring

residues from solvent. The least exposed sequences are also

moderately enriched in Gly. A possible explanation for this

counterintuitive result is that the large conformational

freedom of Gly would facilitate the peptide chain folding

TABLE 2 Contributions to residue solvent accessibilities (Å2)

in the unfolded ensembles averaged over the19 proteins

Residue Overall Side chain* Backbone* Nonpolary Polary

Ala 73.1 45.6 27.5 55.0 18.1

Arg 178.6 153.8 24.8 64.4 114.2

Asn 109.1 84.9 24.1 30.0 79.0

Asp 102.0 78.4 23.5 35.0 66.7

Cys 88.3 64.3 23.9 72.0 16.3

Glu 125.9 101.2 24.7 49.9 76.0

Gln 125.6 103.2 22.5 46.5 79.2

Gly 54.2 0.0 54.2 32.1 22.1

His 129.3 106.7 22.6 73.8 55.5

Ile 122.2 102.0 20.2 107.0 15.2

Leu 131.5 110.6 20.9 114.3 17.2

Lys 149.8 125.2 24.6 91.7 58.1

Met 133.6 111.6 22.1 116.6 17.1

Phe 146.1 124.6 21.5 129.8 16.3

Pro 100.0 77.4 22.6 86.6 13.4

Ser 75.8 49.9 25.9 41.9 33.9

Thr 93.2 70.7 22.5 59.6 33.6

Trp 173.0 152.0 21.0 136.7 36.3

Tyr 156.8 135.4 21.4 106.8 50.1

Val 102.0 81.9 20.1 87.1 14.9

*Definition of backbone includes the Ca atom.
yDefinition of polarity is according to Naccess.
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into itself, thus enhancing solvent screening. On the other

hand, most exposed sequences are rich in Pro as well.

However, these Pro residues appear located at position i1 2

and i 1 3, probably forming rigid elbows that could direct

the following chain away from the exposed residue. Most

exposed sequences are rich in small residues such as Ser and

Gly, especially in the closest positions, and poor in large

residues such as Tyr, Phe, Leu, and Arg.

Protein-size and protein-composition
dependence of solvent exposures

One potential influence in the specific solvent exposure of

any protein residue is the protein size. It is not clear how

often remote residues in the sequence are brought into

proximity in the unfolded ensemble. We have analyzed this

issue in the following way. The global average accessibilities

for the unfolded ensembles of each of the 19 proteins in the

data set have been compared with their corresponding

predicted accessibilities, as calculated from their amino acid

composition and the averaged solvent exposures of each

residue type in the data set (Table 1). Notice that the five

terminal residues were not used in this calculation because

their high solvent accessibilities essentially reflect their

terminal position. The differences between averaged and

estimated global accessibilities for the 19 studied proteins are

plotted as percentages in Fig. 4 a, highlighting those proteins
that are more (positive) or less (negative) solvent-accessible

than expected based on their amino acid composition. A

weak correlation is observed with protein size, suggesting

that residues in larger proteins may be slightly less exposed

than in smaller ones, but the scatter of the data is too large to

be explained by the protein-size effect alone. To clarify

whether there is a specific influence of sequence length on

solvent exposures, we have generated polyalanine chains of

different lengths and calculated the solvent accessibility of

the 11-residue-long central fragment (Fig. 4 b). A systematic

decrease is observed when chain length increases, indicating

an effect of remote residues on residue solvent exposures.

Although the latter observation can explain the general

trend observed in Fig. 4 a, additional factors must play a

significant role in the global solvent accessibility in the

denatured state. In that respect, we explored whether there is

a role of the amino acid composition in the overall solvent

exposure of protein ensembles. To that end, we compared the

amino acid composition of 1LN4 and 1TD1, two proteins of

98 and 100 residues, respectively, that display completely

different behavior regarding their solvent exposure (Fig. 4

a). On one hand, 1LN4 is the protein that presents the highest
percentage of increased accessibility, 2.92, whereas 1TD1 is

a relatively solvent-screened protein with a negative per-

centage, �0.17. As shown in Fig. 4 c, 1TD1 contains a high

number of bulky amino acids, such as Phe, Tyr, and Arg,

which have been found often in low accessible sequences

(Fig. 3 a). In addition, 1TD1 shows a low occurrence of

small residues such as Ala and Thr. On the other hand, 1LN4

lacks both Trp and Phe residues, and it contains only one

Tyr. Therefore, it seems that an abundance of bulky or small

residues may influence the overall solvent exposure of a

given protein in the unfolded state. As a whole, the analysis

of the 19 unfolded ensembles indicates that both protein size

and amino acid composition exert some influence on the

FIGURE 3 Influence of sequence context on solvent accessibilities. (A) The most and least accessible residues of each type found among the 19 proteins

analyzed, shown in their sequence context and enclosed in black squares. Proline residues appear in bold to highlight the relevant role they play in determining

high and low accessibilities. (B) Amino acid population in the least (top) and most (bottom) accessible residue sequences. Black bars represent the times a kind

of residue is found in the three residues flanking the most and least accessible residues. Gray bars represent the times a kind of residue should be found at

random, assuming the population statistics derived from the set of proteins studied.
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solvent exposure of denatured proteins (even in the absence

of unpredictable clustering interactions), and therefore rein-

forces the importance of calculating protein-specific solvent

exposures, where those effects are specifically accounted for.

Global solvent accessibilities

Different thermodynamic terms that characterize the free

energy of unfolding, DH, DS, and DCp, have been param-

eterized in terms of the change in the total (DAtot), the apolar

(DAap), and the polar (DApol) surface area exposed upon

unfolding. A detailed description of these relationships can

be found in Robertson and Murphy (46). Whereas calculat-

ing the surface accessibility of the folded state is straight-

forward if the three-dimensional structure of the protein is

available, performing the same calculation for the denatured

state is much more difficult, and approximations based on

tripeptides or small protein fragments (see Introduction) are

normally used. Using more realistic polar and apolar solvent

exposures may help to improve the parameterizations. Total,

as well as apolar and polar, accessibilities in the unfolded

states of the 19 proteins studied are shown in Table 3. Notice

that in this case, all residues in the sequence were used for the

calculation. The accessibilities obtained using the atomic

model of the denatured ensembles are in good agreement

with those estimated using the amino acid compositions and

the average residue accessibilities. The correlations of the

calculated and estimated global accessibilities, shown in Fig.

S1 of Supplementary Material, present slopes close to 1.0,

and the root-mean-square deviations found are 324, 186, and

141 Å2 for the total, apolar, and polar solvent accessibilities,

respectively. These results indicate that good approximations

for the global, as well as the apolar and polar, accessibilities

of the denatured state of proteins can be estimated from the

residue averaged solvent exposures derived in this study.

Notice that in the reported residue averaged solvent expo-

sures (Table 1), the excess of exposed surface typically

present in the chain termini is not accounted for. Therefore,

the accessibilities derived from the detailed simulations of

the denatured state ensembles are more accurate.

It is interesting that all three solvent exposures also present

good correlations with the number of residues in the protein,

with regression coefficients .0.98. Total, apolar, and polar

solvent exposures follow the relationships

Atot ðÅ
2Þ ¼ 1740 ð6424Þ1 107:8 ð6:6Þ3N; r

2 ¼ 0:996;

Aap ðÅ
2Þ ¼ 715:2 ð6245:1Þ1 70:6 ð60:9Þ3N; r

2 ¼ 0:997;

and

Apol ðÅ
2Þ ¼ 1025 ð6292Þ1 37:2 ð61:1Þ3Nr

2 ¼ 0:986;

where N is the number of residues of the protein. This

correlation indicates that the global, as well as the apolar and

polar, accessibilities of the denatured state of proteins can in

principle be derived from the number of residues. However,

the root-mean-square deviations from those fittings (848,

491, and 585 Å2, respectively) are notably larger than those

calculated from the averaged residue-specific accessibilities.

CONCLUSIONS

In this work, a methodology has been presented for the

calculation of protein solvent exposures based on a detailed

description of the denatured state that is consistent with

FIGURE 4 Influence of size and amino acid composition on the total solvent accessibility of the set of 19 proteins. (A) Percentage difference between the

solvent exposures averaged over the 2000 conformations of the atomistic models of the denatured ensembles, and the ones obtained using protein composition

and the residue averaged values shown in Table 1. Positive values (white area) indicate that the actual protein is more accessible than expected, whereas

negative values (gray area) indicate less solvent accessibility than expected from the contribution of individual residues. The solid line represents the linear

regression slope. (B) Solvent accessibility of the 11-amino-acid-long central fragment of polyalanine chains of different lengths. (C) Amino acid composition

of proteins 1LN4 (left bars) and 1TD1 (right bars) bearing 98 and 100 residues, respectively. Middle bars correspond to the number of residues expected for a

protein of that size that followed the residue statistics of the 19 proteins in the data set.
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diverse biophysical data measured in solution for natively

and chemically denatured proteins (31). The improved descrip-

tion of the unfolded state provides ensembles of conforma-

tions that can be confidently used to describe biophysical

parameters that may be difficult to predict using simplified

models or molecular dynamics simulations (10,47).

The unfolded states of 19 proteins with low sequence and

structural homology have been simulated. They represent a

database of residues large enough to allow deriving statis-

tically robust averaged atom- and residue-specific solvent

accessibilities that can in turn be used for the parameteriza-

tion of the different contributions involved in protein sta-

bility. It is important that, despite the usefulness of those

averaged solvent exposures, the sequence-specific context of

the different residues of any particular protein exerts a strong

influence on the solvent exposures, and thus sequence-

specific solvent exposures of the residue of interest should be

used for the interpretation of mutational studies. On the other

hand, we anticipate that the simulated unfolded ensembles

could be useful to investigate the elusive balance of inter-

actions occurring in the native and denatured states that is so

important for understanding protein stability.
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