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A l ~ t r a c t - - I n  this short report I demonstrate that due to truncation and round-off, computer gen- 
erated trajectoriee of chaotic dynamical systems eventually wi]] become periodic. 

Many systems of differential equations have been found to be chaotic. When a system is chaotic 
a trajectory in its state space (depicting the evolution of the system from some initial condition) 
never repeats or crosses itself. If that were to happen the system would return to a state it was 
at some time in its past and then it would have to follow the same path. As a result an aperiodic 
but deterministic evolution is obtained. The trajectory, however, may at some time in the future 
come very, very close to a state of the past. If those two states differ at the nth decimal point 
then a computer that truncates or rounds-off at the (n - 1)th decimal point will or may make 
those two points equivalent. 

The above can be illustrated by considering the logistic equation z,~+l = 4z,~(1 - zn) [1,2]. 
In this form the logistic equation is chaotic, i.e., aperiodic. Let us now assume that  we desire 
to generate a long time series and that  we are dealing with a computer which in its calculations 
carries only two decimal points. Let us then start  with the initial condition z0 = 0.121134.. .  The  
computer  will read this value as z0 = 0.12 and will produce a value of Zl = 0.42 (in fact the exact 
value would be zl  -- 0.4224 but it is t runcated to 0.42). If we continue this iteration process we 
find that  z ~  = 0.97, za = 0.11, z 4  = 0.39, zs = 0.95, zs -- 0.19, z7 = 0.61, zs -- 0.95, z9 = 0.19, 
zl0 = 0.61, z l l  = 0.95, and so on. The evolution has become periodic of period three after 
eight time steps. We can repeat this experiment many times (each time starting with a different 
initial condition) and find the mean number of time steps before the evolution becomes periodic. 
We then can proceed with other truncation scenarios and obtain a graph like Figure 1 which 
shows log N,  the logarithm of the number of time steps before the chaotic evolution becomes 
periodic, as a function of n, the number of digits after the decimal points that  are considered in 
the calculations. 

As can be seen from Figure 1 the evolution sooner or later will become periodic. Approximately 
one can consider that  N varies as N c< 10}. Thus with a computer which truncates at the 1Gth 
decimal point a chaotic evolution will become periodic after 10 s time steps. 

Similar results are obtained when we are considering round-off instead of truncation. Starting 
again with the initial condition of z0 = 0.121134.. .  and assuming that  our computer rounds- 
off at the second decimal point, we obtain that  Zl = 0.42, z2 = 0.97, z3 = 0.12, z4 = 0.42, 
z5 -- 0.97, and so on. The evolution has become again periodic of period three after (in this case) 
four time steps. In general, it is found that  round-off "induced" periodicity is achieved somewhat 
faster than truncation "induced" periodicity. The reason for this is that  apparently rounding-off 
causes very close states to become equivalent more often than truncation does. Take for example 
two states represented by the values 0.1212436...  and 0.1211733.. .  Rounding-off at the fourth 
decimal point will make both these values equal to 0.1212 while truncation will make them equal 
to 0.1212 and 0.1211, respectively. 

The results reported here provide some confidence in computer generated chaotic trajectories 
for low dimensional systems, since in such cases we do not usually require more than 10 s data  

93 



94 A.A. TSONIS 

O 

CD 

O 

m 

o 

i J i i l i i l ~ l i 

1 2 3 ~ 5 8 7 8 9 I 0  

n 
Figure 1. ~ m c a t i o n  will cause any chaotic sequence to become periodic after some 
time steps. In this figure the logari thm of the average number  of t ime steps (log N)  
before a clutotic sequence from the logistic equation becomes periodic is plot ted 
against  the number  of digits after the decimal point  tha t  axe carried in the calcula- 
tions (n). 

points. At the same time the results point out the ultimate limitations in computer simulations of 
chaotic evolutions, which might become important when we begin to deal with high dimensional 
systems. I view the results reported here as complimentary to the results reported by Yorke [3] 
on the shadowing property. According to his results when computer calculations of chaotic 
trajectories are accurate to a certain number of digits, the generated trajectories will be correlated 
to the true trajectories (a property coined shadowing) for some time only. Beyond that time 
the computer trajectories do not represent true trajectories. Here we show that what causes 
shadowing to fail will also cause a chaotic trajectory to become periodic. 
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