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Matrix metalloproteinases (MMPs) are a family of
inducible enzymes that degrade extracellular matrix
components, allowing cells to traverse connective
tissue structures efficiently. Specific tissue inhibitors
(TIMPs) function as physiologic inhibitors of MMP
activity. Because neovascularization may require
various proteinases, we characterized the profile of
metalloenzyme production by microvascular endo-
thelial cells (MEC) and the modulation of expression
by phorbol esters (PMA) and by the physiologically
relevant cytokines tumor necrosis factor-a (TNF-q),
basic fibroblast growth factor, and interferon-vy.
MMP expression by MEC and large-vessel human
umbilical vein endothelial cells (HUVEC) was deter-
mined by enzyme-linked immunosorbent assay, im-
munoprecipitation, Northern hybridization, and
transfection assays. Constitutive expression of MMPs
by endothelial cells was low. PMA stimulated the
production of collagenase, stromelysin, 92-kDa gela-
tinase, and TIMP-1 in both endothelial cell types.
TIMP-2 was constitutively expressed by MEC and
HUVEC, but was down-regulated by PMA. TNF-«
induced an endothelial-cell-specific up-regulation of

collagenase with a concomitant inhibition of PMA-
induced TIMP-1 up-regulation, a respomnse that is
distinct from that of fibroblasts. Interferon-y up-
regulated TIMP-1 production by MEC and blocked
PMA and TNF-induced up-regulation of collagenase.
Northern hybridization assays showed pretransla-
tional control of PMA-, basic fibroblast growth fac-
tor—, and TNF-a—induced MMP expression. Collage-
nase-promoter CAT constructs containing 2.28 kb of
the 5’ region of the collagenase gene demonstrated
transcriptional regulation. The potential physiologic
relevance of such regulation was shown in an in vitro
migration assay. MEC were stimulated to migrate by
wounding and exposure to TNF-a. Collagenase
mRNA was prominently expressed by the migrating
cells, as shown by in situ hybridization. In sum, MEC
have a unique profile of MMP expression and regula-
tion compared with other cell types, which may be
important for wound healing and angiogenesis, par-
ticularly during the early phase of migration. Key
words: wound healinglangiogenesis/collagenase/ TNF-c.
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icrovascular endothelial cells (MEC) differ from
large-vessel endothelial cells with regard to their
expression of integrins [1-5] and other cell
adhesion molecules [6,7] and in their response
to injury [8]. Endothelial cells in vivo reside on a
basement membrane, which includes type 1V collagen, laminin,
heparin sulfate proteoglycans, and entactin [9]. During new vessel
growth associated with wound healing, this stable matrix is dis-
rupted, and microvascular cells contact an interstitial matrix con-
taining type I collagen and elastin, and interact with various
inflammatory mediators liberated by resident and migratory cells.
After the acute phase, tissue remodeling occurs and eventually
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much of the neovasculature, along with its accompanying newly
formed matrix, regresses. Microvascular cell migration, branching
morphogenesis of newly forming blood vessels, and neovasculature
dissolution result from a finely regulated balance of matrix depo-
sition and degradation.

The matrix metalloproteinases (MMPs) are a gene family of
enzymes that modulate the turnover of extracellular matrix [10].
Three interstitial collagenases have been identified that possess the
unique capacity to cleave native triple helical collagen types I, II,
and III [11-13]. The stromelysins have broad substrate specificity
and are able to degrade proteoglycans, laminin, fibronectin, and the
nonhelical domains of collagen types IV and IX [14]. There are two
metallogelatinases that readily attack denatured collagens of all
genetic types [15-18], as well as insoluble elastin and basement
membranes. The 72-kDa gelatinase is produced by fibroblasts and
osteoblasts; 92-kDa gelatinase is secreted principally by mononu-
clear phagocytes and eosinophils. Matrilysin, a low-molecular-
weight metalloenzyme, is produced by human mononuclear phago-
cytes [19] and has been reported in various tumors [20] and in
postpartum rat uteri [21]. Matrilysin has broad and potent catalytic
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activity against proteoglycans, elastin, laminin, fibronectin, and
entactin [14]. Thus, as a family, MMPs have the capacity to degrade
essentially all components of the extracellular matrix.

The catalytic activity of MMPs is controlled, at least in part, by
counter-regulatory proteins called TIMPs (tissue inhibitors of me-
talloproteinases). The TIMPs represent a small gene family of three
members: TIMP, TIMP-2, and TIMP-3. TIMP is a 28-kDa glyco-
protein that forms a very high affinity (K; = 1077 M), though
noncovalent, complex with various MMPs [22]. TIMP-2 appears to
be more specialized and is selectively secreted with 72-kDa gelati-
nase [23]. TIMP-3 is a very recently described matrix-associated
inhibitor [24].

Chronic inflammatory conditions result in the restructuring of
connective tissue and the formation of new blood vessels, and these
remodeling events require the degradative activity of various
proteinases. In nearly all cell types and tissues, there is little or no
constitutive production of MMPs; biosynthesis of these enzymes is
typically induced by exposure to cytokines [25,26] and growth
factors [26], matrix elements [27,28], or even via cell membrane
contact with other cell types [29]. Altered physiologic states such as
wound healing, angiogenesis, and tumor metastasis require expan-
sion of the microvasculature. Although MEC share many morpho-
logic and immunologic characteristics with large-vessel endothelial
cells, such as the commonly used human umbilical vein endothelial
cells (HUVEC), MEC, when deprived of growth factors, differen-
tiate into capillary-like structures more readily than do HUVEC
[30]. They also differ in their modulation of major histocompati-
bility complex antigen and cell adhesion molecule expression [6,7]
and in their response to denudation injury [8]. In essence, cultured
MEC behave more like their in vivo counterparts than do large-
vessel cells, and thus, though they are more difficult to isolate, they
are a more appropriate model of physiologically responsive vascular
cells. In this report, we characterize the secretory profile of MEC,
which exhibit at least some distinctive features from the enzymes
secreted by large-vessel endothelial cells.

MATERIALS AND METHODS

Reagents Specific reagents and their sources included the following: 1)
cytokines and growth factors phorbol myristate acetate (PMA; Sigma, St.
Louis, MO) (20-100 ng/ml), tumor necrosis factor-a (TNF-a; Genzyme,
Cambridge, MA) (10-1000 U/ml), interferon-y (IFN-vy; Genzyme) (250—
500 U/ml), basic fibroblast growth factor (bFGF; Genzyme) (10-100
ng/ml), interleukin (IL)-1a (100 U/ml) and IL-4 (Genzyme) (10-40
ng/ml), and transforming growth factor-f (T'GF-f; Genzyme) (500 pg/ml);
2) cDNAs for collagenase, stromelysin, 72-kDa gelatinase, and TIMP
(kindly provided by Gregory Goldberg, Washington University, St. Louis,
MO) and TIMP-2 ¢cDNA (supplied by William Stetler-Stevenson, National
Institutes of Health); and 3) matrix proteins Vitrogen (Celtrix) and Matrigel
(Collaborative Biomedical, Bedford, MA).

Isolation and Culture of MEC and HUVEC MEC were cultured by a
method modified from that of Kubota et al [30]. Neonatal foreskins were
obtained from healthy male newborns at the time of circumcision. Speci-
mens were cut into 2-3-mm? sections and incubated in 0.3% trypsin in
phosphate-buffered saline (PBS). The tissue was then washed several times,
placed epidermal side down, and processed by gentle downward compres-
sion to release MEC and fragments from the tissue edge. These fragments
were then layered on a prespun 35% Percoll/Hanks’ balanced salt solution
gradient (30,000 X g for 10 min at 4°C) and centrifuged at 400 X g for 15
min at room temperature. The fraction rich in MEC has a density of less
than 1.048 g/ml and was removed. This cellular fraction was then plated on
a gelatin-coated tissue culture plate in MCDB 131 medium (Washington
University Media Center, St. Louis, MO) containing 30% human serum
(Irvine Scientific, Santa Ana, CA), 10 ng/ml epidermal growth factor
(Clonetics Corp., San Diego, CA), 1 ug/ml hydrocortisone acetate (Sigma),
5 X 107> M dibutyryl cyclic AMP (Sigma), 2 mM glutamine (Irvine), and an
antibiotic cocktail of 100 U/ml penicillin and 100 pg/ml streptomycin (Sigma).
These MEC have the characteristic cobblestone morphology, and more than
99% of the cells stain positively for von Willibrand factor by immunohisto-
chemistry (Factor VIII-related antigen; Dako, Glostrup, Denmark).

HUVEC were isolated from collagenase-treated human umbilical veins
according to the method described by Jaffe ef al [31]. Cells were cultured in
medium 199 (Washington University Media Center) with 20% fetal bovine
serum (Gibco), 100 pg/ml endothelial growth supplement (Collaborative
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Research), 50 pg/ml heparin (Elkins-Sinn, Cherry Hill, NJ), 2 mM
glutamine (Irvine), and an antibiotic cocktail of 100 U/ml penicillin and 100
pg/ml streptomycin (Sigma). Before their use in experiments, HUVEC
were maintained in MEC medium without hydrocortisone for at least 24 h.

HMEC-1 is a human microvascular endothelial cell line (generous gift of
Dr. Thomas Lawley, Department of Dermatology, Emory University,
Atlanta, GA) transformed with polyoma T that has many of the character-
istics of primary cultured MEC [32]. These cells were maintained and
passaged in MCDB 131 basal medium, supplemented with 10% human
serum (Irvine), 10 ng/ml epidermal growth factor (Clonetics Corp.), 1
pg/ml hydrocortisone acetate (Sigma), 2 mM glutamine (Sigma), 100 U/ml
penicillin, and 100 pg/ml streptomycin (Sigma).

Measurement of Secreted Metalloproteinases by Enzyme-Linked
Immunosorbent Assay (ELISA) and Immunoprecipitation of Met-
abolically Labeled Cells Primary endothelial cells were used at passage
2—-6 and were grown to confluence in gelatin-coated (unless otherwise
specified) six-well tissue culture plates (CoStar, Cambridge, MA). To
standardize experimental conditions, we maintained all cell types in hydro-
cortisone-free MEC medium for at least 24 h before cytokine or growth
factor stimulation. The removal of hydrocortisone was necessary because it
inhibits metalloproteinase production in most cell types [33]. Once passed
and plated, endothelial cells grow normally in the absence of steroid.
Monolayer cultures were treated with cytokines or growth factors for 72 h,
and the cell supernatants were harvested for metalloproteinase determina-
tions. Interstitial collagenase, stromelysin, 92-kDa gelatinase, and TIMP
were quantified using established ELISAs [34,35]. These assays have a
sensitivity of approximately 10 ng/ml and quantify the total amount of each
protein species, whether free or bound to substrate or in the form of an
enzyme-inhibitor complex.

Enzyme biosynthesis was evaluated by metabolic labeling of cell cultures
with [**S]methionine (5 mCi/ml) (ICN Pharmaceuticals, Irvine, CA) and
subsequent immunoprecipitation using specific polyclonal antisera. Endo-
thelial cell monolayers were exposed to cytokines or growth factors for a
total of 48 h. For the final 24 h of incubation, [**S]methionine was added to
methionine-free MEC medium containing dialyzed human serum and fresh
cytokines. Cell culture supernatants were collected, and immunoprecipita-
tion was performed as described [36].

Gelatin Zymography MEC and HUVEC were plated at identical cell
numbers and grown to confluence in six-well gelatin-coated tissue culture
dishes (Costar). Once confluent, the cells were placed in hydrocortisone-
free, serum-free MEC medium with or without PMA (20 ng/ml). After 24
h, conditioned medium was collected and assayed by gelatin zymography for
the activity of 72-kDa and 92-kDa gelatinases, as described previously [37].

Migration Assay A modified migration assay [38] was performed by
plating MEC on Vitrogen-coated (1 mg/ml) (Celtrix Laboratories, Palo
Alto, CA) one-well Permanox Lab-Tek chamber slides (Nunc Inc., Naper-
ville, IL) and the cells were allowed to reach confluence. The central
portion of the confluent monolayer, along with the underlying matrix, was
then removed with a cell scraper (Costar), creating a wound. The control
and wounded monolayers were re-fed with MEC medium without hydro-
cortisone with or without 100 U/ml TNF-a. Endothelial cell migration
from the wounded edge was evident by 24-72 h post-wounding, at which
time the cells were washed with PBS and fixed in 10% buffered formalin
before processing for in situ hybridization.

In Situ Hybridization and Immunohistochemistry After fixation,
cell monolayers were processed for in situ hybridization, as reported
previously [39]. Briefly, formalin-fixed cell monolayers were washed,
nonspecific sites were alkylated with acetic anhydride, and samples were
incubated in hybridization buffer containing 5 X 10> cpm of [**S]-labeled
antisense RNA overnight at 42°C. Control slides were processed with
labeled sense RNA. Specimens were then washed repeatedly under strin-
gent conditions and processed for autoradiography. Hematoxylin and eosin
counterstaining was performed to visualize cell morphology.

For immunoperoxidase staining, the cell monolayers were rehydrated in
PBS and endogenous peroxidase activity was blocked by incubating the
slides in 0.75% hydrogen-peroxide—containing PBS; followed by 0.1%
trypsin incubation. Nonspecific binding was blocked with the appropriate
animal serum. Cell monolayers were incubated with monoclonal mouse
anti-human von Willebrand factor (Dako) overnight at 4°C. The Vectastain
ABC kit (Vector Laboratories, Burlingame, CA) for mouse IgG was used for
secondary antibody staining, and developing was performed with 3,3'-
diaminobenzidine (Vector).

RNA Isolation and Northern Hybridization Total cellular RNA was

isolated from experimental cells by guanidinium-isothiocyanate—phenol
extraction and ethanol precipitation [40] and quantified spectrophotometri-
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cally. Northern blots were performed and probed with random-primed
[*?P]dCTP-labeled cDNA fragments specific for collagenase, stromelysin,
72-kDa gelatinase, TIMP-1, and TIMP-2. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) probing of membranes was used to assess unifor-
mity of RNA loading and transfer.

Chloramphenicol-Acetyl Transferase (CAT) Assays HMEC were
transiently co-transfected with the CAT reporter gene construct, pCLCAT,
containing 2.28 kB of the 5" regulatory region of the collagenase gene,
which includes the transcription start site, a TATA box, an AP-1 site, a
PEA-3 site, and an NFkB-like site [41 ], and with CMV B-galactosidase. We
also used pCAT (Promega, Madison, WI), a noncollagenase-based positive
control that is driven by the SV40 promoter and enhancer. The construct
pCLCAT, containing sequences from —2278 to +36 of the human collag-
enase promoter, was a generous gift from Dr. Stephen Frisch. The
Hindl11/Xhol fragment containing the human collagenase promoter se-
quences of pCLCAT was subcloned into HindIll/ Xhol-digested pBLCAT?2,
giving rise to pCL-2278CAT. A CMV promoter-driven [B-galactosidase
vector was used to allow normalization for transfection efficiency.

Cells were plated at 3=5 X 10% cells/well in a six-well cluster tissue
culture dish. Transfections were performed with 2 pg of each plasmid and
1 pg of CMV—B-galactosidase via liposome fusion using lipofectAMINE
(Gibco-BRL, Gathersburg, MD), as described previously [42]. Cells were
exposed to lipofectAMINE/plasmids in serum-frec and antibiotic-free
MCDB 131 medium containing glutamine, hydrocortisone, and epidermal
growth factor at the concentrations described above (see Materials and
Methods) for 6 h and then supplemented with 5% human serum. Approxi-
mately 24 h after transfection, the medium was replaced with serum-
supplemented medium with or without PMA (20 ng/ml) or TNF-a (100
U/ml). Lysates were prepared at 48 or 72 h after transfection (24 or 48 h
after stimulation) in 100 mM KPO,/1 mM dithiothreitol by repeated
freeze-thaw cycles after washing twice with PBS to remove nonviable cells.
The B-galactosidase assay was performed to normalize CAT activity [43].
CAT reaction mixtures were prepared by incubation of lysate with 0.25 M
Tris'Cl, '*C-labeled chloramphenicol (1 pCi/ml) (DuPont, Boston, MA),
and acetyl Co-A (Sigma) at 37°C overnight. After ethyl acetate partition and
evaporation, acetylated forms of chloramphenicol were resolved by thin-
layer chromatography and demonstrated by autoradiography. CAT activity
was quantified by cutting the radioactive spots from the thin-layer chroma-
tography plate and measuring the amount of radioactivity.

RESULTS

Modulation of Metalloproteinase and TIMP Production by
MEC and HUVEC Endothelial cells constitutively expressed
small amounts of interstitial collagenase and stromelysin. As shown
in Figs 1 and 2, phorbol ester markedly stimulated the production
of interstitial collagenase and stromelysin in both MEC and
HUVEC. Augmented expression of these proteins was demon-
strated by ELISA and by immunoprecipitation of metabolically
labeled proteins. Small- and large-vessel endothelial cells showed
similar capacities to produce interstitial collagenase after phorbol
stimulation. In at least four separate experiments, 72 h of PMA
exposure mediated a more than fivefold increase in collagenase
production in MEC and HUVEC (Fig 1). Stromelysin exhibited a
similar though lesser stimulation of expression in response to PMA
(Fig 2). It is interesting that activation of secreted stromelysin was
prominent in MEC after PMA stimulation (Fig 2, double band),
suggesting that MEC may possess the capacity to activate this MMP.

To assess the production of 92-kDa and 72-kDa gelatinases by
endothelial cells, we performed gelatin zymography. Medium from
MEC and HUVEC plated under serum-free conditions with or
without PMA stimulation was assayed as described in Materials and
Methods. As shown in Fig 3, significant gelatinase activity was
absent in MEC control medium; control HUVEC produced low
levels of 72-kDa gelatinase. After PMA exposure, however, 92-
kDa gelatinase activity was observed in both endothelial cell types,
as was gelatinolytic activity derived from interstitial collagenase. As
evaluated by immunoprecipitation, 92-kDa gelatinase was not
constitutively expressed by small- or large-vessel endothelial cells
but was induced after PMA exposure. PMA induction of 92-kDa
gelatinase expression was enhanced when MEC were plated on
type 1 collagen and Matrigel (basement-membrane—like substra-
tum) (Fig 4). Because metabolic labeling and immunoprecipitation
detect active cell biosynthesis only, the increased immunoprecipi-
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Figure 1. PMA and TNEF-« stimulate collagenase production in
MEC and HUVEC. A, MEC (n = 6) and HUVEC (n = 4) monolayers
were treated at confluence with PMA (20 ng/ml) for 72 h in MEC medium.
Cell supernatants were then analyzed for collagenase content by ELISA.
Collagenase expressed relative to control concentration = 1. Error bars, SEM.
B, MEC and HUVEC in a single experiment were plated at identical cell
numbers and stimulated with PMA (20 ng/ml), TNF-« (100 U/ml), or IFN-vy
(500 U/ml). Cells were metabolically labeled with [**SJmethionine, and the
conditioned medium was subjected to immunoprecipitation with collagenase
antiserum. Arrowhead indicates collagenase-specific band. Cnt, control.

table material from cells plated on Matrigel is not derived from
gelatinase activity that may be present in the matrix [44,45].
Matrilysin was not produced by MEC or HUVEC under basal or
stimulated conditions (assessed using Matrilysin-specific antiserum;
data not shown).

We next examined the production of TIMPs by endothelial cells.
As shown in Fig 5, TIMP production in MEC was up-regulated in
response to PMA, whereas TIMP-2, constitutively expressed by
both small- and large-vessel endothelial cells, was down-regulated
by phorbol. PMA induction of collagenase, stromelysin, and TIMP
was also seen in HMEC-1, the microvascular endothelial cell line
(data not shown).

Endothelial cell metalloenzyme production was also modulated
by TNF-«, which regulates several activities of endothelial cells
[6,46,47]. TNF-« appeared to function with near equivalence to
PMA in the induction of stromelysin (Fig 2) but was less effective
than PMA in stimulating collagenase biosynthesis in MEC (Fig 64),
unless used at nonphysiologic concentrations (Fig 6B). PMA and
TNF-« were additive in their actions on collagenase production
(Fig 64). TNF-« also up-regulated collagenase in HMEC-1 (data
not shown). In addition, bFGF, a growth factor with known
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Figure 2. PMA and TNF-« increase stromelysin production in
MEC and HUVEC. MEC and HUVEC were plated at identical cell
numbers and treated with PMA (20 ng/ml), TNF-« (100 U/ml), or IFN-y
(500 U/ml). Cells were metabolically labeled with [**S]methionine, and the
conditioned medium was subjected to immunoprecipitation with stromely-
sin antiserum. Arowhead indicates stromelysin-specific band. Cnt, control.

angiogenic effects, stimulated collagenase biosynthesis in MEC; this
up-regulation was inhibited by TGF-B (Fig 6B). TNF-a had
minimal to no effect on constitutive TIMP biosynthesis but down-
regulated TIMP-2 production (Fig 5). TNF-«a also inhibited the
PMA-stimulated production of TIMP (data not shown). IL-4 tested
at 10—40 ng/ml did not affect collagenase, stromelysin, TIMP-1, or
TIMP-2 production in MEC or HUVEC.

IFN-v is a lymphokine with well-recognized effects on endothe-
lial cells [6,46]. At biologically relevant concentrations (250-500
U/ml), IFN-7y potently inhibited the TNF-a—induced production
of collagenase (Fig 6A4). In contrast, IFN-y up-regulated TIMP
biosynthesis in MEC and HMEC-1, but not in HUVEC (Fig 5).

Pretranslational Regulation of Metalloproteinase and
TIMP Expression To assess pretranslational regulation of met-
alloproteinase and TIMP in endothelial cells, we performed North-
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Figure 3. MEC secrete 92-kDa and 72-kDa gelatinase activity.
Gelatin zymography was performed using medium from MEC and HUVEC
obtained under serum-free conditions for 24 h with or without PMA
stimulation (20 ng/ml). No significant gelatinase activity was observed in
control MEC medium; 72-kDa gelatinase activity was detected in control
HUVEC medium. PMA-stimulated MEC and HUVEC produced 92-kDa
gelatinase activity. Collagenase activity was also observed in the control and
PMA-treated cells. Cnt, control.

ENDOTHELIAL CELL METALLOPROTEINASE EXPRESSION 173

-+ -+ - 4+

MEC

. VL CRER=IT 2 1N st LA = i _
Figure 4. Substrate-specific biosynthesis of 92-kDa gelatinase in
response to phorbol esters. MEC and HUVEC were plated on various
matrices and allowed to reach confluence before stimulation. At 24 h after
PMA stimulation on various matrices, 92-kDa gelatinase production was

evaluated by [**S]methionine pulsing and subsequent immunoprecipitation.
GEL, gelatin; COL I, native type I collagen; MGL, Matrigel.

HUVEC

ern analysis. Total RNA extracted from confluent cultures of MEC,
HUVEC, and HMEC revealed low constitutive levels of collage-
nase mRNA, with markedly increased expression after 24 h of
PMA exposure. Treatment with TNF-« and bFGF also increased
collagenase mRINA by approximately two- to threefold, an increase
consistent with protein data (Fig 7). GAPDH probing was per-
formed to confirm uniformity of loading and transfer. Stromelysin
and TIMP mRNA levels were also up-regulated by PMA (data not
shown). Consistent with the protein data shown previously (Fig 5),
TIMP-2 mRNA was decreased by treatment of MEC with PMA
(data not shown).

Collagenase mRNA Is Expressed in Migrating MEC In Vitro
In situ hybridization was performed on MEC monolayers that were
wounded as described in Materials and Methods. Occasional endo-
thelial cells were weakly positive for collagenase mRNA in un-
treated control monolayers, whereas in cultures treated with
TNF-a (100 U/ml) for 48—72 h, scattered individual cells had
signal for collagenase mRNA. Endothelial cells of the untreated,
wounded monolayers expressed collagenase mRNA in some of the
migrating cells adjacent to the wounded edge. However, in the
monolayers that were simultaneously stimulated by wounding and
TNF-a, high levels of collagenase mRNA were expressed in
groups of endothelial cells adjacent to the wounded edge; the signal
strength diminished rapidly away from this edge (Fig 8).

Collagenase Production Is Transcriptionally Regulated in
Endothelial Cells As reported previously, the 5" flanking region
of the collagenase gene contains a functional promoter as well as
PMA-responsive element(s) [48-51]. HMEC were transfected with
a CAT gene construct containing 2.28 kb of the collagenase
promoter (WT-CL-CAT). Paralleling the protein and mRNA data,

MEC HUVEC

[cnt PMA TNF IFNy | [Cnt PMA TNF IFNy]

&

Figure 5. Disparate regulation of TIMP-1 and TIMP-2 by PMA.
MEC and HUVEC were plated at identical cell numbers and stimulated
with PMA (20 ng/ml), TNF-a (100 U/ml), or IFN-y (500 U/ml). Cells
were metabolically labeled with [**S]methionine, and the conditioned
medium was subjected to immunoprecipitation with TIMP and TIMP-2
antiserum. Cnt, control.
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Figure 6. PMA and TNF-« stimulate collagenase production addi-
tively; IFN-y inhibits TNF-mediated collagenase expression. A,
MEC were plated to confluence and exposed to PMA (20 ng/ml), TNF-a
(100 U/ml), PMA (20 ng/ml) + IFN-y (500 U/ml), or TNF-a + IFN-y
(500 U/ml). Cells were metabolically labeled with [**S]methionine, and the
conditioned medium was subjected to immunoprecipitation with collage-
nase antiserum. Arrowhead indicates collagenase-specific band. B, MEC were
plated to confluence and exposed to PMA (20 ng/ml), TNF-a (100-1000
U/ml), bFGF (30 ng/ml), TGF-$ (500 pg/ml), or bFGF (30 ng/ml) +
TGE-B (500 pg/ml). Cells were metabolically labeled with [**S]methionine,
and the conditioned medium was subjected to immunoprecipitation with
collagenase antiserum. Arrowhead indicates collagenase-specific band. Cnt,
control.

PMA and TNF-a increased CAT activity. Again, PMA was more
effective in driving CAT production than was TNF-« (Fig 9). The
pCAT construct, driven by an SV40 promoter, served as a positive
control for transfection that was not regulated.

DISCUSSION

By employing various techniques, including ELISA and immuno-
precipitation, Northern hybridization, in situ hybridization, and
transient transfection assays, we studied the spectrum of metallo-
proteinases produced by endothelial cells and the factors regulating
their biosynthesis. With minor exceptions, we found that both
small-vessel (MEC) and large-vessel (HUVEC) endothelial cells

THE JOURNAL OF INVESTIGATIVE DERMATOLOGY

HUVEC

HMEC

<« C’ase

< GAPDH

Cnt PMA

B

Cnt PMA

<« C’ase

< GAPDH

Cnt TNF bFGF

Figure 7. Pretranslational regulation of collagenase expression. 4,
MEC, HUVEC, and HMEC were stimulated for 24 h with PMA (100
ng/ml), after which total cellular RNA was harvested and analyzed (5 ug)
for relative collagenase mRNA expression by Northern hybridization.
GAPDH probing was used to indicate uniformity of loading and transfer of
mRNA. B, Northern blot analysis was performed on MEC after 24 h
stimulation with PMA (20 ng/ml), TNF-a (100 U/ml), and bFGF (100
ng/ml), as in 4. Cnt, control.

elaborate a similar profile of MMPs whose regulation is subject to
modification by cytokines and growth factors, such as TNF-q,
bFGF, and IFN-y. Taken as a whole, the similarities in response of
MEC and HUVEC to physiologically relevant agents far outweigh
the small differences found.

Our studies using both protein and mRNA assays demonstrate
that endothelial cell metalloproteinase and TIMP production is
controlled at a pretranslational level. Regulatory modifiers of
collagenase, stromelysin, TIMP, and TIMP-2 production all acted
in this manner. In the case of collagenase expression in MEC after
exposure to PMA, control by transcriptional activation was also
demonstrated. Auble and Brinckerhoff [51] have reported that the
AP-1 sequence within the 5’ region of the collagenase gene is
necessary, but not sufficient, for phorbol induction of the collage-
nase gene in fibroblasts. These investigators and Gutman and

Figure 8. Collagenase mRNA is up-regulated in migrating MEC
that are exposed to TNF-a. A modified migration assay was performed
as described in Materials and Methods. MEC were plated to confluence on
Vitrogen-coated Lab-Tek chambers, stimulated by *“‘wounding” with or
without TNF-a (100 U/ml), and subsequently probed with [**S]-labeled
antisense collagenase RNA. In situ hybridization for collagenase mRNA on
the TNF-treated, wounded endothelial cell monolayer (darkfield, 100X)
showed a gradient of collagenase mRINA expression with greatest expres-
sion at the wounded edge. W, wound; small arrows, positive cells; open arrow,
negative cell; large arrow, direction of cell migration.
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Figure 9. Collagenase production is transcriptionally regulated in
endothelial cells. 4, HMEC were plated at 5 X 107 cells/well in six-well
cluster dishes and transiently transfected with WT-CL-CAT, containing
2.28 kb of the 5’ regulatory region of the collagenase gene. PMA (20
ng/ml) or TNF-a (100 U/ml) was added for 24 h. Cells transfected with
pCAT, a noncollagenase-based positive control, did not show regulation.
Percent acetylation of WT-CL-CAT transfections is shown (n = 6). Eror
bars, SEM. B, representative experiment of WT-CL-CAT transfection after
48 h treatment with PMA (20 ng/ml) or TNF-a (100 U/ml). Cnt, control.

Wasylyk [41] further reported that the PEA-3 and “TTCA” cis
elements were also important for phorbol induction. Collagenase
promoter activity was also consistently elevated after transfection
with WT-CL-CAT and treatment with TNF-«, suggesting tran-
scriptional activation (Fig 9). The increases in CAT activity
observed correlate well with the fold induction of collagenase
mRNA by TNF-a. However, the fold increase in collagenase
promoter activity in these experiments may actually be underrep-
resented because of the use of CMV—f-galactosidase cotransfection
for normalization of CAT activity. This CMV-f-galactosidase
construct contains an AP-1 site, which may be responsive to TNF-a
in our experiments, effectively causing underestimation of stimula-
tion of the collagenase promoter activity, which may be mediated
by AP-1. Through gel-shift assays, we have recently found that
treatment of HMEC with TNF-a does, in fact, induce protein
binding to the AP-1 consensus sequence of the collagenase gene
(unpublished observations). In fibroblasts, transcriptional regula-
tion of collagenase by TNF-a has been demonstrated to occur
through binding of c-jun/c-fos heterodimers to the AP-1 site [49].
Our data are the first to suggest that in MEC, PMA- and possibly
TNF-a-responsive element(s) in the 5’ region of the collagenase
gene are functional.

MMP may in fact have an important role in facilitating cell
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migration during vascular remodeling and angiogenesis; a physio-
logic role for endothelial cell proteases in these processes has been
proposed. Mignatti et al [52] have reported the requirement for
bFGF-induced proteases in an in vitro angiogenesis system, the
human amniotic membrane. More recently, Schnaper et al [44]
have shown the presence of 72-kDa gelatinase after the induction
of endothelial cell tube formation on Matrigel. In the present study,
we have shown that TNF-a, another known stimulator of angio-
genesis [53], increases collagenase and decreases TIMP production
in vitro. As determined by our protein and Northern hybridization
data, physiologically relevant dosages of TNF-a and bFGF rou-
tinely increased MMP expression two- to threefold. In contrast, as
demonstrated by our migration assay and in situ hybridization
findings, actively migrating MEC, in the presence of TNF-a,
expressed markedly increased amounts of collagenase mRNA. In
fact, an area of high-collagenase—producing cells that were simul-
taneously migrating and exposed to TNF-a was established along
the wounded surface, as compared with those cytokine-treated cells
removed from the wounded edge (Fig 8).

We suggest that endothelial cell migration is an important early
event in vascular neogenesis and that such migration is dependent
upon and facilitated by metalloproteinase expression. As with most
cell types studied to date, in the basal state, constitutive levels of
endothelial cell metalloprotinases are low and accompanied by
specific inhibitors. When angiogenesis is initiated by modulators
such as bFGF and TNF-q, the induction of endothelial cell
collagenase may be required for cell migration through connective
tissues. Enzyme levels may then return to baseline and/or TIMP
levels may increase once the actual vascular structure is formed.

It is tempting to postulate that in wound healing, the early
recruitment of monocytes and the release of TNF-« induce endo-
thelial cell collagenase production and concomitantly inhibit TIMP
production, thus favoring a migratory phenotype by the endothelial
cell. In fact, macrophage-induced angiogenesis has been reported
to be mediated by TNF-a [54]. With regard to other inflammatory
cells, lymphocytes are recruited late and release varying substances,
including IFN-v. As we have shown, this physiologic regulator of
endothelial cell function abates cytokine-induced metalloproteinase
expression and simultaneously increases TIMP and TIMP-2 pro-
duction. Consistent with this, Niedbala and Picarella [55] reported
that IFN-vy blocks TNF-a—induced proteolysis of extracellular
matrix mediated by endothelial cell urokinase-type plasminogen
activator.

Mediators of MMP expression may also affect migration of
endothelial cells by modulating matrix receptors. It is interesting
that bFGF, TNF-a and IFN-vy have also been reported to regulate
avf33, the vitronectin receptor [56]. Similarly, Sepp et al [57] have
found that bFGF, which stimulates collagenase production in MEC,
down-regulates the a634 complex on these cells, allowing detach-
ment from the basement membrane. Previous work by Enenstein ef
al [58] found that bFGF up-regulates the collagen/laminin receptor
(a2B1) in these same cells. Taken together, these integrin re-
sponses, induced by physiologically relevant cytokines and growth
factors with well-recognized angiogenic properties, aid in produc-
ing a migratory phenotype by decreasing endothelial cell adhesion
to the basement membrane and facilitating migration through the
interstitial matrix. Based on these collective findings, it is interest-
ing to propose that metalloproteinase induction, TIMP inhibition,
extracellular matrix proteolysis, and integrin down-regulation are
active in early angiogenesis, when endothelial cell migration is the
primary event. The final stage of angiogenesis involves vessel
formation, endothelial cell matrix deposition and stabilization, and
is accompanied by a down-regulation of matrix-degrading metal-
loproteinases together with an induction of protease inhibitors.
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