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Abstract

We construct a compact linearly ordered space K, of weight 81, such that the space C (K, ) is not isomorphic to a Banach
space with a projectional resolution of the identity, while on the other hand, K, is a continuous image of a Valdivia compact and
every separable subspace of C(K,,) is contained in a 1-complemented separable subspace. This answers two questions due to
0. Kalenda and V. Montesinos.
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1. Introduction

A subspace F of a Banach space E is complemented in E if there exists a bounded linear projection P: E — E
such that F' = P E. More precisely, we say that F is k-complemented if || P|| < k. A Banach space E has the separable
complementation property if every separable subspace of E is contained in a complemented separable one. Typical
examples of such spaces are Banach spaces with a countably norming Markushevich basis, which are called Plichko
spaces (see Kalenda [6]). In case of Banach spaces of density 81, the property of being Plichko is equivalent to the
existence of a bounded projectional resolution of the identity, i.e. a transfinite sequence of projections on separable
subspaces satisfying some continuity and compatibility conditions (the precise definition is given below). In particular,
every Plichko space of density 8 is the union of a continuous chain of complemented separable subspaces.

A question of Ondrej Kalenda [6, Question 4.5.10] asks whether every closed subspace of a Plichko space is
again a Plichko space. We describe a compact connected linearly ordered space K, of weight &; which is an order
preserving image of a linearly ordered Valdivia compact constructed in [7] and whose space of continuous functions
is not Plichko. This answers Kalenda’s question in the negative.

During the 34th Winter School on Abstract Analysis (Lhota and Rohanovem, Czech Republic, 14-21 January
2006), Vicente Montesinos raised the question whether every Banach space with the separable complementation
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property is isomorphic to a space with a projectional resolution of the identity. We show that every separable subspace
of C(K,) is contained in a 1-complemented separable subspace, answering the above question in the negative.

On the other hand, we show that a Banach space of density 8| has a projectional resolution of the identity, provided
it can be represented as the union of a continuous increasing sequence of separable subspaces { Eq }¢ <o, Such that each
E, is 1-complemented in E, ;. We apply this result for proving that every 1-complemented subspace of a 1-Plichko
space of density N is again a 1-Plichko space. This gives a partial positive answer to a question of Kalenda [6,
Question 4.5.10].

2. Preliminaries

We use standard notation and symbols concerning topology and set theory. For example, w(X) denotes the weight
of a topological space X. A compact space K is called Ro-monolithic if every separable subspace of K is second
countable. Given a surjection f:X — Y, the sets f~!(y), where y € Y, are called the fibers of f or f-fibers. The
letter @ denotes the set of natural numbers {0, 1, ...}. We denote by w; the first uncountable ordinal and we shall write
R instead of w1, when having in mind its cardinality, not its order type. We denote by | A| the cardinality of the set A.
Aset C C w is closed if sup, ., &, € C whenever {§,: n € w} C C is increasing; C is unbounded if sup C = w;. Given
an ordinal A, a sequence of sets {Ay }o < Will be called increasing if A, C Ag for every o < B < A, and continuous if
As = Ug<3 Ag for every limit ordinal § < A.

In this note we deal with Banach spaces of density < 7. Recall that a Banach space E has the separable com-
plementation property if every separable subspace of E is contained in a complemented separable one. Fix a Banach
space E of density R1. A projectional resolution of the identity (briefly: PRI) in E is a sequence { Py}o<q, Of projec-
tions of E onto separable subspaces, satisfying the following conditions:

D IPll=1.
(2) @ <B==> P, =PyPs=PgP,.
3) E= U‘Kw1 P,E and PsE = Cl(Ug<5 P¢ E) for every limit ordinal § < wy.

Weakening condition (1) to sup,_,, [Pl < +00, we obtain the notion of a bounded projectional resolution of the
identity. For a survey on the use of PRI’s in nonseparable Banach spaces and for a historical background we refer to
Chapter 6 of Fabian’s book [3]. A Banach space of density R is a 1-Plichko space if it has a projectional resolution
of the identity. This is different from (although equivalent to) the original definition: see Definition 4.2.1 and Theo-
rem 4.2.5 in [6]. A space isomorphic to a 1-Plichko space is called a Plichko space or, more precisely, a k-Plichko
space, where k > 1 is the constant coming from the isomorphism to a 1-Plichko space. In fact, a k-Plichko space of
density R can be characterized as a space having a bounded PRI { Py }¢ <, such that k = sup, _, || Pe|l (see the proof
of Theorem 4.2.4(ii) in [6]). Of course, every Plichko space has the separable complementation property.

Recall that a compact space K is called Valdivia compact (see [6]) if there exists an embedding j: K — [0, 1]¢
such that j~!'[ X (k)] is dense in K, where X (k) = {x € [0, 1]°: [{a: x(a) # 0} < Ro}. Compact spaces embeddable
into X' (k) are called Corson compacta. By the result of [8], a space of weight ¥ is Valdivia compact if and only
if it can be represented as the limit of a continuous inverse sequence of metric compacta with all bonding mappings
being retractions—a property analogous to the existence of a PRI in a Banach space. Valdivia compacta are dual to
1-Plichko spaces in the following sense: if K is a Valdivia compact then C(K) is 1-Plichko and if E is a 1-Plichko
space then the closed unit ball of E* endowed with the weak™ topology is Valdivia compact. See [6, Chapter 5] for
details.

Fix a Banach space E of density 8. A skeleton in E is a chain C of closed separable subspaces of E such that
UC = E and cl(lJ,,¢,, Cn) € C, whenever Cy € C; C --- is a sequence in C. Given a skeleton C, one can always
choose an increasing sequence {Eqy}y<q, S C so that E = U(Kw1 Ey and Es =cl(|J, .5 Eo) for every limit ordinal
a < wi. In particular, every C € C is contained in some E,. We shall consider skeletons indexed by w, assuming
implicitly that the enumeration is increasing and continuous.

Lemma 2.1. Let E be a Banach space of density X1 and assume C, D are skeletons in E. Then C ND is a skeleton
in E. More precisely, if C = {Cq}y<w, and D = {Dy}a<w, then there exists a closed and unbounded set I' C w1 such
that Coy = Dy, fora € I'.
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Proof. Let I' = {a < wi: Cy = Dy }. It is clear that I is closed in w;. Fix § < w;. Since C¢ is separable, we can
find o such that C¢ C Dy, . Similarly, we can find a > o such that Dy, € Cy,. Continuing this way, we obtain a
sequence oy < @z < --- such that Cy,, | € Dy,, € Cy,,, for every n € w. Let § = sup,, ., @,. Then Cs = Dy, i.e.
6 € I'. Thus I' is unbounded. 0O

Corollary 2.2. Assume {Ey}o<w, is a skeleton in a Plichko space E of density 8. Then there exists a closed cofinal
set C C wy such that {Eq}qec consists of complemented subspaces of E.

Proof. Apply Lemma 2.1 to C = {Ey}a<w, and D = {Fy}qy<w,, Where Fy = Py E and {Py}y<e, is a bounded PRI
onE. O

Note that the skeleton {E,}qec from the above corollary consists of k-complemented subspaces, where k is the
constant coming from a renorming of E to a 1-Plichko space.

3. Linearly ordered compacta

We shall consider linearly ordered compact spaces endowed with the order topology. Given such a space K, we
denote by Ox and 1g the minimal and the maximal element of K respectively. As usual, we denote by [a, b] and
(a, b) the closed and the open interval with end-points a, b € K. Given two linearly ordered compacta K, L, a map
f:K — L will be called increasing if x <y = f(x) < f(y) holds for every x,y € K. It is straight to see that
every increasing surjection is continuous. In particular, an order isomorphism is a homeomorphism. We denote by I
the closed unit interval of the reals.

The following lemma belongs to the folklore. The argument given below can be found, for example, in [4,
Lemma 2.1] and [7, Proposition 5.7].

Lemma 3.1. Let K be a linearly ordered space and let a,b € K be such that a < b. Then there exists a continuous
increasing function f: K — 1 such that f(a) =0and f(b) =1.

Proof. Since X is a normal space, by the Urysohn Lemma, we can find a continuous function /4 : X — I such that
h(a) =0 and h(b) = 1. Modifying h, without losing the continuity, we may assume that f(x) =0 for x < a and
f(x)=1for x > b. Define f(x)=sup{h(¢): t < x}. Then f is increasing, f(a) =0 and f(b) = 1. It is straight to
check that f is continuous. 0O

Proposition 3.2. Let K be a linearly ordered compact. Then the set of all increasing functions is linearly dense
in C(K).

Proof. Fix f € C(K) and ¢ > 0. Then K = JoU---U J;_1, where each J; is an open interval such that the oscillation
of f on J; is < ¢. Choose Ox =ag < a; < --- < a, = lg such that for every i < n either [a;, a;11] is contained in
some J; or else |[a;, a;+1]| = 2. By Lemma 3.1, for each i < n there exists an increasing function 4; : [a;, a;j+1] — 1
such that #;(a;) =0 and h;(a;4+1) = 1. Define

g(t) = f(ai) +hi(0)(f(aiy1) — fai)) fort € la;, aiq1].

Then g: K — R is a piece-wise monotone continuous function such that || f — g|| < . Finally, piece-wise monotone
functions are linear combinations of increasing functions. 0O

Given a continuous surjection of compact spaces f : X — Y, we shall say that C(Y) is identified with a subspace of
C(X) via f,having in mind the space {¢f: ¢ € C(Y)}, which is linearly isometric to C(Y). In other words, ¢ € C(X)
is regarded to be a member of C(Y) if and only if ¢ is constant on the fibers of f. The next statement is in fact a
reformulation of [7, Proposition 5.7], which says that a linearly ordered compact is the inverse limit of a sequence of
“smaller” linearly ordered compacta.
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Proposition 3.3. Assume K is a compact linearly ordered space of weight R1. Then there exist metrizable linearly
ordered compacta Ky, o < w1 and increasing quotients q, : K — K such that {C(Ky)}a<w, is a skeleton in C(K),
where C(Ky) is identified with a subspace of C(K) via qq. Moreover, for each o < B < w1 there exists a unique

increasing quotient qo’? :Kg — Ky such that g, = qg qp.

Proof. In view of Proposition 3.2, we can choose a linearly dense set 7 C C(K) consisting of increasing functions
and such that | F| = R;. Let {Fy }4 <, be a continuous increasing sequence of countable sets such that F = | Fu.
Let E, be the closed linear span of F. Clearly, { Eq}o<w, 1s a skeleton in C(K).

Fix a < w. Define the relation ~, on K as follows:

X~y = (VfeFao) f(X)=f).

It is easy to check that ~, is an equivalence relation on K whose equivalence classes are closed and convex. Let
Ky = K/~y. Then K is a second countable linearly ordered compact space and ~, induces an increasing quotient
map gy : K — K. If o < B then ~, D ~g, therefore there exists a unique (necessarily increasing and continuous)
map q,‘f satisfying g4 = qg qs-

Finally, observe that f € E, if and only if f is constant on the equivalence classes of ~. This shows that gy
identifies C(Ky) with E,. O

a<w]

Fix a linearly ordered compact K. We denote by L(K) the set of all p € K such that |[x, p]| =2 for some x < p
in K. Such a point x will be denoted by p~. A point p € K will be called internal if it is not isolated from either of
its sides, i.e. p ¢ {Ok, 1} and intervals [x, p], [p, ¥] are infinite for every x < p < y. A point p € K will be called
external in K if it is not internal. In other words, p € K is external iff either p € {Og, 1x} or p e L(K) or p =g~ for
some g € IL(K). Observe that if K is connected then the only external points are Og and 1. If K is second countable
then the set of all external points of K is countable.

Now fix f € C(K). We say that p € K is irrelevant for f if one of the following conditions holds:

(1) p=0g and f [ [p, b] is constant for some b > p,
(2) p=1k and f [ [a, p] is constant for some a < p,
(3) Ok <p < lk and f | [a, b] is constant for some a < p < b.

We say that p is essential for f if p is not irrelevant for f. We denote by ess(f) the set of all essential points of f.

Observe that ess(f) is closed in K and f is constant on every interval contained in K \ ess(f). In fact, it is not hard to

see that f is constant on every interval of the form [a, b] where a, b are such that (a, b) Ness(f) =@ and (a, b) # 0.
Now assume that X is a closed subset of a linearly ordered compact K. Define

E(K,X)={f € C(K): ess(f) € X}.

In other words, E(K, X) is the set of all f € C(K) which are constant on every interval of K which has one of the
following form: [Og,Ox], [1x, lx], [p~, p], where p € L(X) \ L(K) and p~ denotes the predecessor of p in X.
Clearly, E(K, X) is a closed linear subspace of K.

Proposition 3.4. Assume K is a linearly ordered compact and E C C(K) is separable. Then there exists a closed
separable subspace X of K such that E CE(K, X).

Proof. By Proposition 3.2, there exists a countable set ' € C(K) consisting of increasing functions such that E is
contained in the closed linear span of F. Let

X =cl( U ess(f)).
feF
Then F C E(K, X), therefore also E C E(K, X). It remains to show that ess( f) is separable for every f € F.
Fix an increasing function f € C(K) and let Y =ess(f), Z = f[Y]= f[K]. Observe that f | Y is an increasing
two-to-one map onto a second countable linearly ordered space Z C R. It is well known that in this case Y is separable.
For completeness, we give the proof.
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Fix a countable dense set D C f[Y] which contains all external points of f[Y]. Then D'=Y N f ~-1[D] is count-
able. We claim that D’ is dense in Y. For fix a nonempty open interval U C Y.

If f [ U is not constant, there are x < y in U with f(x) < f(y). If (f(x), f(y)) is nonempty, it contains some
reD.Thus f~'(r) € D' NU, therefore D' N U # @. If (f(x), f(y)) is empty, then f(y) € D;hence ye D'NU.

If f U is constant, then U = {x, y} with x < y. If y = 1y, then y € D’; if x = Oy then x € D’. Suppose that
Oy <xandy < ly.Then x € L(Y) and y = p~ for some p € L(Y).If x < y then f(y) < f(p) and hence y € D'. If
x =y then either f(x7) < f(x) or f(x)= f(y) < f(p). Inbothcasesx € D’. O

Proposition 3.5. Let K be a linearly ordered space which is a continuous image of a Valdivia compact. Then K is
Ro-monolithic, i.e. every separable subspace of K is second countable.

Proof. Suppose X C K is closed, separable and not second countable. Then IL(X) is uncountable. Indeed, otherwise
there would exist a countable set D, dense in X, containing both IL(X) and {p~: p € L(X)}, where p~ denotes the
predecessor of p in X. Then {(a, b): a,b € D, a < b} would be a countable base for X.

Let K be the quotient of K obtained by replacing each interval of the form [a ™, a], where a € IL(X), by a second
countable interval [, such that [a~, a] has an increasing map onto I,. For example, one can define I, =1 if [a™, a]
is connected and I, = {0, 1} otherwise. Then K is a linearly ordered, non-metrizable continuous image of a Valdivia
compact. On the other hand, K is first countable. By the result of Kalenda [5], K is Corson compact. Finally,
Nakhmanson’s theorem [9] (see also [1, Theorem IV.10.1]) says that K is metrizable, a contradiction. O

4. Main lemmas

Let K denote the double arrow space, i.e. the linearly ordered space of the form (I x {0}) U (0, 1) x {1} endowed
with the lexicographic order. Then K is compact in the order topology and admits a natural two-to-one increasing
quotient g : K — I. Example 2 of Corson [2] shows that C(I) is not complemented in C(K), when embedded via ¢.
Corson’s argument can be sketched as follows. Suppose P :C(K) — C(I) is a projection. Then C(K) is isomorphic
to C(I) @ E, where E = C(K)/C (). On the other hand, it is easy to check that E is isomorphic to co (), therefore
C(K) is weakly Lindel6f. On the other hand, C(K) is not weakly Lindel6f, because K is a non-metrizable linearly
ordered compact (by Nakhmanson’s theorem [9]). Taking a separable space F' C C(I) instead of C(I), one can repeat
the above argument to show that C (I) is not contained in a separable complemented subspace of C(K).

Corson’s argument uses essentially topological properties of nonseparable Banach spaces. Below we prove a more
concrete result, which requires a direct argument. We shall apply it in the proof of our main result.

Lemma 4.1. Assume 6 : K — L is an increasing surjection of linearly ordered compacta such that the set

0= {x € L: x is internal in L and |9_1(x)| > 1}
is somewhere dense in L. Then C (L) is not complemented in C (K), when identified with the subspace of C(K) via 6.
Proof. For each x € L define x~ = min#~!(x) and x* = max6~!(x). Then each fiber of 6 is of the form [x~,

x ],
where x € L. Recall that § identifies C (L) with the set of all f € C(K) which are constant on every interval [x~, xT],
where x € L. Suppose P :C(K) — C(K) is a bounded linear projection onto C(L). Fix N € w such that

—1+N/3>|P|.

Given p € Q, choose an increasing function € C(K) such that x, (1) =_O fort < p~ and x,(t) =1fort > pt.
Let h, = P . There exists a (unique) function z,, € C(L) such that 4, = h,6. Define

0" ={qeQ:hy(qg)<2/3} and Q" ={qge 0: hy(q)>1/3}.
Then at least one of the above sets is somewhere dense. Further, define

Uy =(hp) ' (=00,2/3) and US = (h,)~"'(1/3,+00).
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Suppose that the set O~ is dense in the interval (a, b). Choose pg < p1 < --- < py—1 in Q™ N (a, b) so that
pieU, N---NU,  foreveryi < N.This is possible, because each p; is internal in L. Choose f € C(K) such that
0< f<land

F107 Y pi)=xp 107 (pi) fori<N

and f is constant on [p~, p¥] forevery p € L\ {po, ..., py—1}. The function f can be constructed as follows. For
each i < N — 1 choose a continuous function ¢; : [p;, pi+1] — I such that ¢; (p;) = 1 and ¢; (p;+1) = 0. Define

0 ifl‘<p(),

xi(ty ifrelp;.pili<N,
Qi) ifrelp’ piyli<N—1,
1 ift > py_1.

f=

Let g = f — > ;_n Xp;- Then g is constant on each interval of the form 6~1(p), where p € L. Indeed, if p ¢
{po, ..., pn—1} then all the functions f, xp,, ..., Xpy_, are constant on 9’1(17). Ift e [p;, pj.*] then

g =fO =Y xpO=FfO =G =1 —xp,()=j—1,

i<j

because f(t) = Xp; (t). It follows that g € C(L), i.e. Pg = g. Hence

Pf:Pg—i—P(pri):g—i-th,..

i<N i<N

Now choose t € U, N---NU,,  suchthats > py_i. Note that [(Pf)(1)] < || P||, because 0 < f < 1. On the other
hand, 4 p, (1) <2/3 fori < N and consequently

—IPI<(PHO =80+ D hp)=F@O) =Y xp®O+ I hp&)=FO =N+ hp ()
i<N i<N i<N i<N
<1=) " @/3)=1-N/3<—|Pl,
i<N

which is a contradiction.

In case where the set O~ is nowhere dense, we use the fact that O must be somewhere dense and we choose a
decreasing sequence pg > p; > --- > py_1 in Q7 so that p; € UI;FO N---N U;_l fori < N. Taking t € U;) n---N
Ut witht < py_; and considering a similar function f, we obtain

PN—-1

IPI= (PHD=FO) =Y xp O+ Y hp, )= FO)+ Y hp, ()
i<N i<N i<N
>—1+) (/) =-1+N/3>|P],
i<N

which again is a contradiction. O

Recall that, given a compact space X and its closed subspace Y, a regular extension operator is a linear operator
T:C(Y) — C(X) such that T is positive (i.e. Tf > 0 whenever f >0), T1 =1 and (Tf) [ Y = f for every f €
C(Y). Observe that in this case | T|| = 1. The operator T provides an isometric embedding of C(Y) into C(X) such
that the image is a 1-complemented subspace.

Lemma 4.2. Assume X is a closed subset of a linearly ordered compact K. Then there exists a regular extension
operator T : C(X) — C(K) such that E(K, X) C TC(X).
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Proof. For each a € IL(X) choose a continuous increasing function h,:[a™,a] — I such that h,(a”) = 0 and
hq(a) = 1. Define

f(p) if peX,
_ ) fOx) if p <Oy,
TDPI=1 (1) it p>1x.

(1 =ha(p))f@a)+hq(p)f(a) if pe(a,a)forsomeacL(X).

It is straight to check that T f € C(K) forevery f € C(X). Further, (Tf) [ X = f, T1=1and T is positive, therefore
it is a regular extension operator. Note that 7 f is constant both on [0k, Ox] and [1x, 1 x]. Finally, if f € E(K, X)
then T'(f | X) is constant on each interval of the form [a~, a] where a € IL.(X) \ L.(K), therefore f =T (f | X). This
shows that E(K, X) is contained in the range of 7. O

The above lemma implies that C (K) has the separable complementation property, whenever K is a linearly ordered
Rp-monolithic compact space.

5. The space K,

Let (K, <) be a linearly ordered compact space. Define the following relation on K:
X~y <= [x,y]is scattered.

It is clear that ~ is an equivalence relation and its equivalence classes are closed and convex, therefore K/~ is
a linearly ordered compact space, endowed with the quotient topology and with the quotient ordering (i.e. [x]~ <
[y]~ <= x < y). In case where K is dense-in-itself, the ~-equivalence classes are at most two-element sets. Let
q: K — K/~ denote the quotient map. We call g the connectification of K . In fact, K /~ is a connected space, because
if [x]~ < [y]~, then setting ¢ = max[x]~ and b = min[y]~, we have that ¢ < b and a # b, therefore (a, b) # ¢ and
[x]~ < [z]~ < [¥]~ for any z € (a, b).

In [7], a linearly ordered Valdivia compact space V,,, has been constructed, which has an increasing map onto every
linearly ordered Valdivia compact. The space V,,, is 0-dimensional, dense-in-itself and has weight & ;. Moreover, every
clopen interval of V,,, is order isomorphic to V,,,. In particular, every nonempty open subset of V,,, contains both an
increasing and a decreasing copy of w;.

Theorem 5.1. Let K, = V,,, /~, where q:V,,, — K,,, is the connectification of V,,,. Then

(a) K, is a connected linearly ordered compact of weight R.

(b) Ko, is a two-to-one increasing image of a linearly ordered Valdivia compact.

(c) Every separable subspace of C(K,) is contained in a separable 1-complemented subspace.

(d) C(Kgy,) does not have a skeleton of complemented subspaces; in particular it is not a Plichko space.

Proof. Clearly, K, satisfies (a) and (b). For the proof of (c), fix a separable space Eg € C(K,, ). By Proposition 3.4,
there exists a closed separable subspace X of K, such that Eg C E(K,,,, X). By Lemma 4.2, E(K,,, X) is contained
in a 1-complemented subspace of C (K, ), isometric to C(X). By Proposition 3.5, K, is 8p-monolithic, therefore X
is second countable. This shows (c).

Suppose now that C (K, ) has a skeleton F consisting of complemented subspaces. By Proposition 3.3 and by
Lemma 2.1, there exists an increasing surjection 4 : K, — L such that L is metrizable and C (L) € F, when identified
with a subspace of C (K, ) via h. Then L is order isomorphic to the unit interval I, being a connected separable linearly
ordered compact. The set

A= {xeL: 0, <x <1y and |h_1(x)| > 1}

is dense in L, because every non-degenerate interval of K, contains a copy of wi. By Lemma 4.1, C(L) is not
complemented in C (K, ). This shows (d) and completes the proof. O
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6. Constructing compatible projections

In this section we show that a Banach space of density 8] is 1-Plichko if (and only if) it has a skeleton consisting
of 1-complemented subspaces.

Lemma 6.1. Assume E is a Banach space which is the union of a continuous chain {Ey}y <, of closed subspaces
such that for every a < k, E, is 1-complemented in Ey 1. Then there exist projections Sy : E — E, o < k, such that
1Sell =1, Se E = Ey and Sy Sg = Sq = SpSe whenever a < 8 < k.

Proof. We construct inductively projections {Sg : @ < B < k} with the following properties:

(a) Sg : Eg — E4 has norm 1 for every a < 8,
(b) SgS; = Sy whenever @ < 8 < y.

We start with Sg =idg,. Fix 0 < § < « and assume 55 have been constructed for each o < § < § and they satisfy
conditions (a), (b). There are two cases:
Case 1: § =y + 1. Using the assumption, fix a projection T : E, 1| — E,, with ||T|| = 1 and define Sg = S, T for
every o < §. Clearly both (a) and (b) are satisfied.
Case 2: § is a limit ordinal. Let G = | J,_s5 E4. Then G is a dense linear subspace of Es. Define hy: G — E, by
setting
he(x) = ng, where 8 = min{éE €la,d): x € Eg}.
Note thatif @« < 8, x € Eg and y € [B, §) then
Syx=SESyx =Sk, (%)

because of (b) and by the fact that Sg | Eg = idEﬁ. Using (x), it is easy to see that A, is a linear operator. Clearly

Ay |l = 1, thus it can be uniquely extended to a linear operator Sg :Es — E,. Finally, ||Sg [ = llha]l =1 and Sg is a
projection onto E,. Thus (a) holds.

It remains to show (b). Fix @ < 8 < 8. By continuity, it suffices to check that 3 x = Sg ng holds for every x € G.
Fix x € G and find y € [B, §) such that x € E, . We have

SESpx = SES)x =) x=8)x.

Thus both conditions (a) and (b) hold. It follows that the construction can be carried out.
Finally, define S, := Sj. Clearly, S, is a projection of E onto Ey and || Sy || = 1. If @ < B < « then

SuSp =S58k =SESESy =ShSE =55 =5,
and of course SgSy = Sy, because E, C Eg. This completes the proof. O

Corollary 6.2. Assume E is a Banach space with a skeleton {Eq}q<w, sSuch that E, is 1-complemented in Eq 1 for
every a < w1. Then E is a 1-Plichko space.

The following application of Lemma 6.1 provides a partial positive answer to a question of Kalenda [6, Ques-
tion 4.5.10].

Theorem 6.3. Assume E is a 1-Plichko Banach space of density R1. Then every 1-complemented subspace of E is
1-Plichko.

Proof. Let {P,: @« <wi}beaPRlon E and let Q: E — E be a projection with || Q|| = 1. Let F := QF and assume
F is not separable. Define E, = P,E, F,, = F N Ey and Ry, = Q P,. Note that Ry E = Q[E,]. We claim that the set
S =1{§ <wi: Q[Es] = Fs} is closed and unbounded in w;. Indeed, define

¢(a) =min{p < w: Q[E,] S Eg|
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and observe that ¢ is well defined, since each Q[E,] is separable and E = US <o Eg. Now, if § < wy is such that
¢(a) < & whenever @ < §, then

QlEs] = Q[el( U E)} ccl|J QlEd S | Eptw) € Es.

a<§ a<d a<§

therefore 6 € S. Thus § is unbounded in w;. Without loss of generality we may assume that S = w;.

Now observe that Rs [ F is a projection of F onto Fs and therefore F; is 1-complemented in F'. Thus in particular
F = U§<w1 Fe, where {Fg}e <, is a chain of separable subspaces of F' satisfying conditions (1), (2) of Lemma 6.1.
By this lemma we get a PRI on F, which shows that F is 1-Plichko. O

Notice that in the above proof we did not use any compatibility between the projections P, (which are assumed in
the definition of a PRI). Thus, a slight modification gives the following

Corollary 6.4. Assume F is a complemented subspace of a Banach space E of density Ry. If E has a skeleton
consisting of complemented subspaces then so does F.

7. Final remarks and questions
By Theorem 5.1, the following two properties of a Banach space E of density R turn out to be different:

Cy: E is the union of an increasing sequence of separable k-complemented subspaces,
CCy:  E has a skeleton of separable k-complemented subspaces.

Property Cy is equivalent to the fact that every separable subspace of E is contained in a separable k-complemented
subspace. Every k-Plichko space has property CCj and property CCy is equivalent to the fact that £ is 1-Plichko
(Corollary 6.2). If E satisfies CCy and F is an [-complemented subspace of E then F satisfies C Cy;, by the arguments
from the proof of Theorem 6.3. We do not know whether CCy implies k-Plichko, in case where k > 1. We also do
not know whether a closed subspace of a Plichko space necessarily has the separable complementation property.
Finally, we do not know whether a 1-complemented subspace of a Banach space with property C; necessarily has the
separable complementation property.
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