A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma

Johannes Haybaeck,1,16 Nicolas Zeller,1,15,16 Monika Julia Wolf,1 Achim Weber,2 Ulrich Wagner,3 Michael Odo Kurrer,4 Juliane Bremer,1 Giandomenica Iezzi,5 Rolf Graf,6 Pierre-Alain Clavien,6 Robert Thimme,7 Hubert Blum,7 Sergei A. Nedospasov,8,9 Kurt Zatloukal,10 Muhammad Ramzan,11 Sandra Ciesek,12 Thomas Pietschmann,12 Patrice N. Marche,11 Michael Karin,13 Manfred Kopf,5 Jeffrey L. Browning,14 Adriano Aguzzi,1 and Mathias Heikenwalder1,*

1Department of Pathology
2Institutes of Neuropathology and Clinical Pathology
University Hospital Zurich, CH 8091 Zurich, Switzerland
3Functional Genomics Center Zurich, University Zurich, CH 8057 Zurich, Switzerland
4Department of Pathology, Cantonal Hospital Aarau, CH 5001 Aarau, Switzerland
5Institute of Integrative Biology, Molecular Biomedicine, Swiss Federal Institute of Technology (ETH), Zurich, Schlieren, CH 8952 Schlieren, Switzerland
6Swiss HPB (Hepato-Pancreatico-Biliary) Center, Department of Surgery, University Hospital Zurich, CH 8091 Zurich, Switzerland
7Department of Internal Medicine, University of Freiburg, D-79106 Freiburg, Germany
8Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
9German Rheumatism Research Center, Berlin, 10117, Germany
10Institute of Pathology, Medical University of Graz, A 8036 Graz, Austria
11INSERM and Université Joseph Fourier-Grenoble, Unité 823, Institut Albert Bonniot UJF Site Santé BP 170 La Tronche, F 38042 Grenoble, France
12Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), D-30625 Hannover, Germany
13University of California, San Diego and University of California, Los Angeles, CA 92093-0723, USA
14Department of Immunobiology, Biogen Idec, Cambridge, MA 02142, USA
15Present address: Department of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany
16These authors contributed equally to this work
*Correspondence: mathias.heikenwalder@usz.ch
DOI 10.1016/j.ccr.2009.08.021

SUMMARY

Hepatitis B and C viruses (HBV and HCV) cause chronic hepatitis and hepatocellular carcinoma (HCC) by poorly understood mechanisms. We show that cytokines lymphotoxin (LT) α and β and their receptor (LTβR) are upregulated in HBV- or HCV-induced hepatitis and HCC. Liver-specific LTαβ expression in mice induces liver inflammation and HCC, causally linking hepatic LT overexpression to hepatitis and HCC. Development of HCC, composed in part of A6+ oval cells, depends on lymphocytes and IKappa B kinase β expressed by hepatocytes but is independent of TNFR1. In vivo LTβR stimulation implicates hepatocytes as the major LT-responsive liver cells, and LTβR inhibition in LTαβ-transgenic mice with hepatitis suppresses HCC formation. Thus, sustained LT signaling represents a pathway involved in hepatitis-induced HCC.

INTRODUCTION

A causal relationship between chronic hepatitis, hepatocellular damage, fibrosis, and carcinogenesis is well established (El-Serag and Rudolph, 2007). Various etiologies, including chronic alcohol consumption, chronic drug abuse, autoimmune disorders, toxins (e.g., aflatoxin B), or infections with hepatotropic viruses (e.g., HBV, HCV), can lead to chronic hepatitis,

SIGNIFICANCE

Pharmacological inhibition of LTβR signaling reduces pathogen- and concavalin A-induced liver injury, whereas LTβR signaling on hepatocytes appears to be beneficial during liver regeneration. We demonstrate that sustained hepatic LT expression in mice can be injurious, causing chronic hepatitis and HCC. Enhanced hepatic LTβR signaling might be of potential clinical relevance because LTβR and its ligands are drastically increased in human HBV- and HCV-induced hepatitis and HCC, compared with normal livers or nonviral, benign liver diseases. Thus, hepatic LT signaling might be advantageous if transiently active during liver regeneration, but detrimental if chronically triggered. We propose that suppression of hepatic LTβR signaling might be beneficial in liver diseases with chronic LTα, LTβ, or LIGHT overexpression.
liver fibrosis, and cirrhosis. HBV and HCV infections are by far the most common cause of chronic hepatitis in humans (Mahi et al., 2006). Chronic HBV and HCV infections are frequently associated with HCC, the most prevalent primary human liver cancer (El-Serag and Rudolph, 2007), and except for HBV infections, liver cirrhosis precedes HCC in most cases. The exact mechanisms driving hepatitis-induced liver cancer remain elusive. Among others, aberrant expression of cytotoxic cytokines is thought to be critically involved (Gretten and Karin, 2004; Lee et al., 2005; Lowes et al., 2003; Vainer et al., 2008).

The proinflammatory and homeostatic cytokines LT\(\alpha\) and LT\(\beta\) are members of the tumor necrosis factor (TNF) superfamily. Under physiological conditions, LTs are expressed by activated T-, B-, NK-, and lymphoid tissue inducer cells (Fu et al., 1998; Ware, 2005) and are crucial for organogenesis and maintenance of lymphoid tissues (Rennert et al., 1996; Tumanov et al., 2003). Although LT\(\beta\) contains a transmembrane domain, LT\(\alpha\) is soluble. Consequently, LT can exist as membrane-bound heterotrimers (LT\(\alpha\)\(\beta\), or LT\(\alpha\)\(\beta\)\(\beta\)) interacting with LT\(\beta\)R or as soluble secreted homotrimers (LT\(\alpha\)\(\alpha\)\(\alpha\)) triggering TNF receptor (TNFR) 1 and TNFR2 and the herpesvirus entry mediator receptor (HVEM) (Browning et al., 1997; Ware, 2005). LT\(\beta\)R and TNFR1 signaling can be activated by the HCV-core protein (Chen et al., 1997; Zhu et al., 1998) involving the canonical or noncanonical NF-\(\kappa\)B signaling pathways (Ware, 2005; You et al., 1999). Furthermore, HBV or HCV infections lead to increased hepatic LT expression in vivo and in vitro (Lee et al., 2005; Lowes et al., 2003), and HCV replication has been demonstrated to depend on components of the LT\(\beta\)R signaling pathway in vitro (Ng et al., 2007).

LTs can directly act on hepatocytes, which physiologically express high levels of LT\(\beta\)R but little LT (Browning and French, 2002). T cell-derived LT and LIGHT (LT-like, exhibits inducible TNF activity) is important for liver regeneration through T cell-derived LT (Browning et al., 2003), and HCV replication has been demonstrated to depend on components of the LT\(\beta\)R signaling pathway in vitro (Figure 1; Figure S1 available with this article online). LT\(\alpha\), LT\(\beta\), and LT\(\beta\)R mRNA expression was increased, on average, \(2^{\pm 0.5}\) to \(2^{\pm 0.5}\)-fold in HBV- or HCV-induced hepatitis and HCC (p < 0.001); LIGHT transcripts were less, but still significantly, elevated (on average, \(2^{\pm 0.5}\) to \(2^{\pm 0.5}\)-fold; p < 0.001). Likewise, TNFR1 mRNA expression was significantly increased in HBV- or HCV-induced hepatitis and HCC (on average, \(2^{\pm 0.5}\) to \(2^{\pm 0.5}\)-fold; p < 0.0001). In contrast, TNF\(\alpha\) was only slightly upregulated in HBV-induced hepatitis (p = 0.04) but not in HCV-induced hepatitis (p = 0.3) and HCC (p = 0.4).

In most cases, HCV genotype, degree of inflammation (Knodell score), fibrosis (Metavir score), and liver enzyme levels (ALT; AST) were assessed (Tables S1–S5). Levels of LT\(\alpha\), LT\(\beta\), and LT\(\beta\)R mRNA did not correlate with the degree of liver inflammation (p = 0.5), fibrosis (p = 0.5), patient age (p = 0.5), sex (p = 0.5), HCV genotype, or type of virus infection (HBV, HCV, HBV/HCV coinfection in the case of some HCC; p = 0.5) (Figure S1; data not shown).

To determine whether upregulation of LT ligands and receptors was specific for HBV- or HCV-induced liver diseases, we examined transcript levels in nonviral liver diseases. These included liver disorders with hepatitis (alcoholic steatohepatitis [ASH], cholestasis [CH], primary biliary cirrhosis/autoimmune cholangitis [PBC], and end-stage liver cirrhosis due to alcoholic liver disease [CIR]) and liver diseases without inflammation (steatosis [ST] and focal nodular hyperplasia [FNH]). Additionally, other liver diseases (OLD), such as hemochromatosis/siderosis, Wilson’s disease, focal liver fibrosis, \(\alpha\)-antitrypsin deficiency, and nonviral HCC (NVH), were investigated.

Levels of LT\(\alpha\), LT\(\beta\), and LT\(\beta\)R mRNA were significantly lower in all nonviral liver diseases analyzed except NVH, compared with virus-induced chronic hepatitis and HCC (LT\(\alpha\), p < 0.0001; LT\(\beta\), p = 0.05; LT\(\beta\)R, p < 0.0001; Figure 1; Figure S1). This was true whether or not nonviral liver diseases were associated with inflammation. LIGHT and TNFR1 mRNA expression in nonviral liver diseases including NVH was similar to HBV- or HCV-induced chronic hepatitis and HCC. In contrast, TNF\(\alpha\) mRNA expression was significantly higher in nonviral liver diseases with inflammation and NVH, compared with healthy livers (p < 0.0001) or HBV- or HCV-induced hepatitis and HCC (p < 0.0001).
Increased Chemokine Expression in HBV- or HCV-Induced Hepatitis and HCC

To confirm that proinflammatory signaling cascades are activated during HBV- or HCV-induced hepatitis and HCC formation, chemokine mRNA levels were measured (Figure S1). CCL2, CCL3, CCL5, and CXCL10 mRNA expression was significantly higher in human HBV-induced (p < 0.0001) or HCV-induced (p < 0.0001) hepatitis and HCC (p < 0.0001) than in healthy controls. CXCL1 mRNA expression was significantly increased in HBV-induced hepatitis (p < 0.0001) and HCC (p = 0.02), but not in HCV-induced hepatitis (p = 0.07).

Upregulation of LTα, LTβ, and LIGHT in Human Hepatocytes upon HCV Infection In Vitro

We next investigated whether LTα, LTβ, LIGHT, and LTβR transcripts can be upregulated in hepatocytes as a consequence of viral infection. The human hepatocyte cell line Huh-7.5 (Blight et al., 2002) was challenged with infectious HCVcc (Pietschmann et al., 2006), and the expression of cytokines and chemokines was measured (Figure S2A). At 48–72 hr after infection, transcripts of LTα (p = 0.05), LTβ (p = 0.05), LIGHT (p = 0.05), LTβR (p = 0.05), and chemokines (CCL2, CCL3, CXCL1, and CXCL10) were increased (2- to 32-fold) in HCVcc-infected, compared with noninfected Huh-7.5 cells.

Identification of Liver Cells Expressing LTβR and Its Ligands in HBV or HCV Infections

To identify the cellular source of LTα, LTβ, LTβR, and LIGHT expression in human HCV-infected livers, cells were collected from HCV-induced hepatitis and HCC (Figure 2A; Figure S2B). Liver cells were sorted according to their CD45 surface expression, resulting in CD45-enriched (T and B cells; monocytes, macrophages, and Kupffer cells; and dendritic and NK cells) or CD45-depleted (hepatocytes, oval cells, and bile duct epithelial and endothelial cells) fractions. Purity of these fractions was assessed by real-time PCR for lymphocyte (CD3, CD20, and CD45) or hepatocyte (cytokeratin 18) markers. CD45-depleted fractions displayed only minor contamination with CD45 mRNA (≤1%–10%), and CD45-depleted fractions showed only a minor amount of cytokeratin 18 mRNA transcripts (~2%–20%; Figure S2C; data not shown). Unsorted liver cells of healthy individuals were included as controls. Because of ethical constraints, human liver samples for cell isolation were obtained from liver explants or explant-derived cultures.

Figure 1. mRNA Expression of Some TNF-Superfamily and TNF-Receptor-Superfamily Members in Viral (HBV- and HCV-Induced) and Nonviral Liver Diseases

Analysis of hepatic LTα, LTβ, LTβR, LIGHT, TNFR1, and TNFα transcription by real-time PCR. Healthy individuals (Ctrl; n = 15), patients chronically infected with HBV (n = 19) or HCV (n = 49), affected by HCC (n = 30), or suffering from various non-virus-related liver disorders were investigated. Non-virus-related liver diseases with hepatitis include alcoholic steatohepatitis (ASH; n = 13), cholestasis (CH; n = 3), primary biliary cirrhosis/autoimmune cholangitis (PBC; n = 5), end-stage liver cirrhosis due to alcoholic liver disease (CIR; n = 8), α1-antitrypsin deficiency (α1AT; n = 1), and focal liver fibrosis (FLF; n = 2). Non-virus-related liver diseases without hepatitis include steatosis (ST; n = 5), hemochromatosis/siderosis (HE/SID; n = 3), and Wilson’s disease (WD; n = 1). Focal nodular hyperplasia (FNH; n = 8) was investigated as a benign primary liver tumor. Diseases such as α1AT (black circles), FLF (black triangles), HE/SID (black diamonds), and WD (white diamonds) are listed under “other liver diseases” (OLD). Horizontal bars represent the average mRNA expression level. The y axis describes the ΔACT values on a log2 scale. Asterisks indicate statistical significance: *p ≤ 0.05; **p < 0.001; ***p < 0.0001.

Cancer Cell 16, 295–308, October 6, 2009 ©2009 Elsevier Inc.
consideration, not enough human healthy liver tissue was available in order to perform cell sorting.

Within HCV-induced hepatitis, CD45-enriched and -depleted liver cells expressed similar LTα or LTβ mRNA levels (LTα, p = 0.8; LTβ, p = 0.1) that were significantly higher than in controls (p < 0.0001) (Figure 2A). LTβR mRNA transcript levels were significantly higher in CD45-depleted cells, compared with hepatitis and HCC, but not those in healthy liver specimens, express LTβR protein (Figure 2C).

Hepatocyte-Specific LTα and -β Overexpression Induces Chronic Progressive Hepatitis

To determine whether sustained hepatic LTβR signaling is causally linked to chronic hepatitis and liver cancer, we analyzed two
transgenic mouse lines that expressed LTα and -β in a liver-specific manner at low (tg1222) or high (tg1223) level (Heikenwalder et al., 2005). Although livers of tg1222 and tg1223 mice were histologically indistinguishable from those of control littermates at three months of age (Figure S3), the hepatic transcriptome was already considerably altered in tg1223 and to a lesser degree in tg1222 mice (Figure 3A; data not shown). Genes with the most dramatic expression changes were identified by DNA-microarray analysis and confirmed by real-time PCR (Figure 3A).

As expected, Ltα and Ltβ transcripts were increased in tg1222 and tg1223 livers (Figure 3A; data not shown). Additionally, mRNA expression of chemokines (Ccl2, Ccl7, Cxcl1, and Cxcl10), genes involved in early growth response (e.g., Egr1 and Egr2), cholesterol metabolism (e.g., Ch25h), and immediate early response (e.g., c-Fos, Jun-b, and Socs-3) were significantly (p < 0.0001) elevated. In contrast, genes involved in cell cycle control, histone modifications, and cell metabolism were significantly downregulated (p < 0.0001) (Figure 3A; Tables S6–S8 and Figure S4). In situ hybridization revealed Lta, Ltβ, Cxcl10, Ccl2, and Egr1 mRNA transcripts in hepatocytes of 3-month-old tg1223 mice (Figure 3B; Figure S3).

At the age of 4 months, a slight increase in intrahepatic CD11b+*, CD68*, and MHCII* cells was detected in tg1223 mice, compared with age-matched tg1222 or C57BL/6 mice (Figure S3; data not shown). At this time point, no significant increase in IL1β, IFNγ, IL6, and TNFα protein levels was found (data not shown). At 4–6 months, transgenic livers started to develop strong portal and lobular (tg1223) or weak portal (tg1222) inflammation consisting of CD4+ and CD8+ T cells, B220+ B cells, and CD11c+ dendritic cells (Figure S3; Heikenwalder et al., 2005).

At ≥ 9 months of age, tg1223 livers exhibited strong portal and lobular lymphocytic infiltrates (Figure 3C). A pronounced influx of F4/80+ macrophages and proliferation of A6+ oval cells was observed. Chronic inflammation coincided with increased proliferating Ki67+ hepatocytes (tg1223, 17 ± 5 Ki67+ cells/mm2 liver section; C57BL/6, 0.5 ± 0.3 Ki67+ cells/mm2 liver section; p = 0.003), which was not significant in age-matched tg1222 livers (p = 0.08; Figure 3C; data not shown).

At this stage, hepatitis was accompanied by increased protein levels of IL1β (p = 0.05), IFNγ (p = 0.05), and IL6 (p = 0.05), and, to a lesser degree, TNFα in tg1223 livers. In tg1222 livers, we observed only a slight elevation of these cytokines, compared...
with C57BL/6 (Figure 3D). Quantitative analysis of total intrahepatic lymphocytes revealed an increase in tg1223 livers (C57BL/6, 17–24 × 10⁶ cells/liver; tg1223, 35–73 × 10⁶ cells/liver; p < 0.05). Intrahepatic lymphocytes were further characterized by flow cytometry (Figure 3E). Frequencies of CD8+ (C57BL/6, 18% ± 11%; tg1223, 38% ± 10%), CD4+ (C57BL/6, 16% ± 3%; tg1223, 26% ± 6%) and TCRβ+ T cells (C57BL/6, 33.5% ± 9%; tg1223, 63.5% ± 4%) were elevated (n = 4), whereas NK1.1+ cells (C57BL/6, 12% ± 2%; tg1223, 7% ± 2%) were reduced in tg1223 livers. Furthermore, an increase in the frequency of CD19+ B cells was found in tg1223 livers (C57BL/6, 25% ± 7%; tg1223, 52% ± 4%). Elevated frequencies of IFNγ-producing CD4+ and CD8+ T cells were found in tg1223 mice, whereas IL17-producing cells remained unchanged (Figure 3E; data not shown).

LTα and LTβ Overexpression Induces Hepatotoxicity

To determine whether chronic hepatitis leads to hepatocyte cell death in tg1222 or tg1223 mice, we analyzed serum transaminase levels (ALT and AST). From the age of 19 weeks on, serum ALT and AST levels were significantly elevated (p = 0.05) in tg1223, but not in tg1222 mice (Figure 4A), and apoptotic hepatocytes were frequently detected in tg1223 mice (tg1223, 40.3 ± 11.4 TUNEL+ cells/mm² liver section; C57BL/6, 3.9 ± 6.2 TUNEL+ cells/mm² liver section; p = 0.0005), but rarely in tg1222 and virtually absent in C57BL/6 mouse livers from the age of 6 months on (Figure 4B; Figure S5; data not shown for tg1222).

Hepatitis persisted in both transgenic lines for ≥18 months. Phenotypes were much milder in tg1222 mice, implying that the LT expression level determined the severity of inflammation and liver injury. Therefore, tg1223 mice were selected for additional experiments, and further key results were obtained from this mouse line.

Microarray and real-time PCR analyses revealed elevated mRNA expression of genes involved in embryogenesis (e.g., Dmrt1), liver inflammation (e.g., Pbe1), carcinogenesis (e.g., Phlda3 and Thrsp; Kawase et al., 2009), glucose homeostasis and insulin sensitivity (e.g., Fgf21), and reduced mRNA expression of genes responsible for cell-cycle control (Gadd45g) and protease inhibition (SerpinA9) in 9-month-old tg1223 livers, compared with C57BL/6 mouse liver (Figure S5 and Tables S9–S11). Several genes were strongly up- or downregulated in 3-month-old tg1223 livers (Figure 3A) and returned to normal levels at 9 months, except that Ltα and -β mRNAs remained at high levels. On the other hand, genes involved in cell division, liver inflammation, lipid metabolism, wound healing, and tumorigenesis were significantly upregulated (p < 0.001), whereas genes involved in growth arrest and apoptosis were significantly downregulated (p < 0.001) in 9-month-old compared with 3-month-old tg1223 livers (Figure S5; Tables S12–S17).
of statistical significance. *p < 0.05; **p < 0.001; ***p < 0.0001.

mice treated with LT

Ig-Treated

tg

1223 Mice Intercrossed with Various Knockout Mice, and LT

R-Ig. Statistical evaluation: asterisks indicate the degree

1223 and C57BL/6 mice did not
described for 3-month-old
tg

1223 mice developed
intrahepatic disease in 18-month-old
tg

1223 mice. We therefore
investigated whether multifocal
tg

1223 HCC represented intra-
hepatic spread of clonal tumors. Independent HCC (n = 6) from
different lobes of the same
tg

1223 liver were microdissected
and subsequently analyzed by aCGH. All HCC taken from the
same liver displayed significantly overlapping chromosomal
aberrations throughout the entire genome (p < 0.05), suggesting
a clonal relationship of a tumor that has locally spread within the
liver (Figure 6B).

Expression of Tumor Markers GP73, GS, and AFP in
tg

1223 HCC

We then evaluated expression of human liver tumor markers golgi
protein 73 (GP73), glutamine synthetase (GS), and α-fetoprotein (AFP)
in
tg

1223 livers (Bachert et al., 2007; Marrero and Lok,
2004; Sakamoto, 2009). GP73, GS, and AFP protein expression
was elevated in most
tg

1223 HCC, as detected by immunohisto-
chemistry and immunoblot analysis, compared with C57BL/6
livers or unaffected liver regions adjacent to HCC (Figures 7A–
7C; data not shown).

Mechanisms Driving LTαβ-Induced Chronic Hepatitis
and Liver Cancer

To identify other receptors and molecular mediators potentially
involved in LT-induced chronic hepatitis and HCC development,
we intercrossed
tg

1223 with

Rag1−/−, or

Ikkβ−/− mice. The requirement of lymphocytes in chronic hepatitis and HCC
formation was investigated by intercrossing with

Rag1−/− mice, which lack mature lymphocytes.

The absence of

Ikkβ, TNFR1, or lymphocytes per se did not
appear to influence transgenic

Ltα and

−β mRNA expression
(Figures 3A and 7D). Initially, at 3 months of age,
tg

1223/ikkβ−/− and
tg

1223/Tnfr1−/−,
tg

1223/Tnfr2−/−, and
tg

1223/Rag1−/− mice
lacked histological evidence of hepatitis similar to
tg

1223 mice (data not shown). The aberrant hepatic gene expression pattern
described for 3-month-old
tg

1223 mice developed only partially
in
tg

1223/ikkβ−/− and
tg

1223/Rag1−/− mice, whereas
tg

1223/

Tnfr1−/− livers displayed an expression profile similar to that of
tg

1223 mice (Figure 7D; Figure S7). At 9 months of age,
tg

1223/Rag1−/− (n = 26) and
tg

1223/ikkβ−/− (n = 18) livers
lacked hepatitis, hepatocyte, or oval-cell proliferation (Figure S4),
whereas
tg

1223/Tnfr1−/− (n = 6) or
tg

1223/Tnfr2−/− (n = 6) livers

HCC Development in
tg

1223 Mice

At 12 months of age, about 20% (6/34) of
tg

1223 mice developed
macroscopically visible nodules that classified histologically as
HCC, including broadening of liver cell cords, loss of collagen
IV networks, and increased proliferative activity. In contrast,
age-matched
tg

1223 livers lacked HCC (0/20; p = 0.05) (Figures
4C, 4D, and 5). Tumor frequency increased with age, reaching
~35% (18/51) by 18 months, whereas
C57BL/6 mice did not
develop HCC (0/35; p < 0.0001) (Figure 5; Figure S6).
Tumors varied in size (1−25 mm), and histology and affected both sexes with
similar frequencies (males:females = 13:11; p = 0.3) (Figure 4; Tables S18 and S19).

A6+ oval cells (Engelhardt et al., 1990) were focally (8/24) or
diffusely (2/24) distributed within some
tg

1223 HCC. The remain-
ing
tg

1223 HCC (14/24) lacked A6+ cells but were surrounded by
them at the border zone of HCC (Figure S6).

Chromosomal Aberrations and Local Spread
of HCC in
tg

1223 Mice

We further investigated microdissected
tg

1223 HCC (n = 9) and
age-matched
C57BL/6 livers (n = 5) for chromosomal aberrations. Array comparative genomic hybridization analysis (aCGH)
revealed chromosomal aberrations in all
tg

1223 HCC (Figure 6).
Amplifications and deletions of chromosomal regions ranged from ≤1 megabase (MB) to 160 MB and were detected in
most autosomes of all analyzed
tg

1223 HCC. Of note, the pattern of chromosomal aberrations varied in HCC from different
individual

tg

1223 mice (p = 0.34). aCGH analysis of independent
C57BL/6 liver DNA samples did not reveal significant chromosomal aberrations.

We did not detect lung metastases but often saw multifocal
intrahepatic disease in 18-month-old
tg

1223 mice. We therefore
investigated whether multifocal
tg

1223 HCC represented intra-
hepatic spread of clonal tumors. Independent HCC (n = 6) from
different lobes of the same
tg

1223 liver were microdissected
and subsequently analyzed by aCGH. All HCC taken from the
same liver displayed significantly overlapping chromosomal aberrations throughout the entire genome (p < 0.05), suggesting
a clonal relationship of a tumor that has locally spread within the
liver (Figure 6B).

Expression of Tumor Markers GP73, GS,
and AFP in
tg

1223 HCC

We then evaluated expression of human liver tumor markers golgi
protein 73 (GP73), glutamine synthetase (GS), and α-fetoprotein (AFP) in
tg

1223 livers (Bachert et al., 2007; Marrero and Lok,
2004; Sakamoto, 2009). GP73, GS, and AFP protein expression
was elevated in most
tg

1223 HCC, as detected by immunohisto-
chemistry and immunoblot analysis, compared with C57BL/6
livers or unaffected liver regions adjacent to HCC (Figures 7A–
7C; data not shown).

Mechanisms Driving LTαβ-Induced Chronic Hepatitis
and Liver Cancer

To identify other receptors and molecular mediators potentially
involved in LT-induced chronic hepatitis and HCC development,
we intercrossed
tg

1223 with

Rag1−/−, or

Ikkβ−/− mice. The requirement of lymphocytes in chronic hepatitis and HCC
formation was investigated by intercrossing with

Rag1−/− mice, which lack mature lymphocytes.

The absence of

Ikkβ, TNFR1, or lymphocytes per se did not
appear to influence transgenic

Ltα and

−β mRNA expression
(Figures 3A and 7D). Initially, at 3 months of age,
tg

1223/ikkβ−/− and
tg

1223/Tnfr1−/−,
tg

1223/Tnfr2−/−, and
tg

1223/Rag1−/− mice
lacked histological evidence of hepatitis similar to
tg

1223 mice (data not shown). The aberrant hepatic gene expression pattern
described for 3-month-old
tg

1223 mice developed only partially
in
tg

1223/ikkβ−/− and
tg

1223/Rag1−/− mice, whereas
tg

1223/

Tnfr1−/− livers displayed an expression profile similar to that of
tg

1223 mice (Figure 7D; Figure S7). At 9 months of age,
tg

1223/Rag1−/− (n = 26) and
tg

1223/ikkβ−/− (n = 18) livers
lacked hepatitis, hepatocyte, or oval-cell proliferation (Figure S4),
whereas
tg

1223/Tnfr1−/− (n = 6) or
tg

1223/Tnfr2−/− (n = 6) livers

Cancer Cell 16, 295–308, October 6, 2009 ©2009 Elsevier Inc. 301
were indistinguishable from those of \textit{tg}1223 mice (Figure 3C and Figures 7E and 7F; Figure S7). At the age of 18 months, \textit{tg}1223/\textit{Rag1}/C0 (n = 26) and \textit{tg}1223/\textit{Ikk}\textsubscript{bDhep} (n = 25) mice were devoid of hepatitis and HCC (p < 0.0001) (Figures 5 and 7G), suggesting that both lymphocytes and hepatocyte-specific IKK\textsubscript{b} expression are required for LT-induced chronic hepatitis and HCC development. Notably, \textit{tg}1223/\textit{Tnfr1}/C0 mice displayed HCC (4/12) with an incidence similar to that among \textit{tg}1223 mice (Figures 5 and 7G; Figure S8; Tables S18 and S19), indicating that TNFR1 signaling is not essential for LT-induced HCC formation in \textit{tg}1223 mice.

Hepatocytes Are the Major Responsive Liver Cells to Agonistic LT\textsubscript{b}R Antibody Treatment

To investigate whether hepatocytes represent the major LT-responsive liver cells and to investigate LT\textsubscript{R} signaling in \textit{Tnfr1}−/− and \textit{Ikk}\textsubscript{bDhep} livers, TNF\textsubscript{z} (positive control), agonistic LT\textsubscript{R} antibody (3C8), and appropriate negative controls (PBS; rat IgG) were administered intravenously to C57BL/6 and various knockout mice (Figure 8; Figure S8). Nuclear p65 (RelA) translocation in hepatocytes and nonparenchymal cells (NPC, e.g., Kupffer cells and lymphocytes), alterations in the hepatic transcriptome, and protein expression of selected chemokines were examined.

Administration of 3C8 induced nuclear p65 translocation, primarily in hepatocytes and some NPC of C57BL/6 livers (Figure 8A), as well as transcriptional changes and upregulation of selected chemokines reminiscent of those observed in 3-month-old \textit{tg}1223 livers (Figure S8). Similar results were obtained after 3C8 treatment of \textit{Tnfr1}−/− mice, in contrast to \textit{Ikk}\textsubscript{bDhep} livers, which were devoid of nuclear p65 translocation in hepatocytes and NPC (Tables S20 and S21). Furthermore, up-regulation of selected NF-\textkappa B target genes could not be detected. Control \textit{Lt}\textsubscript{bR}/C0 mice treated with 3C8 lacked nuclear p65 translocation in hepatocytes or NPC, as well as upregulation of selected NF-\textkappa B target genes.

To examine whether lack of functional IKK\text subalpha on hepatocytes and NPC would suppress LT\textsubscript{R}-induced upregulation of selected NF-\textkappa B responsive genes, we investigated livers of mice expressing a nonphosphorylatable \textit{Ikk}\textsubscript{aAA} knockin allele (\textit{Ikk}\textsubscript{aAA/AA}; Cao et al., 2001). Upon 3C8 treatment, \textit{Ikk}\textsubscript{aAA/AA} mice upregulated selected NF-\textkappa B responsive genes (Figure S8). The degree of mRNA upregulation in liver was similar to that in 3C8-treated C57BL/6 mice. In contrast, control treated (rat IgG) \textit{Ikk}\textsubscript{aAA/AA}
mice lacked upregulation of selected NF-κB responsive genes. This finding suggests that 3C8-mediated hepatic LTβR signaling is mainly integrated by hepatocytes involving canonical NF-κB pathway.

Inhibition of LTβR Signaling Reduces Chronic Hepatitis and Carcinogenesis

We further investigated the involvement of LTβR signaling in the transition of chronic hepatitis to HCC by long-term LTβR-Ig inhibition of LTβR signaling reduces chronic hepatitis and carcinogenesis. Fragments of LTβR-Ig are shown to co-localize with the NF-κB target gene reporter (NFκB-Luc) in mouse liver sections, indicating that the inhibition of LTβR signaling leads to a reduction in chronic hepatitis and carcinogenesis.

Figure 7. Expression of Tumor Markers in tg1223 HCC and Mechanistic Characterization of Liver Carcinogenesis in tg1223 Mice

(A) Immunoblot analysis of C57BL/6 and tg1223 HCC homogenates for GP73. Strong to moderate signal intensities were detected in all tg1223 HCC, but not in C57BL/6 livers.

(B) Immunoblot analysis of C57BL/6 and tg1223 HCC homogenates for AFP. β-Actin served as a loading control (kDa, kilo Dalton).

(C) Immunohistochemistry for GP73 and GS in a representative tg1223 HCC and age-matched C57BL/6 control (scale bar, 100 μm).

(D) mRNA expression of candidate genes in livers of 3-month-old tg1223/ikkβDhep, tg1223/Rag1−/−, and tg1223/Tnfr1−/− mice. Data are presented in a log2 scale (blue, upregulated; red, downregulated). Rows indicate individual mice; columns represent particular genes. Each data point reflects the median expression of a particular gene resulting from three to four technical replicates, normalized to the mean expression value of the respective gene in C57BL/6 livers.

(E) Histological analysis of tg1223/ikkβDhep, tg1223/Rag1−/−, tg1223/Tnfr1−/−, and tg1223/Tnfr2−/− livers at 9 months of age. H&E, B220 for B cells and CD3 for T cells (scale bar, 500 μm).

(F) Immunohistochemical analysis of A6+ cells (oval cells) in livers of tg1223/ikkβDhep, tg1223/Rag1−/−, and tg1223/Tnfr2−/− mice at 9 months of age (scale bar, 100 μm).

(G) Immunohistochemical analysis of K67+-proliferating hepatocytes are indicated by arrowheads (lower row; scale bar, 50 μm).
Figure 8. Effects of Acute 3C8 and Long-Term LTβR-Ig Treatment and a Model of Chronic Inflammation-Induced Hepatocarcinogenesis in tg1223 Mice

(A) Immunohistochemical analysis of nuclear p65 translocation and real-time PCR for mRNA expression of selected NF-κB target genes in livers of C57BL/6 and various knockout mice treated with 3C8. Data are presented on a log2 scale (blue, upregulated; red, downregulated). Rows indicate individual mice; columns represent particular genes. Each data point reflects the median expression value of a particular gene resulting from three to four technical replicates, normalized to the mean expression value of the respective gene in C57BL/6 livers. (scale bar, 50 μm). Expression data are depicted according to treatment group: rat IgG (control) or 3C8 (LTβR agonist). Statistical significance was evaluated by t test: *p < 0.05; **p < 0.001; ***p < 0.0001.

(B) Histological analysis (H&E) of livers from untreated (left column) and LTβR-Ig treated (right column) C57BL/6 or tg1223 mice (12 months of age). Representative sections show no hepatitis or HCC in untreated or LTβR-Ig-treated C57BL/6 livers (upper row). Untreated tg1223 livers display hepatitis in 34/34 (middle panel, left column) and HCC in 6/34 cases (lower panel, left column). LTβR-Ig treatment reduces the incidence of hepatitis (middle and lower panel, right column) and prevents HCC formation in LTβR-Ig treated tg1223 mice. Arrowheads indicate inflammatory foci. Tumor border is indicated by a dashed line (scale bar, 200 μm).

(C) Scheme of chronic inflammation-induced liver carcinogenesis in tg1223 mice: Transgenic hepatocytes (brown) express LTα and LTβ and induce chemokine production (e.g., CCL2, CCL7, CXCL1, and CXCL10) in the presence of IKKβ and intrahepatic lymphocytes. Chemotraction and activation of myeloid cells and lymphocytes expressing particular chemokine receptors (e.g., CXCR3, CXCR2, CCR2, and CCR1) cause hepatitis: CXCL10 attracts CXCR3+ T and NK cells, CXCL1 CXCR2+ T cells, B cells, neutrophils, and CCL2 CCR2+ macrophages, and CCL7 attracts CCR1+ monocytes. Activated, infiltrating immune cells secrete cytotoxic cytokines (e.g., IL6, IL1β, TNFα, IFNγ, and LTαβ) that cause tissue destruction, hepatocyte proliferation, cell death, and tissue remodeling. In such an environment, hepatocytes are susceptible to chromosomal aberrations leading to HCC. Tissue destruction and remodeling supports the infiltration of activated inflammatory cells (e.g., myeloid cells), leading to a feed-forward loop toward chronic aggressive hepatitis. Asterisks indicate that genetic depletion of those components (IKKβ; T and B cells) blocks chronic hepatitis development and HCC. Blocking LTβR signaling with LTβR-Ig in 9-month-old tg1223 mice reduces chronic hepatitis incidence and prevents HCC. (+) indicates the fortification of a described process. (−) indicates the suppression of a described process. The transcription factor RelA is schematically depicted as a green circle, inducing transcription of NF-κB target genes (e.g., chemokines) (arrow). B, B cells; T, T cells; MØ, macrophages; N, neutrophils; NK, NK cells.
administration in tg1223 mice. Nine-month-old tg1223 mice with chronic hepatitis (n = 31) or age-matched C57BL/6 mice (n = 23) were treated with LT1R-Ig for 2 months, remained untreated for another 4 weeks, and then were sacrificed. LT1R-Ig treatment significantly reduced chronic hepatitis incidence in tg1223 mice, compared with that in untreated tg1223 mice (treated, 4/31; untreated, 34/34, p < 0.0001). Furthermore, LT1R-Ig treatment suppressed chronic hepatitis-driven HCC formation (treated, 0/31; untreated, 6/34, p < 0.05) (Figures 5 and 8B). LT1R-Ig treatment did not lead to overt histopathological alterations in C57BL/6 livers or overt changes in lymphocyte (B and T cells) or macrophage populations within spleens of C57BL/6 or tg1223 mice (data not shown). Efficiency of LT1R-Ig treatment was ascertained by the loss of LT1R-dependent follicular dendritic cells (FDCs) within C57BL/6 and tg1223 spleens (Figure S9). Thus, our results imply that long-term suppression of LT1R reduces chronic hepatitis incidence and can prevent the transition from chronic hepatitis to HCC in tg1223 mice.

DISCUSSION

This study uncovered drastic and robust mRNA upregulation of LT1R, LT1, and LT1β in HBV- or HCV-induced hepatitis and HCC. LT and LIGHT transcripts were mainly expressed by CD3+ T cells and CD20+ B cells; a significant proportion of LT1x and LT1β expression was also attributable to hepatocytes. Notably, upregulation of LT1R, LT1, and LT1β transcripts was also detected in non-virus-related HCC, which may stem from activated, tumor-infiltrating lymphocytes and/or from neoplastic hepatocytes that have upregulated LT, possibly in response to IL6. It was demonstrated that HCC-derived cell lines express IL6 (Baffet et al., 1991) and that LT levels are increased in response to IL6 in the latter (Subrata et al., 2005).

LT signaling induces both canonical and noncanonical NF-κB signaling pathways, whose role in controlling liver cancer formation remains controversial (Vainer et al., 2008). In a mouse model with acute DEN exposure, depletion of functional NF-κB signaling (IkκBα−/− mice) increased hepatocyte cell death, enhanced Kupffer cell activation, and elevated HCC incidence (Maeda et al., 2005). In contrast, NF-κB signaling promotes HCC development in mdr2−/− mice (Pikarsky et al., 2004), and hepatocyte-specific depletion of IkκBα prevents HCC formation in tg1223 mice. How can this contradictory role of IkκBα signaling in HCC formation be reconciled? On the one hand, IkκBα signaling might be required for hepatocytes to appropriately respond to and survive carcinogenic stimuli and acute liver injury (e.g., DEN exposure). On the other hand, IkκBα signaling might enable chemokine expression by hepatocytes, leading to hepatitis and HCC. Consistent with this hypothesis, tg1223/Rag1−/− mice were devoid of chronic hepatitis, hepatocytes, or oval-cell proliferation and failed to develop HCC.

Why could immune cells contribute to liver tumorigenesis? One explanation might be that CD4+ or CD8+ T cells expressing inflammatory cytokines (e.g., IL1β, TNFα, and IFNγ), as well as cytolytic proteins (e.g., Granzyme B), contribute to hepatocyte cell death, tissue remodeling, and transformation, finally leading to HCC (Budhu and Wang, 2006; Nakamoto et al., 1998). Intrahepatic lymphocytes may also influence the production of inflammatory mediators, because 3-month-old tg1223/Rag1−/− mice displayed markedly reduced cytokine and chemokine levels.

We propose that, rather than directly acting as a cell-autonomous oncogene on hepatocytes or A6+ oval cells, hepatic LT1β expression induces local upregulation of chemokines (e.g., CCL2, CXCL10, CXCL1, and CCL7) by hepatocytes. This leads to the attraction of circulating inflammatory cells and a hyperproliferative, hepatotoxic environment stochastically leading to HCC formation (Figure 8C). It is worth mentioning that some chemokines found in this study (e.g., CXCL10) have been reported to be mainly expressed by human hepatocytes in chronic hepatitis C (Zeremske et al., 2007).

Ablation of TNFR1 signaling did not prevent chronic hepatitis and HCC formation in tg1223 mice, although anti-TNFα antibody treatment prevents HCC development in mdr2−/− mice (Pikarsky et al., 2004). We investigated the mode of LT signaling in TNFR1−/− mice upon 3C8 treatment. This treatment induced analogous hepatic changes seen in tg1223 mice at 3 months of age. Similar to our results with tg1223/Tnfr1−/− mice, this finding suggests that heterotrimeric LT causes p65 translocation in hepatocytes and induces a TNFR1-independent signaling cascade via LT1R, presumably contributing to chronic hepatitis and HCC. Most probably, HCC formation in mdr2−/− mice depends on pathways involving TNFR1 distinct from the LT1R-dependent pathways described in our study.

Intravenous administration of TNFα into IkκBα−/− mice did not cause p65 translocation in hepatocytes but upregulated NF-κB target genes, presumably through TNFα-activated NPC. In contrast, 3C8 treatment in IkκBα−/− mice had no effect. Therefore, hepatocytes but not NPC are likely to be the major liver cells integrating LT signaling. Interestingly, upon 3C8 treatment, IkκBα+/− mice upregulated selected NF-κB target genes, similar to C57BL/6 mice (Figure S8). Therefore, the absence of IkκBα in hepatocytes and NPC allows NF-κB target gene expression upon 3C8 treatment, suggesting the involvement of the classical NF-κB pathway in LT1R-induced hepatic signaling.

LT1R signaling was reported to induce oval-cell proliferation (Akhurst et al., 2005), which is thought to contribute to the development of liver tumors (Lee et al., 2006). We observed proliferation of A6+ oval cells in chronically inflamed tg1223 livers at the age of 9 months and found A6+ cells within and at the border of tg1223 HCC. Whether those A6+ cells represent transformed oval cells contributing to liver carcinogenesis or whether A6 is upregulated on aberrant hepatocytes within HCC remains to be determined.

Lack of lymphocytes or chronic hepatitis prevented oval-cell proliferation, although LTs and β transgene expression was unaltered. Therefore, it is conceivable that activated, infiltrating lymphocytes or Kupffer cells may contribute to oval cell proliferation by providing further LT or other cytokines in tg1223 livers. On the basis of the presented data, a sequence of events leading to chronic hepatitis and HCC in tg1223 mice can be proposed (Figure 8C).

What are the possible clinical implications of our findings? It has recently been demonstrated that pharmacological inhibition of LT1R signaling reduces virus-, bacteria-, and concavalin A–induced liver injury (An et al., 2006; Anand et al., 2006; Puglielli et al., 1999), whereas triggering LT1R signaling on hepatocytes appears to be beneficial during liver regeneration (Tumanov...
et al., 2008). Moreover, siRNA knock-down of various components of the LTβR signaling pathway (e.g., LTβ and RelA) were shown to interfere with HCV replication in vitro (Ng et al., 2007). Therefore, inhibition of LTβR signaling might also impede the efficiency of HCV replication.

What are the possible side effects of blocking LTβR signaling? The reported effects include alterations in the microarchitecture of white pulp follicles and disappearance of FDC networks in nonhuman primates (Gommerman et al., 2002). Of note, despite the loss of FDCs and a reduced capacity to trap immune complexes, the primary antibody response to keyhole limpet hemocyanin was not significantly altered (Gommerman et al., 2002).

Accordingly, we have investigated a possible beneficial effect of blocking LTβR signaling in tg1223 mice with chronic hepatitis. This partially reverted inflammation and prevented HCC formation, suggesting that LTβR-Ig treatment might be beneficial in liver pathologies with sustained LT signaling.

Our results show that LT signaling is critically involved in hepatitis and subsequent HCC development and imply that blocking LTβR signaling might become a beneficial therapeutic approach in the context of HBV- or HCV-induced chronic hepatitis and other liver diseases displaying sustained hepatic LTβR signaling.

EXPERIMENTAL PROCEDURES

Human Liver Tissue

Human liver biopsy specimens were obtained from University Hospitals Zurich, Freiburg, Grenoble, Heidelberg, and Graz. Biopsy specimens were registered in the respective biobanks and kept anonymous. The research project was authorized by the ethical committees of the “GenesPrototypes Kanton Zürich” (Ref. Nr. StV 26-2005), Freiburg (Nr. 299/2001), Heidelberg (Prof. Bannasch), Graz (Ref. Nr. 1.0 24/11/2008), and Grenoble (Ref. Nr. 03/ APTF/1). The study protocol was in accordance with the ethical guidelines of the Helsinki declaration. Patients were enrolled after giving their written informed consent. HBV- or HCV-infected patients with chronic hepatitis and subsequent HCC development and imply that blocking LTβR signaling might become a beneficial therapeutic approach in the context of HBV- or HCV-induced chronic hepatitis and other liver diseases displaying sustained hepatic LTβR signaling.

Mice

Animals were maintained under specific pathogen-free conditions, and experiments were approved and conform with the guidelines of the Swiss Animal Protection Law, Veterinary office, Canton Zurich. Mouse experiments were performed under licenses 198/2007, 83/2007, and 30/2005 according to the regulations of the Veterinary office of the Canton Zurich. Tg1223, Tg1222, Tnfr1−/−, Tnfr2−/−, Rag1−/−, Ltr−/−, IkKEAADAA, and ikKGND mice were generated as previously published (Bluethmann et al., 1994; Cao et al., 2001; Futterer et al., 1998; Heikenwalder et al., 2005; Maeda et al., 2005; Mombaerts et al., 1992).

TNFα and 3C8 Treatment

Twelve-to-fourteen-week-old male mice (C57BL/6 and knock-out mice) were intravenously injected with either PBS, murine recombinant TNFα (50 μg/kg bodyweight; R&D Systems), agonistic LTβR antibody (50 μg/mouse; clone 3C8; eBioscience), or rat IgG (50 μg/mouse; eBioscience) and sacrificed for analysis 45 min after injection. All substances were injected at a total volume of 100 μl dissolved in PBS.

Isolation of Intrahepatic Murine Lymphocytes

Mice were anesthetized, and liver was perfused with PBS to remove circulating leukocytes; then isolated liver tissue was minced and digested in medium containing collagenase (1 mg/ml) and DNase (25 μg/ml) at 37°C for 40 min. Cells were centrifuged at 300 rpm for 3 min to sediment the majority of hepatocytes. Supernatant was removed and centrifuged again at 1200 rpm for 10 min. Cell pellet was resuspended in the 40% fraction of a 40:60 Percoll gradient. Upon centrifugation at 2500 rpm for 20 min, intrahepatic murine lymphocytes (IHLs) were collected at the interface. IHLs were analyzed for surface marker expression by staining with anti-CD4, anti-CD8, anti-TCR-β, anti-NK-1.1, or anti-CD19 antibodies (Abs), and for cytokine production capacity by intracellular staining with anti-IFNγ and anti-IL17 Abs (all from eBioscience) upon PMA/ionomycin stimulation for 4 hr by using a two-laser FACScalibur (BD). Analysis was executed with CellQuest and FlowJo software.

Measurement of Aminotransferases

The analysis for AST and ALT was performed with mouse serum on a Roche Modular System (Roche Diagnostics) with a commercially available automated colorimetric system at the Institute of Clinical Chemistry at the University Hospital Zurich using a Hitachi P-Modul (Roche).

ACKNOWLEDGMENTS

We thank Birgit Riepl, Mareike Schroff, Manja Barthel, Petra Schwarz, Marianne König, Rita Moos, Udo Ungethüm, Mirzet Delic, Urs Egl, Silvia Behnke, André Fitsche, Andrea Patrignani, Marie-Ange Thelu, and Gitta Seleznik for excellent technical assistance. We thank the members of the LT team at Biogen Idec for LT reagents; Annette Schmitt-Graeff for performing Knocked score analysis; and Wolfram Jochum, Tracy O’Connor, Stefan Zoller, Thomas Fuchs, Holger Moch, Glen Kristiansen, Peter Schram, Thomas Ried, Claude Camaud, Helmut Denk, Christopher Soll, Evelyne Jouvin-Marine, and Burkhard Seifert for discussions. We thank Peter Bannasch for providing human tissues, Valentia Factor for antibodies (Ab), and Alexi Tumanov (mIlt, mIltI).

REFERENCES

ACKNOWLEDGMENTS

We thank Birgit Riepl, Mareike Schroff, Manja Barthel, Petra Schwarz, Marianne König, Rita Moos, Udo Ungethüm, Mirzet Delic, Urs Egl, Silvia Behnke, André Fitsche, Andrea Patrignani, Marie-Ange Thelu, and Gitta Seleznik for excellent technical assistance. We thank the members of the LT team at Biogen Idec for LT reagents; Annette Schmitt-Graeff for performing Knocked score analysis; and Wolfram Jochum, Tracy O’Connor, Stefan Zoller, Thomas Fuchs, Holger Moch, Glen Kristiansen, Peter Schram, Thomas Ried, Claude Camaud, Helmut Denk, Christopher Soll, Evelyne Jouvin-Marine, and Burkhard Seifert for discussions. We thank Peter Bannasch for providing human tissues, Valentia Factor for antibodies (Ab), and Alexi Tumanov (mIlt, mIltI).

Wolf-Dietrich Hardt (mCcx10), Barrett Rollins (mCcl2), and Volkhard Lindner (mEgr1) for providing plasmids. We thank Jean-Pierre Zarski, Vincent Leroy, and Christian Letoublon from Michallon Hospital in Grenoble. This study was supported by grants of the Oncosuisse foundation FCS 02113-8/01 (M.H., A.W., and M.O.K.), the Bonizzi-Theler foundation (M.H.), the “Stiftung zur Schweizerischen Krebsbekämpfung” (M.H.), the research foundation at the Medical Faculty Zurich (J.B. and M.H.), the “Kurt und Senta Hermann Stiftung” (M.H. and J.H.), the Austrian Genome Programme GEN-AU (K.Z.), the Swiss National Science Foundation (A.A.), the Agence Nationale pour la Recherche on le Sida (ANRS), and from Pole de Compétitivité LyonBionope (P.N.M.). M.J.W. was supported by a grant of the Roche Research Foundation. SN is HHMI International Research Scholar. M.R. was supported by the Higher Education Commission of Pakistan. M.H. is a fellow of the Prof. Dr. Max Cloëtta foundation.

Accepted: August 24, 2009
Published: October 5, 2009

REFERENCES

proprotein convertase cleavage of cis Golgi protein GP73 produces marker for

Bachert, C., Fimmel, C., and Linstedt, A.D. (2007). Endosomal trafficking and

carcinoma cell lines. Mol. Biol. Med.

Baffet, G., Braciak, T.A., Fletcher, R.G., Gauldie, J., Fey, G.H., and
carcinoma cell lines. Mol. Biol. Med. 8, 141–156.

Lo, J.C., Wang, Y., Tumanov, A.V., Banmi, M., Yao, Z., Reardon, C.A., Getz,

(2003). Upregulation of lysosome beta expression in liver progenitor (oval)
cells in chronic hepatitis C. Gut 52, 1327–1332.

Luedde, T., Beraza, N., Kotsikoris, V., van Loo, G., Nenci, A., De Vos, R.,
Roskams, T., Trautwein, C., and Pasparakis, M. (2007). Deletion of NEMO/IKK-
gamma in liver parenchymal cells causes steatohepatitis and hepatozellular

couples hepatocyte death to cytokine-driven compensatory proliferation
that promotes chemical hepatocarcinogenesis. Cell 121, 977–990.

Mombaerts, P., Iacomini, J., Johnson, R.S., Herrup, K., Tonegawa, S., and
Papaioannou, V.E. (1992). RAG-1-deficient mice have no mature B and T

Ng, T.I., Mo, H., Pilot-Matias, T., He, Y., Koev, G., Krishnan, P., Mondal, R.,
Pithawalla, R., He, W., Dekhtyar, T., et al. (2007). Identification of host genes
involved in hepatitis C virus replication by small interfering RNA technology.
Hepatology 45, 1413–1421.

Pletschmann, T., Kaul, A., Koutsoudakakis, G., Shavinskaya, A., Kallis, S., Stein-
mann, E., Abid, K., Negro, F., Dreux, M., Cosset, F.L., and Bartschler, R.
(2006). Construction and characterization of infectious intragenotypic and

Pikarsky, E., Porat, R.M., Stein, I., Abramovitch, R., Amit, S., Kasmem,

Puglielli, M.T., Browning, J.L., Brewer, A.W., Schreiber, R.D., Shieh, W.J.,

Rennert, P.D., Browning, J.L., Mebius, R., Mackay, F., and Hochman, P.S.
(1996). Surface lysosome alpha/beta complex is required for the develop-

within the liver. J. Hepatol. 48, 666–675.

enterol. 44 (Suppl 19), 108–111.

Subrata, L.S., Lowes, K.N., Olynyk, J.K., Yeoh, G.C., Quail, E.A., and
member lymphotxin-beta is regulated by interleukin (IL)-6 and IL-1beta: tran-
scriptional control mechanisms in oval cells and hepatoma cell lines. Liver Int. 25, 633–646.

Tumanov, A.V., Koroleva, E.P., Christiansen, P.A., Khan, M.A., Ruddy, M.J.,
Burnette, B., Papa, S., Franzoso, G., Nedospasov, S., Fu, Y.X., and Anders,
terology 136, 694–704.

lysosome in development and maintenance of secondary lymphoid tissues.
Cytokine Growth Factor Rev. 14, 275–288.

