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Abstract-Numerical simulations of mathematical models can suggest that the models are chao- 
tic. For example, one can compute an orbit and its associated finite-time Lyapunov exponents, and 
these computed exponents can be positive. It is not clear how far these suggestions can be trusted, 
because, as is well known, numerical methods can introduce spurious chaos or even suppress actual 
chaos. This focused review examines the fidelity of numerical methods. We look at the didactic 
example of the Gauss map from the theory of continued fractions, which allows a simple examination 
of backward error analysis for discrete dynamical systems and gives a clear picture of the effects of 
floating-point arithmetic. A similar use of backward error analysis, in the form of defect control, gives 
a useful understanding in the case of continuous dynamical systems. Finally, we discuss limitations 
of this ‘backward’ point of view. 

1. INTRODUCTION AND MOTIVATION 

This study of the interaction of numerical analysis and chaotic dynamical systems was originally 

motivated by a problem in flow-induced vibration. Flow-induced vibration has a huge literature 

and, in general, many extremely important practical consequences [l]. Our interest was mainly 

in a particular semi-empirical mathematical model of the flow-induced cross-stream vibration of 

a square prism under two-dimensional conditions [2-41. 

It turns out that the physical problem being modelled can, under certain circumstances, be 

regarded as being chaotic [5,6]. Approximate analytical and numerical results suggested that the 

rather oversimplified mathematical model being examined might also be chaotic [7], again under 

certain circumstances. The agreement between the model and experiment was not good enough 

for anyone to worry about that particular calculation, but did suggest that when a sufficiently 

realistic mathematical model is finally made available, one had better be able to solve it reliably, 

even when the true solution of the model equations is chaotic. 

The difficulty is that the trajectories of a chaotic differential equation are ill-conditioned; that is 

to say, tiny errors such as measurement errors in the initial conditions, neglected ‘small’ physical 

effects in the mathematical model, discretization errors, or even simple roundoff errors will be 
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108 R. M. CORLESS 

exponentially amplified as time progresses, and the details of the predicted motion quickly become 

uncorrelated with the actual motion. 

We use the word ‘ill-conditioned’ for chaotic dynamical systems rather than ‘unstable,’ which 

we reserve for ‘bad’ numerical methods [9]. This usage is standard in numerical analysis, except 

in the initial-value problem community where ill-conditioned problems are also referred to as 

unstable, following the usage in the theory of differential equations. The reader should maintain 

awareness of the distinction between ill-conditioned problems and unstable methods in what 

follows, but should note that the words ‘stable’ and ‘unstable’ will also be used for equilibria or 

other orbits of dynamical systems. This should not cause confusion. 

Anyone familiar with numerical instability would be initially skeptical of chaos known only 

through numerical solutions. The expert would suspect spurious, numerically introduced diffi- 

culties, and of course this does occur: see for example [lo]. It is rather less expected to find that 

certain numerical methods can, on the contrary, suppress actual chaos [ll]. The first part of [ll] 

shows that the implicit Euler method can, for large enough step sizes, artificially stabilize truly 

unstable fixed-points and completely destroy any possible chaotic attractors. 

See Figure 1, where we graph the computed Lyapunov exponent versus the stepsize: the larger 

h is, the less chaotic the problem appears to be. The Lyapunov exponent is computed with a 

standard method-see [ll] for details. 
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Figure 1. Implicit Euler can suppress chaos. The dashed line shows the accepted 
value of the largest Lyapunov exponent, from the literature. 

On yet another level, that of floating-point arithmetic, we also see possibilities for deception. It 

was already observed in [12] that since the set of floating-point numbers is finite, then necessarily 

all computed orbits are ultimately periodic, and hence, not chaotic. Although one might expect 

this to be irrelevant in practice, we will see that this can be nontrivial. 

Conversely, in the second part of [ll], it was shown that floating-point simulation of a dis- 

crete map with a globally attracting fixed point at the origin can appear chaotic, for extremely 

long times, in either single, double, or extended precision, purely due to rounding error effects. 

See Figure 2, where we graph the Lyapunov exponent (computed approximately with an initial 

perturbation of various sizes 6) for the map 

2,+1 = e -7)x, + EZ(Xn), 

where Z(X), mathematically identically zero, is computed by 

z(x) = 
0, ifa:=O, 

]x]-fl (z-’ ((1 + x)~ - 1) - 2 - x) , otherwise. 
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The severe cancellation in this formula reveals the rounding errors made in the computation 

of (1 + z)~. The true Lyapunov exponent of this map is -n < 0, but is computed as being 

positive, for any 6. This roundoff-induced ‘chaos’ is totally spurious. Of course, this example is 

deliberately concocted to have bad numerical behaviour, but it is difficult to guarantee that such 

bad behaviour never occurs in any given program. 
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Figure 2. Roundoff error can introduce spurious chaos. 

To summarize, there are four ‘levels’ of abstraction used here: the physical reality of the 

problem under study, the continuous mathematical model of that physical reality, the numerical 

discretization of that mathematical model, and the floating-point simulation of that discretization. 

Results from one level may or may not transfer easily to another level, and in particular, even 

qualitative features may not be preserved in that transfer. Moreover, there is no inherent bias 

either way: in any change of level we can introduce or destroy chaos. 

Many problems do not require the second level, that of the continuous model, and one can 

go straight from the physical reality to the discrete model [13], but as we see, there is still the 

possibility of being fooled. 

Paradoxically, however, physical experiments and numerical simulations of discretized mathe- 

matical models often seem to produce results in very good statistical or qualitative agreement-in 

the chaotic c ase-even though the details of the trajectories are completely different from the 

true ones after a very short time. This demands an explanation, and we would like to have 

a complete description of just how and when we can rely on numerical simulations of chaotic 

dynamical systems. 

2. DEEPER EXAMINATION OF A SIMPLER PROBLEM: 
THE GAUSS MAP 

To begin that explanation (to be sure, the full story is not known!), consider the following 

much simpler, discrete, dynamical system. It is almost unrelated to our motivating problem of 

flow-induced vibrations, but it falls in the general class of ‘circle maps,’ which are relevant to 

flow-induced vibrations [6]. If we define the Gauss map G : [0, 1) -+ [0, 1) as 

G(x) = 
1 

0, if x = 0, 

x-l mod 1, otherwise, 

then this well-known map, from the theory of continued fractions, is chaotic [14,15]. 
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This function is graphed on a torus in Figure 3, and a summary of its most important properties 

appears below. 

1. 

2. 

3. 

4. 

The orbit {zk} (where zk+i = G(z~), k = 0.. . 00) of every rational initial point 20 goes 

to zero in a finite number of iterations. The rationals are dense in [0, 11. 

Orbits are ultimately periodic if and only if they start from quadratic irmtionaE or, triv- 

ially, rational initial points. Quadratic irrationals are roots of quadratics with integer 

coefficients, and are dense in [0, 11. Like the rationals, they are countable, and hence of 

measure zero. There are an infinite number of different orbits with each period. 

The map is ergodic and so almost all initial points have orbits dense in [0, 11. 

The Lyapunov exponent of this map is, for almost all initial points, n2/(610g2) = 

2.3731.. . but is undefined for rational initial points and is different for each quadratic 
irrational initial point. 

Figure 3. The Gauss map, graphed on a torus 

We thus see formidable numerical difficulties in simulating this map. Floating-point arithmetic 

is intended to represent arithmetic on a finite subset of the rational numbers, and we see from 

above that orbits starting at rational points are, in some sense, exceptional, and the ‘actual’ 

or almost-sure behaviour of the map is quite different. Yet, paradoxically, numerical simulation 

gives us, for example, a good approximation to the true almost-everywhere Lyapunov exponent 

when according to the skeptical view this should be impossible. For example, on an HP28S 

calculator, starting from ze = 0.73 and using lo5 iterations of the floating-point Gauss map, we 
get a computed Lyapunov exponent equal to 2.36992, which is in error by less than 0.2%. This, 

in spite of the fact that the true Lyapunov exponent of the Gauss map starting at zc = 0.73 is 

not even defined-what saves the calculation here is roundoff error! For those who are interested, 

this leads to a candidate for “the world’s worst” algorithm for computing 7r (see [14]). 

The first steps of the resolution of this paradox are contained in [14,15]. Essentially, one 

can prove an explicit shadowing result: the numerically computed orbit starting from x0 is 

uniformly close to the exact orbit of G starting at some other initial point y close to zo. In 

fact, the proof constructs y explicitly, and shows that its orbit is everywhere within 4~ of the 

numerically computed orbit, where E is the machine epsilon of the floating-point system be- 

ing used for the simulation. Because of the special nature of this problem, this ‘backward 

error’ result is very strong, holding for infinite time with an explicit, reasonably tight bound 

on the shadowing distance, in terms of a known numerical characteristic of the floating-point 
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system being used. The proof uses only the fact that division is accurate in a relative sense. 
A more typical shadowing result would hold only for a finite time, and the shadowing distance 

would be more like &. 

This ‘backward error’ approach is very commonly used to justify computer simulation of chaotic 

maps. We will discuss later its application to chaotic differential equations. However, shadowing 

is not completely satisfactory: one sees immediately that numerical simulations of the Gauss 

map must inevitably give ultimately periodic orbits, from any initial condition, because the set 

of floating-point numbers in [0, 1) is finite. This means that the 9 whose actual orbit is shadowing 

the numerical simulation is a quadratic irrational or rational number, and thus is from a set of 

zero measure and in particular does not have a dense orbit or the correct Lyapunov exponent. 

The final resolution of this paradox must somehow account for the fact that the true shadowing 

orbit behaves like a typical orbit, even though it is not. 

Detailed investigation of the logistic map by use of Chebyshev mixing transformations [16] 

showed that its numerical simulations typically have one very long-period orbit that most initial 

points are attracted to, possibly after a fairly long transient. A similar analysis for the floating- 

point Gauss map is sketched below, to see how we can regard the shadowing orbit as being 

typical. 

Suppose for convenience that we use four-digit decimal arithmetic. Let F4 be the set of numbers 

in [0, 1) having four digits after the decimal point, including leading zeros (e.g., 0.0012 is in this 

set but 0.001234 is not). There are lo4 numbers in F4. The numbers in F4 are the only ones 

that matter to the four-digit simulation of the Gauss map, because numbers too close to 0, 

for example, cannot be distinguished from 10m4, as inversion of anything smaller than this will 

produce a number larger than 104, which must have zero fractional part in four-digit decimal 

arithmetic. Thus, numbers too close to zero will be mapped to zero on the next iteration of G, 

exactly as 0.0001 will be. 

It turns out that there are 14 distinct orbits of G restricted to F4 by rounding to nearest. If 

we draw a directed graph on F4 connecting each point to the one it goes to on iteration of G, 

we see the orbit structure in detail. It was convenient to use the networks package of Maple V, 

Release 2, for this purpose [17]. 

A 3-cycle and its basin of attraction are graphed in Figure 4, to give the flavour of a typ- 

ical numerical orbit. One sees features common to floating-point simulations of many discrete 

dynamical systems. In particular, entry to the cycle seems to be through one ‘dominant’ floating- 

point number, and the inherent symmetry of the true basin of attraction of the true shadowing 

three-cycle is completely absent from the floating-point simulation. Of course, the true basin 

of attraction of the true three-cycle is of measure zero in [0, 11, whereas here there is a nonzero 

probability (p = 0.0016) of hitting this three-cycle. One expects that with larger sets of floating- 

point numbers, such short cycles will become more and more ‘sparse’ and thus less likely to be 

accidentally computed. The longest cycle for this example is of length 21, with 5.7% of the initial 

points tending to this cycle, and the longest transient is of length 123, tending to a three-cycle 

0.33 + 0.303 + 0,003 + 0.33. More than 38% of initial points tend to this three-cycle, while 

nearly 33% of initial points tend to 0. For larger sets of floating-point numbers, one expects 

the basins of attraction of the longer cycles to dominate. Note that there are only cycles, and 

experiments show that their typical length increases as the precision increases. 

This raises the question of just how long such cycles will be. Any map z --+ g(x) induces a 

numerical simulation z -+ 3(z) from the finite set of N floating-point numbers to itself. The 

average length of a cycle of a map chosen at random from the set of all NN such maps is known 

to be dw+O(l) as N + co, and the average length of any orbit is Jw+O(l) [8, p. 5191. 

Of course, the map here is not really random-but in some sense just which numerical map 

is chosen is outside of our control and so it is reasonable to expect that statistical ideas will be 

useful. Indeed, the typical cycle lengths encountered for floating-point simulations of the logistic 

map in [16] and for the Gauss map restricted to F4 agree with this expectation. For IEEE single 
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0.8274 - 0.2086 - 0.7939 - 0.2596 - 0.8521 

I / 0.7604 

0.1394 - 0.1736 

z 
I 

0.3151 

0.6084 - 0.6437 - 0.5535 - 0.8067 - 0.2396 

0.6913 - 0.4465 

Figure 4. A 3-cycle and its basin under the four-digit floating-point Gauss map. 

precision arithmetic, we can thus expect the typical cycle to have about lo4 elements in it, and 

for double precision about 108. This is borne out by experiments with the Gauss map. 

This ‘square root’ behaviour shows that the cycle shortness may really be more critical than 

one would expect, and represents a significant effect of floating-point arithmetic. 

In [18,19], it is shown that this behaviour is quite general, and a typical scaling would be that 

the maximum period would usually be of length 0(NDi2) w h ere D is the correlation dimension 

of the map under study. 

Note that this behaviour is not necessarily true for simulations of other chaotic maps. For 

example, if we take the map B : [O,l) -+ [0, 1) given by B(z) = 22 mod 1, then it would be 

simulated on IEEE machines with a simple shift of the binary digits, with O’s filling in on the 

right-thus orbits of the simulation would tend to zero for any initial point, and it would not be 

useful to model the induced numerical map with a randomly chosen map. In [20,21], these issues 

are taken up in more depth. 

The square root effect, if present, can be handled by simple brute force, such as by going to 

double or extended precision: a typical cycle length of about 10’ is likely long enough for most 

purposes. For the Gauss map, it seems intuitively clear that a very long transient or very long 

period orbit must really reflect the nearby presence of ‘typical’ points. One should be able to prove 

a theorem showing that if one defined an ‘average’ Lyapunov exponent for orbits of period T, then 

this average should tend, in the limit as T goes to infinity, to the Lyapunov exponent of almost 

all initial points. This might need a careful definition of ‘average,’ however, and currently I am 

not aware of any such proof. The very interesting paper [22], which is perhaps the only paper on 

the subject of the effects of floating-point arithmetic on simulations of chaotic dynamical systems 

to properly take account of the nonuniformity of the distribution of the floating-point numbers, 

gives a very general result along these lines. They show that if a map r : [0, l] -+ [0, l] has a 

computer implementation + which has ‘very long trajectories,’ O(N) in our notation, then these 

trajectories have histograms which weakly approach the density of the (postulated) absolutely 

continuous invariant measure of 7. The conclusions of the main theorem of [22] are exactly 

what we want here: the absolutely continuous invariant measure for the Gauss map is the Gauss 

measure s, dz/(l + z), and if the histogram of a long trajectory of a computer implementation 

of this map looks like the density of the Gauss measure then the computed Lyapunov exponent 

will be almost right. 

Unfortunately, we do not know if there are orbits which are O(N) long, and in fact by the 

previous arguments, we expect that the longest orbits are O(a). This seems to be enough to 

invalidate one of the key steps in the proof of the theorem in [22]. Note, however, that their 

hypotheses give suj’?cient conditions and not necessary conditions-it would be interesting to 

see if the hypotheses can be weakened to allow use in this context. 
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For a more algorithmic discussion of the difficulties with shadowing, computable numbers, 

and ‘almost-everywhere’ versus actual initial points, see [23]. The essence of the discussion in 

that book, the work by Gavelek and Erber [16], and the previous paragraphs, however, is that 

shadowing by itself is not quite enough to allow us to believe in our numerical solutions-we 

must also have some confidence that the true orbit doing the shadowing is in some sense a typical 

orbit. 

For continuous dynamical systems, as opposed to discrete dynamical systems, the idea of 

shadowing is theoretically the same. One simply appeals to the ‘trivial’ ability to calculate a 

locally accurate solution of a differential equation and then replaces the continuous dynamical 

system by a noisy discrete dynamical system. That is, in theory one can compute y(i!k + T) to 

within a given tolerance 6, given the value for y(tk). Of course, there are great practical difficulties 

with this, and indeed interval arithmetic is required to actually compute y(tk + T) accurate to 

within 6. But waving these difficulties aside, we have reduced the problem from a continuous 

dynamical system y’ = f(y) to iteration of a discrete dynamical system y(tk) + y(tk + T), plus 

a uniformly bounded amount of noise. This is precisely what the shadowing idea from discrete 

dynamical systems is intended to cover, and again one can, for certain differential equations, show 

that there are initial points near to the specified one which give trajectories uniformly close to 

the numerical trajectory. It turns out that these computations are somewhat expensive, and as 

stated previously, require interval arithmetic because they are, in fact, computer-assisted proofs, 

and as such, must account for rounding error as well as discretization error. Further, there are 

difficulties with maps of dimension higher than 3 [24], and hence, with continuous dynamical 

systems of dimension higher than 3. 

One can prove that a slightly weaker shadowing property than the ‘pseudo-orbit tracing prop- 

erty’ used above holds for generic dynamical systems, regardless of the dimension [25,26], and 

this provides some reassurance that dimension should not be a real barrier. This weaker property, 

which holds for all topologically transitive systems, explains for example the success of computer 

simulations of the H&on map. Plots of the results of simulations of this map on different com- 

puters are essentially indistinguishable from each other, even though different roundoff properties 

of the different implementations of floating-point arithmetic ensure that the two pseudo-orbits 

diverge from each other (and from the true orbits) after only a very few iterations. The weak 

tracing property of [25] is enough to explain the similarity of the plots. 

Shadowing itself allows some other reassurances, such as its use in [27] to show that upper 

Lyapunov exponents can be computed reliably for trajectories near hyperbolic sets, but the 

practical difficulties discussed above remain of interest. 

3. DEFECT CONTROL FOR CONTINUOUS 
DYNAMICAL SYSTEMS 

In some sense, the shadowing idea provides a ‘post-processing’ view of computation. One 

computes an orbit or trajectory and then tries to show by further computation (see e.g., [28]) or 

appeal to a theorem (though usually one which hasn’t specified the required 6 to get the desired E) 

that a true orbit was within E of the computed one. One then hopes that the shadowing orbit 

was ‘typical’ and proceeds from there. 

There is a more efficient approach that uses a similar idea. Modern differential equation codes 

provide interpolants, for various practical reasons such as efficient graphical output, ‘g-stops,’ 

delays, etc., and since this is the case, it might pay us to think about the interpolated solution 

(as opposed to merely using it). One can substitute a continuously differentiable interpolant back 

into the differential equation, for example, and look at the residual or defect as it is called in the 

initial-value problem community: 

a(z) = $ - f(x) = m(t), say, 

where z = z(t) is our computed, interpolated solution and E is our input tolerance. 
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A trivial rearrangement of that equation gives us 

dx 

and we see that if our error control mechanism can guarantee that ]]w(t)]] < 1, then we have 

the exact solution to a nearby problem [29]. For a fuller discussion of this approach for chaotic 

problems, see [30]. In view of physical perturbations (e.g., trucks passing by the laboratory where 

wind-tunnel experimenters work on flow-induced vibration problems), we can see that we have 

the exact solution of just as good a mathematical model of the physical problem as the one that 

was originally written down. Further, v(t) is computable, and we can examine it at our leisure. 

If there is some physically interesting statistic (that is to say, numerical quantity computed from 

the solution) that is insensitive to such perturbations, then we say the problem is ‘well-enough 

conditioned.’ If there is no such statistic, then the model is useless for any practical purpose, in 

view of physical perturbations. In [30], this concept is contrasted with the more usual ideas of 

‘well-posedness’ and ‘stability,’ and an example of a problem that is not ‘well-enough conditioned’ 

is given. 

Interval arithmetic is also necessary here [31], if we wish a guarantee that Ilv(t)ll 5 1, as 

opposed to an estimate Ilw(t)ll M 1. Estimating codes such as PAMETH [32] are roughly as 

efficient as the best existing nonstiff codes using classical error control strategies, but are not 

intended for computer-aided proofs. Either approach is more efficient than shadowing, since the 

solution is constructed in the first place to be the exact solution of a nearby problem. 

The technical idea of ‘defect control’ can be replaced by a simpler, albeit less efficient, point of 

view: that of merely examining the defect in a computed solution, however attained. We consider 

this simpler analysis here. 

The following example was taken from a discussion on the USENET group sci.math.num-anal- 

ysis, which took place in December, 1991. The spontaneous and informal discussion there will be 

paraphrased here. The discussions themselves are available by e-mail to rcorless@uwo . ca, but 

the context of the discussions has not been archived. 

In a thread started by Bjiirn Alsberg, who asked about numerical integration of the Lorenz 

equations in Matlab, C. Moler made the following observations, and gave a MATLAB program 

to graph the solution by Euler’s method with fixed step-sizes. 

But I think a little discussion from a broader view point might be of interest to this 

group. The Lorenz attractor is of such great interest precisely because it is, in a sense, 

[an ill-conditioned] problem. Small changes in the data, including those introduced by 

numerical approximations, eventually lead to arbitrarily large changes in the solution. 

However, the altered solution has the same qualitative behavior as the exact solution. 

Any numerical solution is destined to be totally inaccurate, but its graph still looks the 

same. 

With this in mind, here is my MATLAB program to study BjGrn’s instance of Lorenz’s 

equation. It does not use ode23 or ode45 or any other modern, general purpose ode 

routine. It uses Euler’s method with fixed step size! The result is lousy accuracy, but 
fascinating graphics and, I think, good insight into the nature of the Lorenz attrac- 
tor [33]. 

These remarks are correct. The trajectories of the Lorenz system are, for certain parameter 

values, ill-conditioned, in that arbitrarily small changes in the initial conditions or in the differ- 
ential equations will cause O(1) changes in the trajectories of the solution after exponentially 

short times. That is, errors of size e will be amplified to ~exp(XT) after time T, where X > 0 is 

the largest Lyapunov exponent. 

The remarks are also correct in saying that the graph of the solution appears to the eye to be 

unchanged under perturbations of the initial conditions or under perturbations of the differential 
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equations. We here examine the perturbation of the differential equation that occurs when we 

solve this system by Euler’s method with fixed step-size. 

For Euler’s method, the natural interpolant is piecewise linear. This is not Cl. To get a 

C’ interpolant, we can use cubic Hermite interpolation but this only adds complexity to the 

example. It turns out that the size (e.g., infinity norm) of the defect for any C’ interpolant is not 

much different than the size of the (discontinuous) defect that arises from the piecewise linear 

interpolant. Therefore, we set 

We can sample the defect at t;+l to get 

W,,,) = f(G) - f(Gz+d, 

which gives us, asymptotically as h 4 0, the maximum value of the defect on t, 5 t < &+I. 

This sampling also has the advantage that we require no extra computations, for this simple 

method. For more complicated methods, say a higher-order Runge-Kutta method, extra stages 

are typically required to estimate the defect [29]. In the case of Adams PECE methods, a ‘free’ 

estimate is available from quantities already computed by modern codes [34]. For Taylor series 

methods, we can sample at ti+l as we did above for Euler’s method, and this is simple and 

effective. If we wish a more accurate estimate of the defect than we gain from just this one 

sample, we can, of course, sample it at more points, at a cost of one function evaluation per 

sample (plus some interpolation costs, but if the function is complicated then this will be trivial 

in comparison). 

What follows is a modification of the originally posted Matlab code to plot the defect. This 

updated version corrects a bug and now uses Matlab version 4 to give a three-dimensional plot. 

% 
% The defect in Euler’s method solution to the Lorenz equations. 

% Matlab version 4.0 

% Cleve Moler, 1993. 

% 
x = C.06735 1.8841 15.77343’; 

h= .OOl; 

figure(l) 

elf reset 

XP = plot3(0,0,0); 

set (xp, ‘erasemode’,‘none’) 

set(gca,‘box’,‘on’) 

axis(C-IO 10 -20 20 0 401) 

view(-10.40) 

figure(2) 

elf reset 

dp = plot3(0,0,0) ; 

set(dp,‘erasemode’,‘none’) 

set(gca,‘box’,‘on’) 
axis(C-.5 .5 -1 1 -.5 1.53) 

view(-10,401 

kmax = 2000 
imax = IO 

A= [ -3 3 0; 26.5 -1 -x(l); 0 x(1> -I] ; 

x= zeros(3,kmax); 
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D= zeros (3, kmax) ; 

oldxdot = A*x; 

k = 0; 

while k < kmax 

if rem(k,200) == 0, k, end 

k = k + I; 

for i = 1:ima.x 

A(2,3) = -x(i); 

A(3,2) = x(l); 

xdot = A*x; 

x = x + h*xdot; 

d = oldxdot - xdot; 

oldxdot = xdot; 

end 

set(xp,Jxdata',x(l),'ydata',x(2),'zdata"x(3)) 

set(dp,‘xdata’,d(l), 'ydata',d(2),'zdata"d(3)) 

drawnow 

X(:,k) = x; 

D(:,k) = d; 

end 

save 

figure(l) 

elf reset 

plot3(X(l,l :k) ,X(2,1:k),X(3,1 :k)) 
set(gca,'box','on') 

axis([-10 10 -20 20 0 401) 

view(-10,40! 

print -deps defectl.eps 

figure(2) 

elf reset 

plot3(D(l,l:k),D(2,l:k),D(3,l:k)) 

set(gca,‘box’,‘on’) 

axis([-.5 .5 -1 I -.5 1.53) 

view(-IO ,401 

print -deps defect2.eps 

This Matlab script deserves some comment, as it uses some new features of Version 4.0. The 

command figure opens a new window. The command figure(n) makes the nth window the 

current one. The handles xp and dp essentially point to the internal data structures for the two 

plots in the two windows. By referencing the handles, you can change many of the attributes of 

the plots. In this script, we are just changing the point in 3-space which is plotted. Since we have 
set erasemode to none, each new point is plotted, but the old ones are not erased-they just stay 

on the screen, although they are forgotten in the plot data structure. Since only a very small 
area of the plot has changed, it can be updated on the screen very quickly. drawnow triggers an 
X-event so the revised figure is actually drawn. All this allows us to see the plots during their 

computation. They have no effect on the final hardcopy. 

We only plot and save every 10th point. This is good enough resolution for the plots and, if we 
plotted every point, the resulting PostScript files would be 10 times as large. Finally, after the 
computation is complete, we redraw the graphs, this time with lines instead of dots, and produce 

hardcopy of this final result. 



Numerical Simulations 117 

Figure 5 shows the Lorenz orbit itself and the defect is shown in Figure 6. We notice two 

things immediately: 

(1) 

(2) 

The defect is large-bigger than 1 occasionally-and Euler’s method is adding a large 

perturbation to the Lorenz system. Decreasing h decreases the defect, asymptotically lin- 

early. (This is because Euler’s method is a first order method: the defect is asymptotically 

O(h), and for a well-conditioned problem-which the Lorenz system is not-this would 

imply the global error was O(h) as well.) 

The defect has structure. It is clearly correlated with the solution-we have a miniature 

but distorted version of the Lorenz mask produced, plus some other structure. This has 

some serious implications, as correlations can be e.g., “resonant.” An explanation of this 
correlation is offered in [35]. 

Figure 5. The Lorenz mask. 

Figure 6. The defect in the solution of the Lorenz equations by Euler’s method. 

One wonders if a time-dependent perturbation to the Lorenz equations is physically reasonable. 

The Lorenz equations themselves are a severe truncation of a complicated fluid-dynamic model, 

and it is not clear what this time-dependent perturbation means in the original context. However, 

the Lorenz equations do model, for example, the behaviour of an analog computer set up to solve 

CMM *1:10/12-I 
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the Lorenz equations, or a laboratory water wheel [36], and in those contexts a time-dependent 

perturbation might make sense. 

Are the Lorenz equations “really” chaotic? One can say that for finite times, some equations 

that are uniformly within 10d6 of the Lorenz system have positive Lyapunov exponents [30]. As 

an aside, it has been shown [37] by using rigorous, arbitrary-precision interval arithmetic calcu- 

lations that homoclinic orbits actually exist in the solutions of the Lorenz equations themselves. 

Additionally, though I have not yet seen the works in question, there are apparently computer- 

assisted proofs that the Lorenz equations themselves are truly chaotic in the neighbourhood of 

certain parameter values [38]. One expects that these works have also used interval arithmetic. 

More simply, though, it has been suggested [39] that the practical definition of chaos should be 

that a system is chaotic if enough sufficiently nearby systems have positive Lyapunov exponents. 

In view of physical perturbations, (e.g., the effect of Jupiter, or passing trucks, or whatever), this 

is only sensible. Thus one can certainly say that according to this pragmatic definition of chaos, 

the Lorenz equations are chaotic. 

One might wish for a more precise definition of ‘enough sufficiently nearby systems,’ such 

as ‘generic systems in arbitrarily small neighbourhoods’ of the original dynamical system. It 

might be possible to prove such a statement, for a specific problem such as the Lorenz system. 

In practice, with the number of numerical simulations of the Lorenz system worldwide being 

probably in the hundreds of thousands, with tolerances as small as lo-l3 or better, one can say 

here that a large amount of experimental evidence shows that there are lots of systems ?iear’ 

to the Lorenz system that have positive Lyapunov exponents. Hence, in a practical sense, the 

Lorenz system really is ‘chaotic.’ 

As another example, in [40] it is proved that Euler’s method applied to a central force problem 

introduces chaos (that is not present in the exact solution)-for any stepsize h > 0, using exact 

arithmetic. One could conclude from this result that the discretization is bad, in some sense. As 

argued here, one could conclude instead that the problem is bad-the central force problem is 

surrounded by chaotic problems, so it is possible that real-life perturbations will be exponentially 

amplified, not just numerical perturbations. 

4. THE ISSUE OF CORRELATION AND 
HIGHER-DIMENSIONAL PERTURBATIONS 

The remaining problem with shadowing-‘is this a typical orbit?‘-has a counterpart in defect 

control: is the computer-introduced perturbation physically reasonable? Certainly in some cases 

it will not be-the invariants or symmetries inherent in the physical problem may be varied or 

broken, giving nonphysical results. For example, in Hackett’s problem above [40], we may instead 

be interested in the perturbations of the problem that arise from using symplectic methods instead 

of Euler’s method, which give (nearly) exact solutions of nearby Hamiltonian problems. This 

relates to the idea of the appropriate norm to measure the size of the defect in. 

Further, we denoted the defect by 6(t) = sw(t) a b ove, but in fact, the error-control mechanism 

adjusts the stepsize based on information about the solution itself, and we might be better off 

thinking about the defect as 6 = 6(t, Z) or 6 = a(t, 2, ?) or even 6 = 6(t, 5, k, Z), which last gives 

a singular perturbation of the original problem. Worse, if we are solving a partial differential 

equation by, e.g., the method of lines, we might be better off modelling b as 6(t, 2, i, z+,), including 

a spatial derivative. This is pursued further in [35]. 

5. OBJECTIONS 

Not everyone is happy with the idea of ‘changing the problem.’ Some are simply prejudiced- 

they are happy in the habit of thinking of forward error x - xtrue as the quantity they are 

interested in, and don’t want to change. We see some of this resistance even in the area of 
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polynomial roots or the solution of linear systems, where the idea of backward error analysis has 

been used successfully for more than thirty years. 

Other, more rational people (such as writers of general purpose computer codes) have more 

valid objections: they write general-purpose software, and as such obviously cannot take into 

account the context of the problem being solved, which may not even exist at the time the code 

is being written. There, the model of trying for ‘small global error’ has proved very successful, 

for well-conditioned problems. It is unfortunate that the trajectories of chaotic problems are 

ill-conditioned, and in that case the goal of ‘small global error’ is unattainable without extra 

cost. See [28] for an example of how shadowing computations can help in this case, however. 

An interesting objection to the backward error idea is that some problems are ‘forward-stable’ 

but not ‘backward-stable’ [41]-that is, for such problems, there exist approximations which give 

good forward error, but no acceptable ones which give good backward error. Stiff problems (and 

perhaps DAE’s) may be viewed as falling into this category: it is possible to have a solution 

(computed with a stiffly-stable method) with a large defect in the usual norms, but small global 

error. In fact, this may be a useful definition of stiffness. If this definition is accepted, we see a 

certain rough anti-symmetry with chaotic problems: a chaotic problem is one where a solution 

with good backward error may be easily computed with explicit methods while a solution with 

good forward error is too expensive; on the other hand, a stiff problem is one where a solution 

with good forward error is easily computed using implicit methods, while a solution with good 

backward error is too expensive. 

This anti-symmetry is only rough: it may be that there are problems which partake of both 

properties, having some very large and negative Lyapunov exponents and some small and positive 

ones: while the trajectory is moving towards an attractor, it might be that some degree of 

implicitness will be useful to efficiently solve the system, to locate and stay on the attractor-in 

which case one might call the problem stiff-but once on the attractor care must be taken to get 

good backward error, and this is likely to be an important restriction on the stepsize. 

Further objections to defect control include the fact that we have added a time-dependent 

perturbation to a (perhaps) initially autonomous problem, and thus made it more complicated- 

putting the solution in a higher-dimensional space, in effect. This is indeed a complication, but 

one must remember that physical perturbations of autonomous problems can be time-dependent, 

and so this objection is not necessarily insuperable. Another objection is that the numerical 

solution usually merely goes on for a very long time--one wants an infinite time solution, which 

numerically is difficult unless one is near an equilibrium or limit cycle. But here again the use 

of infinite time is only a mathematical model of physical reality-ne is usually only interested 

in infinite time as a ‘first approximation’ or simple model for ‘very long times,’ and so whether 

one simulates for a billion years instead of forever usually makes little practical difference. It 

is different, of course, if the infinite-time behaviour is easily available, through asymptotics or 

other approximations. Then, infinite time results provide useful approximations for the lengthy 

times we are usually interested in practically. See [42] for a discussion of available infinite-time 

backward error results for dynamical systems. 

Finally, the choice of norm appropriate for the defect is clearly problem-dependent. This 

requires more complicated user interfaces, so the user can tell the computer code what norm 

to use, and concomitantly requires the user to be sophisticated enough to tell the code to use 

the right one. For differential-algebraic equations the norm will have to take into account the 

greater rigidity of algebraic constraints, for example, and raises the question of whether or not the 

chosen norm of the defect can be controlled at all by choosing the stepsize, order, or method. It 

is possible that an inappropriate underlying scheme might be detected by the noncontrollability 

of the defect, and this may open a fruitful line of investigation for numerical analysts. 
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6. CONCLUDING REMARKS 

Numerical simulations of chaotic dynamical systems can be relied on when they are the exact 

solutions of problems ‘sufficiently near’ to the mathematical model of the physical problem under 

study, in the light of physical perturbations (whose effect has to be studied anyway). Ensuring 

that the problem really is ‘sufficiently near’ and deciding just what sense of ‘near’ is appropriate 

is not always easy, but at least this is now an applied mathematical modelling question and no 

longer one of study of floating-point arithmetic or discretization, though knowledge of each will 

obviously still be useful. 
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