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The recent announcement of the detection of gravitational waves by the LIGO/Virgo Collaboration has 
opened a new window to test the nature of astrophysical black holes. Konoplya & Zhidenko have shown 
how the LIGO data of GW 150914 can constrain possible deviations from the Kerr metric. In this letter, 
we compare their constraints with those that can be obtained from accreting black holes by fitting their 
X-ray reflection spectrum, the so-called iron line method. We simulate observations with eXTP, a next 
generation X-ray mission, finding constraints much stronger than those obtained by Konoplya & Zhidenko. 
Our results can at least show that, contrary to what is quite commonly believed, it is not obvious that 
gravitational waves are the most powerful approach to test strong gravity. In the presence of high quality 
data and with the systematics under control, the iron line method may provide competitive constraints.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the past 50 years, Solar System experiments and radio obser-
vations of binary pulsars have tested general relativity in the weak 
field limit [1]. The focus of current experiments has now shifted to 
testing the theory in other regimes. In this context, an important 
line of research is devoted to confirm the nature of astrophysical 
black holes [2–6]. In 4-dimensional general relativity, an uncharged 
black hole is described by the Kerr solution, which is completely 
characterised by the mass M and the spin angular momentum J
of the compact object. The spacetime geometry around astrophys-
ical black holes is expected to be very close to the Kerr metric 
and therefore possible deviations from the Kerr solution could only 
arise from new physics [2].

The LIGO/Vigo Collaboration has recently announced the detec-
tion of gravitational waves from the coalescence of two stellar-
mass black holes [7]. The event was named GW 150914. The mass 
of the final black hole is estimated to be M = 62+4

−4 M� and its 
dimensionless spin parameter would be a∗ = 0.67+0.05

−0.07. The possi-
bility of detecting gravitational waves opens now a new window to 
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study general relativity in the strong field regime and to test the 
nature of astrophysical black holes [8,9].

In Ref. [10], Konoplya & Zhidenko have employed a parame-
trised approach to get a simple estimate on how the data of 
GW 150914 can test the nature of black holes and constrain pos-
sible deviations from the Kerr solution. Their parametrisation is 
based on the proposal of Ref. [11]. The line element reads

ds2 = − N2(r, θ) − W 2(r, θ) sin2 θ

K 2(r, θ)
dt2

−2W (r, θ) r sin2 θ dtdφ + K 2(r, θ) r2 sin2 θ dφ2

+�(r, θ)

[
B2(r, θ)

N2(r, θ)
dr2 + r2dθ2

]
, (1)

where

N2(r, θ) = r2 − 2Mr + a2

r2
− η

r3
,

B2(r, θ) = 1 ,

�(r, θ) = r2 + a2 cos2 θ

r2
,

K 2(r, θ) =
(
r2 + a2

)2 − a2 sin2 θ
(
r2 − 2Mr + a2

)
r2

(
r2 + a2 cos2 θ

)
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+ ηa2 sin2 θ

r3
(
r2 + a2 cos2 θ

) ,

W (r, θ) = 2Ma

r2 + a2 cos2 θ
+ ηa

r2
(
r2 + a2 cos2 θ

) , (2)

and a = J/M is the rotation parameter. The deformation parameter 
η can be written as

η = r0

(
r2

0 − 2Mr0 + a2
)

, (3)

where r0 is the radial coordinate of the event horizon of the black 
hole metric in (1). If we write

r0 = rKerr + δr = M +
√

M2 − a2 + δr , (4)

we can use δr as the deformation parameter to quantify possible 
deviations from the Kerr spacetime. If δr = 0, r0 reduces to the 
radial position of the event horizon of a Kerr black hole. In the 
general case, δr measures the difference of the radial coordinate of 
the event horizon with respect to that of a Kerr black hole with 
the same mass and spin.

The choice of the metric in Eq. (1) is somewhat arbitrary, but it 
posses some nice properties. It significantly simplifies the calcula-
tions of the quasi-normal modes, it is close to the Kerr metric at 
large distances (it has the post-Newtonian parameters β = γ = 1
as the Schwarzschild solution and the same mass quadrupole mo-
ment as the Kerr spacetime Q = −a2M), and it is quite different 
near the horizon [10].

In the case of the coalescence of two black holes in a binary, 
we can distinguish three stages: the post-Newtonian inspiral, the 
merger, and the ringdown. In their analysis, Konoplya & Zhidenko 
only study the ringdown phase, arguing that it is the most suit-
able to test strong gravity. The post-Newtonian inspiral can indeed 
be the same in many alternative theories of gravity, and their met-
ric is as the Kerr metric in the asymptotic region. The merger is 
a very short and complicated stage. As a further simplification, 
they study the quasi-normal frequencies of a scalar field in the 
deformed background. In general relativity and in other theories 
of gravity, these frequencies are not much different from those 
of the gravitational waves derived from the field equations. How-
ever, this is not always true and there are also examples of gravity 
theories in which the scalar field quasi-normal frequencies can be 
quite different from those of the gravitational waves. With such a 
simplification, the quasi-normal frequencies ω only depend on the 
background metric and on the quantum numbers l and m; that 
is [10]

ω2 = ω2(M,a, δr,m, l) . (5)

Within the WKB approximation [12,13], the m = l = 2 mode 
scalar field quasi-normal frequency in a Kerr background with a∗ =
0.65 is

ωM = 0.635 − 0.0901 i . (6)

Fig. 1 in Ref. [10] shows that there is a degeneracy between the 
spin a∗ and possible deviations from the Kerr metric δr. In other 
words, the same quasi-normal frequency may be associated either 
to a Kerr black hole with spin a∗ = 0.65 or to a non-Kerr black 
hole with a different spin. Under this scope, the seminal detection 
of GW 150914 does not seem so strong and large deviations from 
the Kerr solution, at the level of δr/rKerr ≈ −0.8, cannot be ruled 
out.

Generally speaking, the frequency of a quasi-normal mode is 
characterised by a real and an imaginary part, namely two pa-
rameters. If we measure only one frequency (as in the case of 
GW 150914) and we assume the Kerr metric, this is enough to 
estimate M and a∗ . If we relax the Kerr black hole hypothesis, we 
have at least one deformation parameter, and there may be a de-
generacy. In the case of gravitational waves, the degeneracy may 
be broken with the measurement of other modes, but it depends 
on the metric. For instance, the measurement of other modes does 
not seem to be very helpful to distinguish Kerr and Kerr–Sen black 
holes [10].

Here we want to compare these constraints from gravitational 
waves from those that can be obtained from X-ray data of accret-
ing black holes. In particular, we are interested in constraints from 
the iron line method [14]. Broad iron Kα lines are commonly ob-
served in the X-ray spectrum of black holes of all masses. They 
are generated by illumination of a cold accretion disk by a hot 
corona. The analysis of the iron line actually involves the fitting of 
the whole reflected component of the disk, but eventually the fea-
ture that can probe the spacetime geometry in the strong gravity 
region is mainly the iron Kα line. Studies to test the Kerr met-
ric with the iron line have been reported in [15–20], where it is 
shown that this technique is potentially more powerful than the 
analysis of the thermal spectrum to test black holes [21–23]. For 
a review on the use of the two techniques to test the Kerr metric, 
see e.g. Ref. [3].

2. X-ray reflection spectroscopy

2.1. Iron line method

With the same spirit as the authors of Ref. [10], here we per-
form a simplified analysis to compare the constraining capability of 
gravitational waves and iron line to test the nature of black holes. 
Since we want to compare our results with those in Ref. [10], 
we use the metric in Eq. (1) and the deformation parameter δr. 
Roughly speaking, we can expect that current iron line measure-
ments are at the same level as the LIGO data of GW 150914, 
because the spin parameter measurement of the final black hole in 
GW 150914 has an uncertainty comparable to that obtainable from 
iron line measurements. However, the two techniques are sensitive 
to quite different relativistic effects.

As a very preliminary study, we follow the approach of 
Ref. [18]. We compute the photon flux of the iron line profile in 
different background metrics over a grid of energy bins with res-
olution �E = 100 eV in the range 1–9 keV. For simplicity, we fix 
the emissivity index q, for both the simulations and the model fit-
ting, to 3, which corresponds to the Newtonian limit for lamppost 
coronal geometry. The iron line profile is added to a power-law 
continuum, which is normalised to include 100 times the num-
ber of iron line photons when integrated over the energy range 
1–9 keV. The photon index of the continuum is �′ = 2. Depending 
on the line shape, this corresponds to a line equivalent width of 
EW ≈ 370–440 eV.

Our simulated spectra include Poisson noise, are then binned 
to achieve a threshold of counts n = 20, and fitted employing χ2

analysis. Fig. 1 shows the results of these simulations. The refer-
ence model is a Kerr black hole with spin parameter a′∗ = 0.65, as 
in the study in [10], and observed from a viewing angle i′ = 45◦ . 
We assume that the number of photon counts in the iron line pho-
ton is Nline = 104 (left panel) and Nline = 105 (right panel). In these 
fits, we have five free parameters: the spin parameter a∗, the de-
formation parameter δr, the viewing angle i, the ratio between the 
continuum and the iron line photon flux K , and the index of the 
continuum �.

These plots can be compared with the plot presented in 
Ref. [10]. Both our analysis and that in Ref. [10] are based on 
a simple model, so the constraints should be taken as a general 
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Fig. 1. �χ2 contours with Nline = 104 (left panel) and 105 (right panel) from the comparison of the iron line profile of a Kerr black hole simulated using an input spin 
parameter a′∗ = 0.65 and an inclination angle i′ = 45◦ vs a set of non-Kerr black holes with spin parameter a∗ and deformation parameter δr/rKerr . The red dot indicates 
the reference black hole. See the text for more details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)
guide. Nevertheless, it is remarkable that the constraining capabil-
ity seems to be comparable. In our case, EW ≈ 400 eV is quite an 
optimistic observation. For a bright AGN, current observations may 
have Nline ≈ 103, but in the case of a bright black hole binary we 
may already have Nline ≈ 105 or more.

2.2. Simulation of an observation with eXTP

To do a step further, we constrain the deformation parame-
ter δr/rKerr by simulating an observation with eXTP, which is a 
China–Europe proposal for a next generation X-ray mission [24]. 
For this purpose, we have chosen the stellar-mass black hole 
XTE J1752-223. The spin parameter of this object was measured 
via the iron line method in Ref. [25] and was found to be a∗ =
0.52 ± 11.1

The 2009 outburst of XTE J1752-223 was observed by XMM-
Newton and Suzaku. Its flux in the energy range 2–10 keV was 
∼ 1.1 · 10−8 erg s−1 cm−2 [25]. Our simulations are based on the 
parameters reported in [25]. In particular, we use their equiva-
lent width of EW ≈ 221 eV. While eXTP spectra are simulated 
with same source brightness and same exposure time (42 ks), they 
are able to reach a much higher total photon count, about 8 · 109

during the whole exposure. The photon count in the iron line is 
Nline ∼ 107, and this explains why we obtain much better con-
straints than those in Fig. 1 (see below).

The results of these simulations are shown in Figs. 2 and 3. We 
have used Xspec with the model [26,27]

TBabs*(powerlaw+relconv*xillver+NKL)

where NKL is the iron line in the non-Kerr metric in (2) from our 
code [15,22]. xillver already includes the iron line, but we have 
kept its normalisation low to have a reasonable equivalent width 
in the iron line produced by our code for the non-Kerr metric. We 
have also tried the models

TBabs*(powerlaw+NKL)
TBabs*(powerlaw+relconv*pexrav+NKL)

without finding substantial differences. The model without reflec-
tion component and only our NKL clearly provides stronger con-
straints, which are likely too optimistic. In the other two cases 

1 Among the spin measurements reported in the literature of stellar-mass black 
holes, there is no source with a spin estimate very close to a∗ = 0.65, see e.g. Tab. 1 
in Ref. [3]. The spin measurement of XTE J1752-223 is not too far.
Fig. 2. �χ2 contours from the simulation of a 42 ks observation of XTE J1752-223 
with eXTP assuming that the source is a Kerr black hole with the parameters found 
in Ref. [25]. See the text for more details.

(xillver and pexrav), without a correct non-Kerr reflected 
component, the final constraint may be slightly worse than what 
we can actually obtain, as other features should also change in 
a non-Kerr background and provide some help to constrain the 
spacetime geometry. We have not added any thermal component 
to our model because the range of our spectrum is 2–10 keV (LFA) 
and 2–20 keV (LAD). The spectra are rebinned to have a minimum 
count of 20 photons per bin. The plots in Fig. 3 are also rebinned 
to have nicer pictures.

The constraints in Fig. 2 look quite strong and, unlike the con-
straints in Fig. 1 in [10] from GW 150914 and those in Fig. 1 in 
our paper, they exclude the possibility of large deviations from 
Kerr. In the eXTP simulations, the allowed area is only that around 
a∗ = 0.52 and δr/rKerr = 0. While these simulations include the 
noise of the instruments, the high flux of XTE J1752-223 and the 
large effective area of eXTP lead to Nline ∼ 107, which is much 
higher than Nline used in Fig. 1.

3. Summary and conclusions

The aim of this letter was to compare the constraining power 
from the detection of gravitational waves and the analysis of the 
iron Kα line to test the nature of astrophysical black holes. The 
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Fig. 3. Spectrum of XTE J1752-223. Top panel: simulated unfolded spectrum of an XTE J1752-223-like source. Middle panel: simulated LFA and LAD spectra of XTE J1752-223 
for a 42 ks exposure based on the spectral model for XTE J1752-223. Bottom panel: ratio to the same model combination. The black data refer to the simulated observation 
of LFA and the red data to the ones of LAD. The solid lines are for the total flux. The dotted lines indicate the power-law component, the reflection component, and a soft 
thermal component of the disk which is mainly below 2 keV and is ignored. See the text for more details. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
gravitational wave case was discussed in Ref. [10] and here we 
have employed the same set-up to study the iron line method. As 
we have already stressed, both studies should be seen as a prelim-
inary work to provide a rough estimate of the actual capabilities 
of the two techniques. They both adopt several simplifications that 
must be removed in future studies.

Our results can at least show that, in the presence of high 
quality data and with the systematics under control, the iron line 
method can compete with the gravitational wave approach to test 
black holes. It is possible that some kinds of deformation can be 
better constrained by a technique and other kinds of deformations 
by the other method. Research along these lines is currently un-
derway.

Generally speaking, the observation of a single quasi-normal 
mode, typically the l = m = 2 mode, provides two parameters, and 
we can thus only measure two physical quantities. This is enough 
to infer the mass M and the spin parameter a∗ if we assume the 
Kerr metric, but it is not if we want to test the nature of a black 
hole. Even if the accurate measurement of a single quasi-normal 
frequency could constrain very well some kinds of deformations, it 
cannot surely do it for others. An accurate measurement of more 
quasi-normal frequencies may break this parameter degeneracy.

The profile of the iron line has a complicated structure. If prop-
erly understood, an accurate measurement of its shape can provide 
much more details than the measurement of a single quasi-normal 
mode. However, it is crucial to use the correct astrophysical model. 
Current models are typically too simple to be considered realis-
tic. For instance, the emissivity profile is usually modelled by two 
power-law and a breaking radius, which is clearly an approxima-
tion. The next generation of X-ray missions, like eXTP, will be able 
to provide unprecedented high quality data, but it is necessary that 
at that time we have more sophisticated astrophysical models than 
the phenomenological ones available today. The weak point of the 
iron line method with respect to gravitational waves is mainly re-
lated to the complication of the astrophysical system. In the case of 
gravitational waves, the measurement can be relatively clean [9].
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