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Let L be the vertex operator superalgebra associated to the unitary vacuumcm
3mmodule for the N � 2 superconformal algebra with the central charge c � ,m m � 2

m � �. Then the unitary N � 2-modules give all irreducible modules for the
vertex operator superalgebra L . In this paper, we determine all fusion rules forcm

L -modules from the vertex algebra point of view. These fusion rules coincidecm

Žwith the fusion rules obtained by M. Wakimoto Fusion rules for N � 2 supercon-
.formal modules, hep-th�9807144 using a modified Verlinde formula. � 2001

Academic Press

1. INTRODUCTION

Ž .In the theory of vertex operator super algebras fusion rules are defined
as the dimension of the vector space of intertwining operators for three
Ž . Ž � �.irreducible modules cf. DL, FHL, FZ . In studying representation

Ž .theory of certain concrete vertex operator super algebras, the determina-
tion of fusion rules is one of the basic problems. One can calculate the

Ž �fusion rules using the Frenkel�Zhu formula cf. DLM3, FZ, KWn, Li1,
�. Ž �Xu, Wn or some explicit determination of intertwining operators cf. DL,

�.La, M .
In the present paper, we will study the fusion rules for modules with

Ž .vertex operator superalgebras SVOAs associated to the minimal models
for the N � 2 superconformal algebra. Let L be the SVOA associatedcm

to the vacuum module for the N � 2 superconformal algebra with the
3mcentral charge c � . The irreducible L -modules were classified inm cm � 2 m� �A . It was shown that the SVOA L for m � � has finitely manycm
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irreducible modules which coincide with all unitary N � 2-minimal mod-
ules.

In the non-unitary case, the SVOA L has uncountably many irre-cm
Ž � �.ducible modules cf. A, EG .

In this paper, we calculate the fusion rules for L -modules in the casecm

m � �. Another approach to fusion rules for minimal N � 2 superconfor-
� �mal models was made by Wakimoto W . He calculated the fusion rules

using a modified Verlinde formula. Our result from the present paper
� �coincides with the fusion rules for Neveu�Schwarz sectors obtained in W .

We should also mention that the modular properties of characters of
� �N � 2 minimal models were investigated in KW .

Ž .Let us describe the main concepts of this paper. Let L m, 0 be the
ˆVOA associated to the irreducible vacuum sl -module of level m � �. Let2

² :F be the lattice vertex superalgebra associated to the lattice �� , � , �n
Ž . � �� n n � � . Following A, FST , we investigate the vertex superalgebra

ˆL � F . Using the lattice construction of sl and N � 2-modules wec 	1 2m

prove that the vertex superalgebra L � F is isomorphic to a certainc 	1m

Ž .extension of the vertex algebra L m, 0 � F . Then we use the	2 Žm�2.
Ž .knowledge of the fusion rules for L m, 0 and F to find the fusion	2 Žm�2.

rules for L � F , which immediately gives the fusion rules for thec 	1m

SVOA L . As a consequence of our construction, we prove that thecm � �SVOA L is regular in the sense of DLM1 .cm

There is some overlap between the present paper and the paper by Li
� � � �Li5 . In Li5 Li studies a certain larger class of extended vertex operator
Ž .super algebras of similar type to our vertex superalgebra B from Sec-m
tion 5.

2. EXTENSIONS OF VERTEX ALGEBRAS AND
INTERTWINING OPERATORS

� �In this section, we will recall some results from Li3 on extension of
regular vertex algebras by a simple current module. Another approach to

� �the extension problem was made in DLM2 .
Our main goal is the study of extensions of vertex algebras realized as

tensor products of affine vertex algebras with vertex algebras associated to
Ž .negative definite lattices cf. Section 5 . Therefore we shall formulate the

� �results from Li3 in a slightly different setting.
Ž even odd .Let V � V � V , Y, 1, D be a vertex superalgebra where 1 is the

Ž � �. oddvacuum vector and D is the derivation cf. Li2, K . If V � 0, we say
that V is a vertex algebra.
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We shall always assume that vertex superalgebra V contains the Vira-
Ž . Ž . 	n	2 Ž .soro vector � such that Y �, z � Ý L n z , D � L 	1 , andn� �

V even � V , V odd � V ,
 
Žn. Žn.
n�� n�1�2��

� Ž . 4where V � � � V, L 0 � � n� .Žn.
If there is N � � such that V � 0 for n � N, and if dim V � � forŽn. Žn.

1 Ž .every n � �, we say that V is a vertex operator superalgebra SVOA .2
Ž Ž ..We will say that the vertex superalgebra V, Y, 1, L 	1 is regular, if

Ž . Ž � �.every weak V-module is completely reducible cf. DLM1, Li3 .
For any three V-modules M 1, M 2, M 3, let

M 3
IV 1 2ž /M M

be the vector space of all intertwining operators of type

M 3

1 2ž /M M

Ž � �.cf. DL, KWn .
Ž . 	n	1Let H � V such that Y H, z � Ý H z . Assume thatn� � n

L n H � � H , H H � � � 1, 2.1Ž . Ž .n , 0 n n , 1

where n is a nonnegative integer and � is a fixed integer. Assume also that
H semisimply acts on V with integral eigenvalues. Then from the commu-0
tator formula for vertex algebras we get

� �H , H � m�� for m , n � �.m n m�n , 0

Set
� Hn 	nH 0� H , z � z exp 	z .Ž . Ž .Ýž /	nn�1

In this section, we will always assume that vertex algebra V has the
property:

Ž .P1 The operators H , n � 1, act locally nilpotently on any Vn
module M.

� � Ž .PROPOSITION 2.1 Li4 . Let � H, z be defined as abo�e. Assume that V
Ž .is a �ertex algebra with property P1 . Then:

˜Ž . Ž Ž .. Ž Ž .. Ž Ž Ž1 For any V-module M, Y �, z , M, Y �, z � M, Y � H,˜M M M
. ..z � , z is a V-module.
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Ž . i Ž . Ž .2 Let M i � 1, 2, 3 be three V-modules and let I �, z be an
intertwining operator of type

M 3
.

1 2ž /M M

Ž̃ . Ž Ž . .Then I �, z � I � H, z � , z is an intertwining operator of type

˜3M .
1 2ž /˜M M

Ž .Remark 2.1. A version of Proposition 2.1 under the assumption P1
� �appeared in Xu, Theorem 3.3.8 . The author also used the proof from

� � Ž .Li4 . It is clear that the assumption P1 is satisfied for every regular
vertex operator superalgebra and for every lattice vertex superalgebra.

We shall also assume that
˜̃Ž .P2 V 
 V.

� �The next theorem was essentially proved in Li3 :

� � Ž .THEOREM 2.1 Li3 . Let H � V satisfy the condition 2.1 with an odd
integer � . Assume also that the �ertex algebra V is regular with the properties
Ž . Ž .P1 and P2 . We ha�e:

˜Ž .1 The space V � V 
 V has a natural structure of a �ertex superalge-
bra.

Ž .2 The �ertex superalgebra V is regular.
Ž .3 Assume that M is an irreducible V-module such that H semisimply0

˜acts on M with integral eigen�alues. Then M � M 
 M is a V-module.

Ž .Proposition 2.1 gives a linear isomorphism the identity map 	 fromM
M̃ onto M such that

˜	 Y a, z u � Y � H , z a, z 	 u for a � V , u � M . 2.2Ž . Ž . Ž . Ž .Ž .Ž .˜M M M M

Ž .	1 Ž . Ž .Since � H, z � � 	H, z , 2.2 is equivalent to

	 Y � 	H , z a, z u � Y a, z 	 u . 2.3Ž . Ž . Ž . Ž .Ž .Ž .˜M M M M

˜˜ ˜For every V-module M, we set M � M 
 M. If M 
 M, let 
 be anM
˜̃isomorphism from M onto M.

Assume now that M i, i � 1, 2, 3 are irreducible V-modules such that
˜ i i iM̃ 
 M and that H semisimply acts on M with integral eigenvalues. In0

iparticular, M i � 1, 2, 3 are V-modules.
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Ž .Assume next that I �, z is an intertwining operator of type0

M 3
.

1 2ž /M M

We shall extend I to an intertwining operator from0

3MI .V 1 2ž /M M

In order to do this we need intertwining operators of types

˜3 ˜3 3MM M, , and .
1 21 1 1 2 ž /ž / ž / ˜ ˜˜ ˜ M MM M M M

1 1 2 ˜ 2For every � � M and � � M , we define˜

I � , z � 2 � I � H , z � , z 	 2 . 2.4Ž . Ž . Ž .Ž .˜1 1 0 1 M

Ž .Proposition 2.1 2 gives that

˜3MI �, z � I .Ž .1 V 1 1ž /˜M M

� � Ž .� �
 iFollowing DL , for any � � � we define 	z � e . For any � �1
1 2 Ž . z LŽ	1. Ž . Ž .M , � � M , define F � , z � � e I � , 	z � . Then F �, z is an2 2 1 0 1 2

intertwining operator of type

M 3
.

2 1ž /M M

˜1 2For any � � M , � � M , define1̃ 2

F � , z � � 		1
3 F � H , z � , z 	 1 � .Ž . Ž . Ž .Ž .˜ ˜1 2 1 M 2 M 1

Ž . Ž .Then from Proposition 2.1 2 , F �, z is an intertwining operator of type1

˜3M .
2 1ž /˜M M

˜1 2For any � � M , � � M we define1̃ 2

I � , z � � e z LŽ	1.F � , 	z � . 2.5Ž . Ž .Ž .˜ ˜2 1 2 1 2 1

Ž .Then I �, z is an intertwining operator of type2

˜ 2M .
1 2ž /M̃ M
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Ž . Ž .From Proposition 2.1 2 we obtain an intertwining operator F �, z �2
˜Ž .I �, z of type1

˜3M .
1 2ž /˜ ˜M M

Then

M 3
	1 ˜3I �, z � 
 F �, z � I . 2.6Ž . Ž . Ž .3 M 2 V 1 2ž /˜ ˜M M

DEFINITION 2.1. Let

M 3
I � I .0 V 1 2ž /M M

Ž . Ž .Define intertwining operators I , I , and I with relations 2.4 , 2.5 , and1 2 3
1 2 ˜1 ˜1Ž .2.6 , respectively. For every � � M , � � M , � � M , and � � M˜ ˜1 2 1 1

define

I � � � , z � � � � I � , z � � I � , z �Ž . Ž .Ž . Ž .˜ ˜ ˜1 1 2 2 0 1 2 1 1 2

� I � , z � � I � , � .Ž . Ž .˜ ˜ ˜2 1 2 3 1 2

THEOREM 2.2. Let

M 3
I �, z � I ,Ž .0 V 1 2ž /M M

Ž .and define I �, z as abo�e. Then

3MI �, z � I .Ž . V 1 2ž /M M

The proof of the theorem is completely analogous to the proofs of
� �Theorems 3.7 and 4.3 in Li3 , and it is omitted.

Theorem 2.2 shows that if

M 3
dim I � 1,V 1 2ž /M M

then

3Mdim I � 1.V 1 2ž /M M
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In what follows we shall investigate one special case when

3Mdim I � 1.V 1 2ž /M M

� �First we recall the following result obtained in DL .

� �LEMMA 2.1 DL . Assume that W , W , W are irreducible V-modules,1 2 3
and let

W3I �, z � I .Ž . V ž /W W1 2

Ž .Let � � W , � � W be nonzero �ectors such that I � , z � � 0. Then1 1 2 2 1 2
Ž .I �, z � 0.

PROPOSITION 2.2. Let M 1, M 2, M 3 be irreducible V-modules such that
1 2 3M , M , M are irreducible V-modules. Assume that

3 ˜3M Mdim I � 1 and dim I � 0.V V1 2 1 2ž / ž /M M M M

Then

3Mdim I � 1.V 1 2ž /M M

Proof. Let

M 3
I � � I .V 01 2ž /M M

Let
3MI � IV 1 2ž /M M

be the extended intertwining operator from Definition 2.1 and Theo-
rem 2.2.

Assume that

3MF � I , F � 0.V 1 2ž /M M
3 3 3˜ ˜Let P and P be the projection maps from M onto M and M ,3 3

respectively. Then for every � � M 1, � � M 2, we define1 2

˜F � , z � P F � , z � , F � , z � � P F � , z � .Ž . Ž . Ž . Ž .0 1 3 1 2 1 1 2 3 1 2
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Then we have that
3 ˜3M MF � I and F � I .0 V 1 V1 2 1 2ž / ž /M M M M

Since
˜3Mdim I � 0,V 1 2ž /M M

we get F � 0. Since F � 0, Lemma 2.1 easily implies that F � 0. Then1 0
there is k � �, k � 0, such that F � kI .0 0

Since

F � , z � � F � , z � � kI � , z � � kI � , z � ,Ž . Ž . Ž . Ž .1 2 1 2 0 1 2 1 2
1 2for every � � M , � � M , Lemma 2.1 implies that F � kI. In this way1 2

we have proved that
3Mdim I � 1.V 1 2ž /M M

3. N � 2 SUPERCONFORMAL VERTEX ALGEBRAS

� �In this section, we recall the results from A on the representation
theory of SVOAs associated to the N � 2 superconformal algebra. We

� �should also mention that the study of these SVOAs was initiated in EG .
N � 2 superconformal algebra AA is the infinite-dimensional Lie super-

1�Ž . Ž . Ž . Ž .algebra with basis L n , T n , G r , C, n � �, r � � � and anti com-2

mutation relations given by
C

3L m , L n � m 	 n L m � n � m 	 m � ,Ž . Ž . Ž . Ž . Ž . m� n , 012

1
� �L m , G r � m 	 r G m � r ,Ž . Ž . Ž .ž /2

L m , T n � 	nT n � m ,Ž . Ž . Ž .
C

T m , T n � m� ,Ž . Ž . m� n , 03
� �T m , G r � �G m � r ,Ž . Ž . Ž .

C 1
� 	 2G r , G s � 2 L r � s � r 	 s T r � s � r 	 � ,� 4Ž . Ž . Ž . Ž . Ž . r�3, 0ž /3 4

�L m , C � T n , C � G r , C � 0,Ž . Ž . Ž .
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G� r , G� s � G	 r , G	 s � 0� 4 � 4Ž . Ž . Ž . Ž .
1for all m, n � �, r, s � � �.2

We denote the Verma module generated from a highest weight vector
� : Ž . Ž .h, q, c with L 0 eigenvalue h, T 0 eigenvalue q, and central charge c
by M . An element � � M is called a singular vector ifh, q, c h, q, c

L n � � T n � � G� r � � 0 for n , r � 0,Ž . Ž . Ž .

Ž . Ž .and if � is an eigenvalue of L 0 and T 0 . Let J be the maximalh, q, c
Ž .U AA -submodule in M . Thenh, q, c

Mh , q , c
L �h , q , c Jh , q , c

is an irreducible highest weight module.
Now we will consider the Verma module M . One easily sees that for0, 0, c

every c � �

1� � :G 	 0, 0, cŽ .2

is a singular vector in M . Set0, 0, c

M0, 0, c
V � .c 1 1� 	� : � :U AA G 	 0, 0, c � U AA G 	 0, 0, cŽ . Ž .Ž . Ž .2 2

Then V is a highest weight AA-module. Let 1 denote the highest weightc c
vector. Let L � L be the corresponding simple module. Define fourc 0, 0, c
vectors in V ,c

3� �� � G 	 1 , j � T 	1 1 , � � L 	2 1 ,Ž . Ž .Ž . c c c2

and set

1� � � 	n	2G z � Y � , z � G n � z ,Ž . Ž . Ž .Ý 2
n��

1	 	 	 	n	2G z � Y � , z � G n � z ,Ž . Ž . Ž .Ý 2
n��

L z � Y � , z � L n z	n	2 ,Ž . Ž . Ž .Ý
n��

T z � Y j, z � T n z	n	1 . 3.1Ž . Ž . Ž . Ž .Ý
n��

�Ž . 	Ž . Ž . Ž .It is easy to see that the fields G z , G z , L z , T z are mutually local
Ž � �.and the theory of local fields cf. K, Li2 implies the following result.
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Ž .PROPOSITION 3.1. There is a unique extension of the fields 3.1 such that
Ž .V becomes a �ertex operator superalgebra SVOA . Moreo�er, L is a simplec c

SVOA.

� �We will now present the classification result from A .
3mFor m � � set c � . Definem m � 2

1jk 	 j 	 k4 j , kh � , q � , L � L .j , k j , k c h , q , cm j , k j , k mm � 2 m � 2
� �THEOREM 3.1 A . Let m � �. Then the set

L j , k � j, k � � , 0 � j, k , j � k � m � 2� 4c 1�2m

pro�ides all irreducible modules for the SVOA L . So, irreducible L -mod-c cm m

ules are exactly all unitary modules for the N � 2 superconformal algebra with
the central charge c .m

Remark 3.1. Theorem 3.1 shows that the SVOA L for m � � hascm
Ž .Ž .m � 2 m � 1exactly non-isomorphic irreducible modules. In the non-unitary2

Ž �case, the SVOA L has uncountably many irreducible modules see A,cm�.Theorem 7.2 .

4. LATTICE VERTEX SUPERALGEBRAS

In this section, we shall recall the lattice construction of vertex superal-
� �gebras from DL, K, Xu .

² :Let L be a lattice. Set � � � � L and extend the �-form � , � on L�

ˆ 	1� �to �. Let � � � t, t � � 
 �c be the affinization of �. We also use the
Ž . nnotation h n � t � h for h � � , n � �.

ˆ� ˆ	 	1 	1 ˆ� ˆ	� � � �Set � � t� t � � , h � t � t � �. Then � and � are abelian
ˆ ˆ	 ˆ	Ž . Ž .superalgebras of �. Let U � � S � be the universal enveloping alge-

ˆ	 ˆbra of � . Let 
 � �. Consider the induced �-module

ˆ ˆ	M 1, 
 � U � � � � S � linearly ,Ž . Ž .Ž . Ž .UŽ�� t ���
� c. 


� � ² :where t� t � � acts trivially on �, � acting as h, 
 for h � � , and c
Ž . Ž .acts on � as multiplication by 1. We shall write M 1 for M 1, 0 . For

Ž . n Ž . Ž . 	n	1h � � and n � � write h n � t � h. Set h z � Ý h n z .n� �

Ž . Ž .Then M 1 is a VOA which is generated by the fields h z , h � � and
Ž . Ž .M 1, 
 , of 
 � � , are irreducible modules for M 1 .

ˆLet L be the canonical central extension of L by the cyclic group
² :� 1

	ˆ² :1 � � 1 � L � L � 1 4.1Ž .
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Ž . Ž .²� , � :with the commutator map c � , � � 	1 for � , � � L. Let e:
ˆ ² :L � L be a section such that e � 1 and let � : L � L � � 1 be the0

Ž . Ž . Ž .²� , � :corresponding 2-cocycle. Then � � , � � � , � � 	1 ,

� � , � � � � � , � � � � , � � � , � � � , 4.2Ž . Ž . Ž . Ž . Ž .
ˆŽ .and e e � � � , � e for � , � , � � L. From the induced L-module� � ���

ˆ � �� �� 4� L � � L � � � � L linearly ,Ž .²�1:

� �where � � denotes the group algebra and 	1 acts on � as multiplication
ˆ ˆŽ . � 4by 	1. For a � L, write � a for a � 1 in � L . Then the action of L on

ˆ� 4 Ž . Ž . Ž . Ž . Ž .� L is given by a � � b � � ab and 	1 � � b � 	� b for a, b � L.
� 4 Ž . ² : Ž .Furthermore we define an action of � on � L by h � � a � h, a � a

h ²h, a:ˆ Ž . Ž .for h � � , a � L. Define z � � a � z � a .
The untwisted space associated with L is defined to be

ˆ	� �� 4V � � L � M 1 � � L � S � linearly .Ž . Ž .Ž .L �

ˆ ˆ h Ž . � 4Then L, � , z h � � act naturally on V by acting on either � L orL
Ž . Ž .M 1 as indicated above. Define 1 � � e � V . We use a normal ordering0 L

procedure, indicated by open colons, which signify that in the enclosed
ˆŽ . Ž .expression, all creation operators h n n � 0 , a � L, are to be placed to

h ˆŽ . Ž .the left of all annihilation operators h n , z h � � , n � 0 . For a � L,
set

	1HŽaŽ z .	aŽ0. z . aY � a , z � : e az : .Ž .Ž .
ˆ Ž .Let a � L; h , . . . , h � �; n , . . . , n � � n � 0 . Set1 k 1 k i

� � � a � h 	n ��� h 	n � V .Ž . Ž . Ž .1 1 k k L

Ž .Define vertex operator Y � , z with

n 	111 d
: h z ���Ž .1ž /ž /n 	 1 ! dzŽ .1

n 	1k1 d
h z Y � a , z : . 4.3Ž . Ž . Ž .Ž .kž /ž /n 	 1 ! dzŽ .k

This gives us a well-defined linear map

	1� �Y �, z : V � End V z , zŽ . Ž .L L

� � Y � , z � � z	n	1 � � End V .Ž . Ž .Ý n n L
n��
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� 4Let h � i � 1, . . . , d be an orthonormal basis of � and seti

d
1� � h 	1 h 	1 � V .Ž . Ž .Ý i i L2

i�1

Ž . Ž . 	n	2Then Y �, z � Ý L n z gives rise to a representation of then� �

Virasoro algebra on V with the central charged d andL

L 0 � a � h 	n ��� h 	nŽ . Ž . Ž . Ž .Ž .1 1 n k

1² :� a, a � n � ��� �n � a � h 	n ��� h 	n . 4.4Ž . Ž . Ž . Ž .Ž .Ž .1 k 1 1 k k2

� �The following theorem was proved in DL, K .

Ž Ž ..THEOREM 4.1. The structure V , Y, 1, L 	1 is a �ertex superalgebra.L

Let P be the dual lattice of L. Then there is a 1�1 correspondence
between the set of equivalence classes of irreducible modules for V andL

� �the set of coset of P�L D, Xu .
� �The following proposition was proved in Li4, Proposition 2.16 .

� � Ž Ž ŽPROPOSITION 4.1 Li4 . Let � � P. Then as a V -module, V , Y � � ,L L
. ..z � , z is isomorphic to the V -module V .L L��

Ž .Define the Schur polynomials p x , x , . . . in variables x , x , . . . byr 1 2 1 2
the following equation:

� �xn n rexp y � p x , x , . . . y . 4.5Ž . Ž .Ý Ý r 1 2ž /nn�1 r�0

n1 n2 nr Ž .n1 Ž .n2For any monomial x x ��� x we have an element h 	1 h 	2 ���1 2 r

Ž .nr Ž .h 	r 1 in both M 1 and V for h � �. Then for any polynomialL
Ž . Ž Ž . Ž . . Ž .f x , x , . . . , f h 	1 , h 	2 , . . . 1 is a well-defined element in M 1 and1 2

Ž Ž . Ž . . Ž .V . In particular, p h 	1 , h 	2 , . . . 1 for r � � are elements of M 1L r
and V .L

ˆSuppose a, b � L such that a � � , b � �. Then

� � 	nŽ .
²� , � : nY � a , z � b � z exp z � abŽ . Ž . Ž .Ž . Ýž /nn�1

�
r�²� , � :� p � 	1 , � 	2 , . . . � ab z . 4.6Ž . Ž . Ž . Ž .Ž .Ý r

r�0

Thus

² :� a � b � 0 for i � 	 � , � . 4.7Ž . Ž . Ž .i
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² : Ž . Ž . ² :Especially, if � , � � 0, we have � a � b � 0 for i � 0, and if � , �i
� 	n � 0, we get

� 4� a � b � p � 	1 , � 	2 , . . . � ab for i � 0, . . . , n .Ž . Ž . Ž . Ž . Ž .Ž .i	1 n	i

4.8Ž .

Ž .5. THE VERTEX ALGEBRA L m, 0 � F	2 Žm�2.

² :Let n � � and � , � � n. Define

E � �� , F � V .n n En

Then F is a vertex algebra if n is even and a vertex superalgebra if nn
iis odd. For i � �, let i � i � n� � ��n�. We define F � V .n � ��Ž i � n.�

0 Ž � �.Clearly F � F . It is well known cf. D, DL, Xu that the setn n
i� 4F provides all irreducible F -modules.n i�0, . . . , � n �	1 n

Ž � �.The fusion algebra is cf. DL

i j i�jF � F � F . 5.1Ž .n n n

� k˜If n � 2k is even, we define E � � �� , and MF � V � F .˜2 k 2 k E 2 k2 2 k

Then F is a vertex algebra, and MF is a F -module.2 k 2 k 2 k
� �We shall also need the following result from DLM1 .

� � Ž .PROPOSITION 5.1 DLM1 . The �ertex super algebra F is regular; i.e.,n
Ž .any weak F -module is completely reducible.n

In what follows, we will use the vertex algebra F and its irre-	2 Žm�2.
ducible modules

sF � V , s � 0, . . . , 2m � 3.	2 Žm�2. � �	Ž s�2Žm�2..�

sFrom the construction of lattice vertex algebras it is clear that F is	2 Žm�2.
Ž .a weak module for the Heisenberg VOA M 1 , and one easily obtains the

following decomposition:

	s 	 2 m � 2 kŽ .
sF 
 M 1, . 5.2Ž .
	2 Žm�2. ž /'	 2 m � 2Ž .k��

Let � be the Lie algebra sl with generators x, y, h and relations2
� � � � � �x, y � h, h, x � 2 x, h, y � 	2 y. Let � be the corresponding affineˆ
Lie algebra of type AŽ1.. Let � , � denote the fundamental weights for �.ˆ1 0 1

Ž . ŽŽ . .For any complex numbers m, j, set L m, j � L m 	 j � � j� . Then0 1
Ž .L m, 0 has a natural structure of a VOA.
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Ž . � Ž .4Let m � �. Then L m, 0 is a regular VOA, and the set L m, j j�0, . . . , m

Ž . Ž � �.provides all irreducible L m, 0 -modules. The fusion algebra cf. FZ is
given by

� 4min j , k

L m , j � L m , k � L m , j � k 	 2 i . 5.3Ž . Ž . Ž . Ž .Ý
� 4i�max 0, j�k	m

Ž . Ž . Ž .In particular, L m, m � L m, j � L m, m 	 j .
Ž .We will now study the vertex superalgebra L m, 0 � F , and its	2 Žm�2.

� 4certain extension by a simple current module. For r � 0, . . . , m and s
� sŽ . Ž . Ž .� , we define B r, s � L m, r � F . Set B � B 0, 0 .Ž . m 	2Žm�2. m m2 m � 2 �

Then we have:

PROPOSITION 5.2. The �ertex algebra B is regular, and the setm

B r , s � r � 0, . . . , m; s � 0, . . . , 2m � 3� 4Ž .m

pro�ides all irreducible B -modules.m

Define
1H � h 	1 1 � 1 � 1 � � 	1 1 .Ž . Ž .Ž .2

Ž . Ž .Then H � B satisfies the condition 2.1 with � � 	1. Let Y �, z bem
the vertex operator which defines the vertex algebra structure on B , andm

˜ ˜ ˜Ž Ž .. Ž Ž Ž . ..let B , Y �, z � B , Y � H, z � , z . It is easy to see that B 
m m m
Ž . Ž .L m, m � MF . Moreover, if r � s is even resp. odd then H acts	2 Žm�2. 0

Ž . Ž .semisimply on B r, s with integral resp. half-integral eigenvalues, andm

B̃ r , s 
 B m 	 r , m � 2 � s .Ž . Ž .m m

˜Ž . Ž . Ž .Set B r, s � B r, s 
 B r, s .m m m
Now, applying Theorem 2.1 to the vertex algebra B , we get them

Ž � �.following result see also Proposition 5.2 from Li3 .

THEOREM 5.1. We ha�e:

˜Ž .1 The space B � B 
 B has a natural structure of a �ertexm m m
superalgebra.

Ž .2 The �ertex superalgebra B is regular.m

Ž .3 The set

B r , s � 0 � r � m; 0 � s � m � 2; r � s � 2�Ž .� 4m

pro�ides all irreducible B -modules.m
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In order to calculate the fusion rules for B -modules, we shall first studym
Ž . Ž .the fusion rules for B -modules. Using 5.1 and 5.3 we get the followingm

lemma.

Ž . Ž . Ž .LEMMA 5.1. Let B r , s , B r , s , B r , s be three irreducible B -m 1 1 m 2 2 m 3 3 m
modules. Then we ha�e:

Ž .1

B r , sŽ .m 3 3
dim I � 1.Bm ž /B r , s B r , sŽ . Ž .m 1 1 m 2 2

Ž .2

B r , sŽ .m 3 3
dim I � 1Bm ž /B r , s B r , sŽ . Ž .m 1 1 m 2 2

if and only if

s � s � s , r � r � r � 2�,3 1 2 1 2 3

� � � 4r 	 r � r � min r � r , 2m 	 r 	 r .2 1 3 1 2 1 2

Ž .3 If

B r , sŽ .m 3 3
dim I � 1,Bm ž /B r , s B r , sŽ . Ž .m 1 1 m 2 2

then

B̃ r , sŽ .m 3 3dim I � 0.Bm ž /B r , s B r , sŽ . Ž .m 1 1 m 2 2

Finally, Lemma 5.1 and Proposition 2.2 enable us to calculate the fusion
rules for modules for the vertex superalgebra B .m

Ž . Ž . Ž .THEOREM 5.2. Let B r , s , B r , s , B r , s be three irreduciblem 1 1 m 2 2 m 3 3
B -modules. Then we ha�e:m

Ž .1

B r , sŽ .m 3 3
dim I � 1.Bm ž /B r , s B r , sŽ . Ž .m 1 1 m 2 2

Ž .2

B r , sŽ .m 3 3
dim I � 1Bm ž /B r , s B r , sŽ . Ž .m 1 1 m 2 2
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Ž . Ž .if and only if one of the conditions � and �� holds, where

Ž . � � �� s � s � s , r � r � r � 2�, r 	 r � r � min r �3 1 2 1 2 3 2 1 3 1
4r , 2m 	 r 	 r ,2 1 2

Ž . � ��� s � m � 2� s � s , r � r � m 	 r � 2�, r 	 r �3 1 2 1 2 3 2 1
� 4m 	 r � min r � r , 2m 	 r 	 r .3 1 2 1 2

� �Remark 5.1. In FM , the authors constructed a family of extended
VOAs A . Some properties of the VOA A are similar to the propertiesm m

� �of our vertex superalgebra B . Moreover, it was proved in Li5 that them
Ž .VOA A is a certain extension of the VOA L m, 0 � F .m 2 m

6. LATTICE CONSTRUCTIONS OF MODULES FOR
ˆAFFINE sl AND N � 2 SUPERCONFORMAL ALGEBRA2

Define the lattice

m

A � �� ,
1, m i
i�1

where

² :� , � � 2� ,i j i , j

� 4for every i � 1, . . . , m . We also define

� � ��� �1 m
Ã � � A .1, m 1, m2

Then V is a VOA, and V is a V -module.˜A A A1, m 1, m 1, m

Define now the following three vectors in V :A1, m

x � � e � ��� �� e ,Ž . Ž .� �1 m

y � � e � ��� �� e ,Ž . Ž .	� 	�1 m

h � � 	1 1 � ��� �� 	1 1,Ž . Ž .1 m

Ž . Ž . Ž . Ž . Ž . Ž .and the fields x z � Y x, z , y z � Y y, z , h z � Y h, z . Then the
� �results from DL, Chap. 13 imply the following proposition.

Ž . Ž . Ž .PROPOSITION 6.1. The components of the fields x z , y z , h z pro�ide a
structure of le�el m �-modules on V and V . Moreo�er, the VOAˆ ˜A A1, m 1, m

Ž . Ž . Ž .L m, 0 is isomorphic to a subalgebra of V , and L m, m is a L m, 0 -A1, m

submodule of V .Ã1, m
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Let m � �. Define the lattice

m

N � �� ,
2, m i
i�1

where

² :� , � � 2� � 1,i j i , j

� 4for every i, j � 1, . . . , m .
Then V is a SVOA. Define the four vectors:N2, m

2
�� � � e � ��� �� e ,Ž . Ž .Ž .( � �1 mm � 2

2
	� � � e � ��� �� e ,Ž . Ž .Ž .( 	� 	�1 mm � 2

1
j � � 	1 1 � ��� �� 	1 1 ,Ž . Ž .Ž .1 mm � 2

1 2 2
� � � 	1 1 � ��� �� 	1 1Ž . Ž .Ž .1 m2 m � 2Ž .

1
� � eŽ .Ý � 	�i jm � 2 i�j

�Ž . Ž � . Ž . Ž . Ž . Ž .and the fields G z � Y � , z , T z � Y j, z , L z � Y �, z .
�Ž . Ž . Ž .PROPOSITION 6.2. The components of the fields G z , T z , L z pro-

Ž .�ide on V a structure of a U AA -module of central charge c . More-N m2, m

Ž .o�er, the SVOA L 
 U AA .1 is a subalgebra of V .c Nm 2, m

Ž . Ž .Proof. It is straightforward to check using relations 4.7 and 4.8 that
�Ž . Ž . Ž .the components of the fields G z , T z , L z satisfy the N � 2 commu-

Ž .tation relations with C � c . Thus, V is an U AA -module of centralm N2, m

Ž .charge c . Moreover, U AA .1 is a vertex subalgebra of V isomorphic tom N2, m

a certain quotient of the SVOA V . Let 1 be the vacuum vector in V .c c cm m m

Next we notice that in the lattice SVOA V the following relationN2, m

holds:

�� �� ��� �� ��� 0. 6.1Ž .	m 	1 	m 	2

Since it is well known that the maximal submodule of the highest weight
3 3� �Ž . Ž . Ž .U AA -module V is generated by the vector G 	m 	 ��� G 	 1c c2 2m m

Ž � �. Ž . Ž .cf. FS , the relation 6.1 implies that L 
 U AA .1.cm
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7. DECOMPOSITION OF THE VERTEX
SUPERALGEBRA L � Fc 	1m

In this section let D be the lattice

D � �� � ��� ��� � �� ,1 m

such that

² : ² : ² :� , � � 2� � 1, � , � � 0, � , � � 	1.i j i , j i

Then

D � D � D ,0 1

where

² :� 4D � � � D � � , � � i � 2� , i � 1, 2.i

Then we easily get

D � �� � ��� ��� � �� ,Ž .0 1 m

� � ��� �� � �1 m
D � � �� � ��� ��� � �� ,1 1 mž /2

where

� � � � � , i � 1, . . . , m , � � � � ��� �� � m � 2 � .Ž .i i 1 m

We see that

² : ² : ² :� , � � 2� , � , � � 0, � , � � 	2 m � 2 .Ž .i j i , j i

In this way we have proved the following lemma.

LEMMA 7.1. We ha�e

˜ ˜D 
 N � E 
 A � E � A � E .Ž . Ž . ž /2, m 	1 1, m 	2Žm�2. 1, m 	2Žm�2.

From Lemma 7.1 we obtain the following result.

PROPOSITION 7.1. The �ertex algebra V � F is isomorphic to aA 2Žm�2.1, m

Ž .subalgebra with the same Virasoro �ector of V 
 V � F . As aD N 	12, m

V � F -module, V decomposes as follows:A 	2Žm�2. D1, m

V 
 V � F 
 V � MF .˜D A 	2Žm�2. A 	2Žm�2.1 , m 1 , m
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Moreo�er,

� 4V � MF 
 V � F . � , � ,Ž .Ã 	2Žm�2. A 	2Žm�2. 1 21, m 1 , m

Ž . Ž .where � � � e , � � � e .1 � � � � � �� �Žm�1.� 2 	Ž� � � � � �� �Žm�1.� .1 m 1 m

We are now in the position to find the decomposition of the vertex
superalgebra L � F as a B -module.c 	1 mm

Ž .THEOREM 7.1. The �ertex algebra L m, 0 � F is isomorphic to a	2 Žm�2.
Ž .subalgebra with the same Virasoro �ector of the �ertex superalgebra L �cm
Ž .F . As a L m, 0 � F -module, L � F decomposes as follows:	1 	2Žm�2. c 	1m

L � F 
 L m , 0 � F 
 L m , m � MF .Ž . Ž .c 	1 	2Žm�2. 	2Žm�2.m

In particular, L � F 
 B .c 	1 mm

Proof. Let V be the subalgebra of the vertex superalgebra V gener-D
m � 2 m � 21 � 2 	Ž . Ž .ated by the vectors � � � � � e � ��� �� e , � � �' '� �2 21 m

Ž . Ž . Ž . Ž .� � e � ��� �� e , e � � e , e � � e .	� 	� 1 � 2 	�1 m

It is clear that V 
 L � F .c 	1m

Let W be the subalgebra of V generated by the vectorsD

x � � e � ��� �� e � � 1 e , 7.1Ž . Ž . Ž . Ž .	1� � 11 m

y � � e � ��� �� e � � 2 e , 7.2Ž . Ž . Ž . Ž .	1	� 	� 21 m

f � � e � � e � e , 7.3Ž . Ž . Ž . Ž .1 � � � � � � �� Žm�2.�1 m 	1

f � � e � � e � c , 7.4Ž . Ž . Ž . Ž .2 	� 	Ž� � � � � �� . 	Žm�2.�1 m 	1

� � � e � � e � e , 7.5Ž . Ž . Ž . Ž .1 Ž1�2.Ž� � � � � �� �� . � � � � � �� Žm�1.�1 m 1 m 	1

� � � e � � e � e . 7.6Ž . Ž . Ž . Ž .2 	Ž1�2.Ž� � � � � �� �� . 	Ž� � � � � �� . 	Žm�1.�1 m 1 m 	1

Then we see that W � W 0 � W 1, where W 0 is the subalgebra generated
1 0 � 4 0by the vectors x, y, f , f , and W � W . � , � is a W -module. More-1 2 1 2

over, we have

W 0 
 L m , 0 � F and W 1 
 L m , m � MF .Ž . Ž .	2 Žm�2. 	2Žm�2.

We claim that W � V. First we will show that W � V. To see this, it is
Ž . Ž .enough to verify that x, y, f , f , � , � � V. The relations 7.1 and 7.21 2 1 2

Ž .immediately give that x, y � V. Since � e � V, the relations� Ž� � � � � �� .1 m

Ž . Ž .7.3 � 7.6 give that f , f , � , � � V. This implies that W � V.1 2 1 2
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Next we notice that in the vertex superalgebra V the following formu-D
las hold:

e � � e � � e � , 7.7Ž . Ž . Ž .1 � 	Ž� � � � � �� . 11 m m	 1

e � � e � � e � , 7.8Ž . Ž . Ž .2 	� Ž� � � � � �� . 21 m m	 1

� 1 � x e , 7.9Ž .	2 2

� 2 � y e . 7.10Ž .	2 1

Ž . Ž . Ž .Since � e � W, the relations 7.7 � 7.10 imply that� Ž� � � � � �� .1 m

e , e , � 1, � 2 � W, which implies that V � W. In this way we prove that1 2
V � W.

Ž . j, kTHEOREM 7.2. As a L m, 0 � F -module, L � F decom-	2 Žm�2. c 	1m

poses as follows:

j , k k	jL � F 
 L m , j � k 	 1 � F 
 L m , m � 1 	 j 	 kŽ . Ž .Ž .c 	1 	2 m�2m

m� 2�k	j� F .Ž .	2 m�2

In particular,

j , kL � F 
 B j � k 	 1, k 	 j .Ž .c 	1 mm

Proof. Let � be the highest weight vector in L j, k.j, k cm
j, kFirst we notice that L � F is an irreducible B -module, and inc 	1 mm

particular

j , k s m�2�sL � F 
 L m , r � F 
 L m , m 	 r � F ,Ž . Ž . Ž .c 	1 	2Žm�2. 	2 m�2m

� 4 � 4for certain r � 0, . . . , m and s � 0, . . . , 2m � 3 . Now Lemma 7.1 from
� �A gives that

4h r r � 2Ž .j , k 2� q � ,j , k 2m � 2 m � 2Ž .

which implies that r � j � k 	 1.
Let S be the subalgebra of L � F isomorphic to F . Set0 c 	1 	2Žm�2.m

m � 2
H � T 	1 1 � 1 � 1 � � 	1 1 .Ž . Ž .Ž .( 2

� � Ž .Then H � S . We have H , H � n� n, m � � , which implies that0 n m n�m , 0

the vector H � S spans a subalgebra of S isomorphic to the Heisenberg0 0
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Ž .VOA M 1 . Then for any nonnegative integer n, we have

j 	 k
H � � 1 � � .Ž .n j , k n , 0 '	 2 m � 2Ž .

This implies that

j 	 k 	 2 m � 2 iŽ .
S . � � 1 
 M 1, ,Ž . 
0 j , k ž /'	 2 m � 2Ž .i��

k	 jŽ . Ž .and the decomposition 5.2 gives that S . � � 1 
 F . In this0 j, k 	2Žm�2.
way we get s � k 	 j.

8. THE MAIN RESULT

In the Section 7 we proved that the vertex superalgebra L � F isc 	1m

isomorphic to the vertex superalgebra B obtained as an extension of them
Ž .vertex algebra L m, 0 � F . Since the vertex superalgebra B is	2 Žm�2. m

Ž Ž ..regular see Theorem 5.1 2 , we also have the following result.

THEOREM 8.1. Let m, m , . . . , m � �.1 k

Ž .a The SVOA L is regular.cm

Ž .b The SVOA L � ��� � L is regular.c cm m1 k

Proof. First we notice that every irreducible B -module has the formm
N � F , where N is an irreducible L -module.	1 cm

Assume now that M is any weak L -module. Then M � F is also ac 	1m

weak B -module. Regularity of the vertex superalgebra B provides am m
decomposition

M � F 
 M � F ,
	1 i 	1
i

where M is an irreducible L -module. This implies that M 
 
 M , andi c iim

Ž . Ž .we prove that M is completely reducible. This proves a . The proof of b
Ž . Ž � �.follows from a in the standard way cf. DLM1 .

Ž .Remark 8.1. Since every regular vertex operator super algebra is ra-
tional, Theorem 8.1 also gives that the SVOA L is rational.cm

We are now going to calculate the fusion rules for irreducible L -mod-cm

ules. Since the vertex superalgebras L and F are regular, we have thec 	1m
Ž � �.following natural statement on fusion rules cf. M .
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LEMMA 8.1. Assume that M 1, M 2, M 3 are irreducible L -modules. Thencm

we ha�e

3 M 3 � F	1MI 
 I .L B1 2 1 2c mž /m ž /M M M � F M � F	1 	1

Now we are in the position to find the fusion rules for irreducible
modules for the SVOA L .cm

THEOREM 8.2. Assume that L j1, k1, L j2 , k 2 , and L j3, k3 are L -modules.c c c cm m m m

Then we ha�e:

Ž .1

L j3 , k 3
cmdim I � 1.L j , k j , kcm 1 1 2 2ž /L Lc cm m

Ž .2

L j3 , k3
cmdim I � 1L j , k j , kcm 1 1 2 2ž /L Lc cm m

Ž . Ž .if and only if one of the conditions F1 and F2 holds, where
Ž . Ž . Ž . � �F1 j � j 	 j 	 k � k 	 k � 0, j � k 	 j 	 k � j1 2 3 1 2 3 2 2 1 1 3

� Ž .4� k , j � k � min j � k � j � k , 2m � 4 	 j � k � j � k ,3 3 3 1 1 2 2 1 1 2 2

Ž . Ž . Ž . Ž . �F2 j � j 	 j 	 k � k 	 k � � m � 2 , j � k 	 j1 2 3 1 2 3 2 2 1
� �	 k � m � 2 	 j 	 k , m � 2 	 j 	 k � min j � k � j � k , 2m1 3 3 3 3 1 1 2 2
Ž .4� 4 	 j � k � j � k .1 1 2 2

Proof. By using Lemma 8.1 and Theorem 7.2 we see that

j , k3 3L B r , sŽ .c m 3 3mdim I � dim I ,L Bj , k j , kc mm 1 1 2 2 ž /ž /L L B r , s B r , sŽ . Ž .c c m 1 1 m 2 2m m

where

r � j � k 	 1, s � k 	 j , i � 1, 2, 3 . 8.1Ž . Ž .i i i i i i

Now we apply Theorem 5.2 to calculate

B r , sŽ .m 3 3
dim I .Bm ž /B r , s B r , sŽ . Ž .m 1 1 m 2 2
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Ž . Ž . ŽIt is easy to see that the conditions � and �� in Theorem 5.2 after the
Ž .. Ž . Ž .substitution given by 8.1 are equivalent to the conditions F1 and F2 ,

respectively. This completes the proof.

Remark 8.2. The fusion rules obtained in Theorem 8.2 are completely
identical with the fusion rules for the Neveu�Schwarz sector NSŽm�2.

� � � �obtained in W, Theorem 2.1 . In W , the author used a modified Verlinde
formula, and showed that the corresponding fusion algebra is associative.
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