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incompressible flow of liquid crystals is considered in a bounded
smooth domain. The existence and uniqueness is established for
both the local strong solution with large initial data and the global
strong solution with small data. It is also proved that when the
strong solution exists, a weak solution must be equal to the unique
strong solution with the same data.
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1. Introduction

Liquid crystals are a state of matter that have properties between those of a conventional liquid
and those of a solid crystal that are optically anisotropic, even when they are at rest. In this work,
we are interested in a Navier–Stokes type model for incompressible fluids that takes into account
the crystallinity of the fluid molecules in the three-dimensional case, that is, a nematic liquid crystal
model, which can be governed by the following nonlinear hydrodynamical system (see [5,13,14] and
references therein):
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∂u

∂t
+ u · ∇u − μ�u + ∇ P = −λ∇ · (∇d � ∇d), (1.1a)

∂d

∂t
+ u · ∇d = γ

(
�d + |∇d|2d

)
, (1.1b)

∇ · u = 0, (1.1c)

where u ∈ R
3 denotes the velocity, d ∈ S

2 (the unit sphere in R
3) the unit-vector field that represents

the macroscopic/continuum molecular orientations, P ∈ R is the pressure (including both the hydro-
static part and the induced elastic part from the orientation field) arising from the incompressibility
∇ · u = 0; and they all depend on the spatial variable x = (x1, x2, x3) ∈ R

3 and the time variable t > 0.
The term λ∇ · (∇d � ∇d) in the stress tensor represents the anisotropic feature of the system. The
positive constants μ,λ,γ stand for viscosity, the competition between kinetic energy and potential
energy, and microscopic elastic relaxation time or the Deborah number for the molecular orientation
field, respectively. We set these three constants to be one since their exact values do not play any
role in our analysis. The symbol ∇d � ∇d denotes a matrix whose (i, j)-th entry is ∂xi d · ∂x j d for
1 � i, j � 3, and it is easy to see that ∇d � ∇d = (∇d)�∇d, where (∇d)� denotes the transpose of
the 3 × 3 matrix ∇d.

System (1.1) is a simplified version, but still retains most of the interesting mathematical properties
(without destroying the basic nonlinear structure) of the original Ericksen–Leslie model ([7,8,10,11,13,
14]) for the hydrodynamics of nematic liquid crystals; see [15,20,21] for more discussions on the
relations of the two models. Both the Ericksen–Leslie system and the simplified one describe the
macroscopic continuum time evolution of liquid crystal materials under the influence of both the
velocity u and the orientation d which can be derived from the averaging/coarse graining of the
directions of rod-like liquid crystal molecules. In particular, there is a force term in the u-system
depending on d; the left-hand side of the d-system stands for the kinematic transport by the flow
field while the right-hand side represents the internal relaxation due to the elastic energy. In many
situations, the flow velocity field does disturb the alignment of the molecule, and in turn, a change in
the alignment will induce velocity.

We consider the initial–boundary value problem of system (1.1) in a bounded smooth domain
Ω ⊂ R

3 with the initial condition:

(u,d)|t=0 = (
u0(x),d0(x)

)
, x ∈ Ω, (1.2)

and the boundary condition:

(u, ∂νd)|∂Ω = (0,0), t > 0, (1.3)

where ν is the outer unit-normal vector field on ∂Ω , u0 : Ω → R
3, and d0 : Ω → S

2 are given with
compatibility; for the velocity u the non-slip boundary condition, i.e., homogeneous Dirichlet type, is
considered, and for the orientation vector d the homogeneous Neumann boundary condition is posed
here.

Roughly speaking, system (1.1) is a coupling between the incompressible Navier–Stokes equations
and the transported flow of harmonic maps. There have been many studies on system (1.1), see [10,
11,14–17,19–22] and the references therein. Recently, in Lin, Lin, and Wang [17], they established
both interior and boundary regularity theorem for such a system in dimension two under smallness
conditions. And, they also established the existence of global weak solutions that are smooth away
from at most finitely many singular times in any bounded smooth domain of R

2. In Lin and Liu
[15], they addressed both the regularity and existence of global weak solutions to the n-dimensional
(n = 2,3) Leslie system of variable length, i.e., the Dirichlet energy

1

2

∫
|∇d|2 dx for d : Ω → S

n−1
Ω
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is replaced by the Ginzburg–Landau energy

∫
Ω

(
1

2
|∇d|2 + (1 − |d|2)2

4ε2

)
dx for d : Ω → R

n.

More precisely, they proved the global existence of weak solutions with large initial data under the

assumptions that u0 ∈ L2(Ω),d0 ∈ H1(Ω) with d0|∂Ω ∈ H
3
2 (∂Ω) in dimension two and three. The

existence and uniqueness of global classical solution was also obtained if u0 ∈ H1(Ω),d0 ∈ H2(Ω) in
dimension two or dimension three when the fluid viscosity μ is large enough. The similar results
were obtained also in [21] for a different but similar model. When weak solutions are discussed, the
partial regularity theorem of the weak solution was investigated in [16] (and also [11]), similar to the
classical theorem by Caffarelli, Kohn, and Nirenberg [3] for the Navier–Stokes equations.

In this paper, we are interested in the existence and uniqueness of global strong solution (u,d, P )

of (1.1) in W 2,q(Ω)3 × W 3,q(Ω)3 × W 1,q(Ω) with q > 3. By a Strong Solution, we mean a triplet
(u,d, P ) satisfying (1.1) almost everywhere with the initial–boundary conditions (1.2)–(1.3). Our strat-
egy to consider (1.1) is to linearize it as

∂u

∂t
− �u + ∇ P = −v · ∇v − ∇ · ((∇f)�∇f

)
, (1.4a)

∂d

∂t
− �d = −v · ∇f + |∇f|2f, (1.4b)

∇ · u = 0, (1.4c)

for some given functions v ∈ R
3 and f ∈ R

3. One of the motivations of making such a lineariza-
tion is that we can use the maximal regularity of Stokes equations (cf. Theorem 3.2) and the
parabolic equation (cf. Theorem 3.1). We first use an iteration method to establish the local exis-
tence and uniqueness of strong solution with general large initial data. Then we prove the global
existence by establishing some global estimates under the condition that the initial data are small
in some norm. As system (1.1) contains the Navier–Stokes equations as a subsystem, one cannot ex-
pect generally better results than those for the Navier–Stokes equations. The uniqueness of global
weak solution is still an open problem. We shall prove that when the strong solution exists, all the
global weak solutions must be equal to the unique strong solution, which is called the weak–strong
uniqueness. Similar results were obtained by Danchin [4] for the density-dependent incompressible
Navier–Stokes equations. We shall establish our results in the spirit of [4], while developing new es-
timates for the orientation field d. Due to the specific structure of the equations for u, especially
the strongly nonlinear term (∇d)��d in the u-system, it will be necessary to obtain more regularity
for d.

The rest of the paper is organized as follows. In Section 2, we state our main results on local and
global existence of strong solution, as well as the weak–strong uniqueness. In Section 3, we recall the
maximal regularity for Stokes equations and the parabolic equation, and also some L∞ estimates. In
Section 4, we give the proof of the local existence. In Section 5, we prove the global existence. Finally
in Section 6, we show the weak–strong uniqueness.

2. Main results

In this section, we state our main results. If k > 0 is an integer and p � 1, we denote by W k,p

the set of functions in L p(Ω) whose derivatives of up to order k belong to L p(Ω). For T > 0 and
a function space X , denote by L p(0, T ; X) the set of Bochner measurable X-valued time dependent
functions f such that t → ‖ f ‖X belongs to L p(0, T ). Let us define the functional spaces in which the
existence of solutions is going to be obtained:
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Definition 2.1. For T > 0 and 1 < p,q < ∞, we denote by M p,q
T the set of triplets (u,d, P ) such that

u ∈ C
([0, T ]; D

1− 1
p ,p

Aq

) ∩ Lp(
0, T ; W 2,q(Ω) ∩ W 1,q

0 (Ω)
)
,

∂u

∂t
∈ Lp(

0, T ; Lq(Ω)
)
, ∇ · u = 0,

d ∈ C
([0, T ]; B

3(1− 1
p )

q,p
) ∩ Lp(

0, T ; W 3,q(Ω)
)
,

∂d

∂t
∈ Lp(

0, T ; Lq(Ω)
)
,

and

P ∈ Lp(
0, T ; W 1,q(Ω)

)
,

∫
Ω

P dx = 0.

The corresponding norm is denoted by ‖ · ‖M p,q
T

.

We remark that the condition
∫
Ω

P dx = 0 in the definition (2.1) holds automatically if we replace
P by

P − 1

|Ω|
∫
Ω

P dx

in (1.1). Also, in the above definition, the space D
1− 1

p ,p

Aq
stands for some fractional domain of the

Stokes operator in Lq (cf. Section 2.3 in [4]). Roughly, the vector-fields of D
1− 1

p ,p

Aq
are vectors which

have 2 − 2
p derivatives in Lq , are divergence-free, and vanish on ∂Ω . The Besov space (for definition,

see [2]) B
3(1− 1

p )

q,p can be regarded as the interpolation space between Lq and W 3,q , that is,

B
3(1− 1

p )

q,p = (
Lq, W 3,q)

1− 1
p ,p .

Moreover, we note that B
3(1− 1

p )

q,p ↪→ W 1,q if p � 3
2 . By the embedding W 1,q ↪→ L∞ as q > 3, one has

B
3(1− 1

p )

q,p ↪→ L∞ , which will be used repeatly in this paper.
The local existence will be shown by using an iterative method, and if the initial data are suffi-

ciently small in some suitable function spaces, the solution is indeed global in time. More precisely,
our existence result reads:

Theorem 2.1. Let Ω be a bounded smooth domain in R
3 . Assume 3

2 � p,q < ∞ with p
2 (1 − 3

q ) ∈ (0,1) and

u0 ∈ D
1− 1

p ,p

Aq
, d0 ∈ B

3(1− 1
p )

q,p . Then,

(1) There exists T0 > 0, such that, system (1.1) with the initial–boundary conditions (1.2)–(1.3) has a unique
strong solution (u,d, P ) ∈ M p,q

T0
in Ω × (0, T0).

(2) Moreover, there exists δ0 > 0, such that, if the initial data satisfy

‖u0‖
D

1− 1
p ,p

Aq

� δ0, ‖d0‖
B

3(1− 1
p )

q,p

� δ0,

then (1.1)–(1.3) has a unique strong solution (u,d, P ) ∈ M p,q
T in Ω × (0, T ) for all T > 0.



X. Li, D. Wang / J. Differential Equations 252 (2012) 745–767 749
According to [17], a Weak Solution to (1.1) with the initial–boundary conditions (1.2)–(1.3) means
a triplet (ũ, d̃,Π) satisfying system (1.1) in Ω × (0, T ) for 0 < T � +∞ in the sense of distributions,
i.e., for any smooth function ψ(t) with ψ(T ) = 0 and φ(x) ∈ (H1

0(Ω))3 with ∇ · φ = 0, we have

−
T∫

0

(
ũ,ψ ′φ

)
dt +

T∫
0

(ũ · ∇ũ,ψφ)dt + μ

T∫
0

(∇ũ,ψ∇φ)dt

= ψ(0)(u0, φ) + λ

T∫
0

(∇d̃ � ∇d̃,ψ∇φ)dt,

and

−
T∫

0

(
d̃,ψ ′φ

)
dt +

T∫
0

(ũ · ∇d̃,ψφ)dt + γ

T∫
0

(∇d̃,ψ∇φ)dt

= ψ(0)(d0, φ) + γ

T∫
0

|∇d̃|2(d̃,ψφ)dt,

where (·,·) denotes the inner product in L2(Ω)3. Moreover, (ũ, d̃) satisfies (1.3) in the sense of trace.
Next, we will give a uniqueness result. For 0 < T < +∞, suppose (ũ, d̃,Π) with

ũ ∈ L2,∞(
Ω × [0, T ]) ∩ W 1,0

2 (ΩT ), d̃ ∈ L∞([0, T ], H1(Ω)
) ∩ L2([0, T ], H2(Ω)

)
,

and

∇Π ∈ L
4
3
(
0, T ; L

6
5 (Ω)

)
is a global weak solution to (1.1)–(1.3). Since ∇d̃ ∈ L2(0, T ; H1(Ω)) and |d̃| = 1, then

�d̃ · d̃ + |∇d̃|2 = 0.

Hence |∇d̃| ∈ L4(Ω × [0, T ]). We have the following energy inequality (cf. [17], Section 5 for the
two-dimensional case):

1

2

∫
Ω

(∣∣ũ(t)
∣∣2 + ∣∣∇d̃(t)

∣∣2)
dx +

t∫
0

∫
Ω

(|∇ũ|2 + ∣∣�d̃ + |∇d̃|2d̃
∣∣2)

dx ds

� 1

2

∫
Ω

(|u0|2 + |∇d0|2
)

dx, (2.1)

for all t ∈ (0,∞). We remark that the assumption on pressure function holds since Π can be deter-
mined as in the Navier–Stokes equations (see [9]).

As for the standard Navier–Stokes equations, the question of uniqueness in the above class remains
open. However, for the same initial–boundary conditions, a relation between the weak solution and
the strong solution can be formulated as:
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Theorem 2.2. Assume that u0 ∈ D
1− 1

p ,p

Aq
and d0 ∈ B

3(1− 1
p )

q,p . Then any weak solution to (1.1)–(1.3) in the above

class is unique and indeed is equal to its unique strong solution.

Usually, we call this kind of uniqueness as Weak–Strong Uniqueness. For the similar results on the
compressible Navier–Stokes equations, we refer the readers to [6,18].

3. Maximal regularity

In this section, we recall the maximal regularities for the parabolic operator and the Stokes oper-
ator, as well as some L∞ estimates.

For T > 0, 1 < p,q < ∞, denote

W(0, T ) := (
W 1,p(

0, T ; Lq(Ω)
))3 ∩ (

Lp(
0, T ; W 3,q(Ω)

))3
.

Throughout this paper, C stands for a generic positive constant.
We first recall the maximal regularity for the parabolic operator (cf. Theorem 4.10.7 and Re-

mark 4.10.9 in [1]):

Theorem 3.1. Given 1 < p,q < ∞, ω0 ∈ B
3(1− 1

p )

q,p and f ∈ (L p(0, T ; Lq(R3)))3 , the Cauchy problem

{
∂ω
∂t − �ω = f , t > 0,

ω(0) = ω0

has a unique solution ω ∈ W (0, T ), and

‖ω‖W(0,T ) � C
(‖ f ‖L p(0,T ;Lq(R3)) + ‖ω0‖

B
3(1− 1

p )

q,p

)
,

where C is independent of ω0 , f and T . Moreover, there exists a positive constant c0 independent of f and T
such that

‖ω‖W(0,T ) � c0 sup
t∈(0,T )

∥∥ω(t)
∥∥

B
3(1− 1

p )

q,p

.

Now we recall the maximal regularity for the Stokes equations (cf. Theorem 3.2 in [4]):

Theorem 3.2. Let Ω be a bounded domain with C2+ε boundary in R
3 and 1 < p,q < ∞. Assume that u0 ∈

D
1− 1

p ,p

Aq
and f ∈ L p(R+; Lq(Ω)). Then the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
− �u + ∇ P = f ,

∫
Ω

P dx = 0,

∇ · u = 0, u|∂Ω = 0,

u|t=0 = u0

has a unique solution (u, P ) satisfying the following inequality for all T > 0:
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∥∥u(T )
∥∥

D
1− 1

p ,p

Aq

+
( T∫

0

∥∥∥∥
(

∇ P ,�u,
∂u

∂t

)∥∥∥∥
p

Lq
dt

) 1
p

� C

(
‖u0‖

D
1− 1

p ,p

Aq

+
( T∫

0

∥∥ f (t)
∥∥p

Lq dt

) 1
p
)

(3.1)

with C = C(q, p, σ (Ω)) where σ(Ω) stands for the open set

σ(Ω) =
{

x

δ(Ω)

∣∣∣∣x ∈ Ω

}

with δ(Ω) denoting the diameter of Ω .

Remark 3.1. We notice that (3.1) does not include the estimate for ‖u‖Lp(0,T ;Lq) . Indeed, thanks to
u|∂Ω = 0, Poincare’s inequality, and the fact

∫
Ω

∇u dx = 0, we have

‖u‖W 2,q � C‖�u‖Lq ,

and then (3.1) can be rewritten as

∥∥u(T )
∥∥

D
1− 1

p ,p

Aq

+
( T∫

0

∥∥(∇ P ,u,�u, ∂t u)
∥∥p

Lq dt

) 1
p

� C

(
‖u0‖

D
1− 1

p ,p

Aq

+
( T∫

0

∥∥ f (t)
∥∥p

Lq dt

) 1
p
)

.

We have the L∞ estimate in the spatial variable as follows (cf. Lemma 4.1 in [4]).

Lemma 3.1. Let 1 < p,q, r, s < ∞ satisfy 0 <
p
2 − 3p

2q < 1, then

‖∇ f ‖L p(0,T ;L∞) � C T
1
2 − 3

2q ‖ f ‖1−θ

L∞(0,T ;D
1− 1

p ,p

Aq
)

‖ f ‖θ
L p(0,T ;W 2,q)

,

for some constant C depending only on Ω, p,q and

1 − θ

p
= 1

2
− 3

2q
.

Similarly, we have,

Lemma 3.2. Let 1 < p,q < ∞ satisfy 0 <
p
2 − 3p

2q < 1, then

‖∇ f ‖L p(0,T ;L∞) � C T
1
2 − 3

2q ‖ f ‖1−θ

L∞(0,T ;B
2(1− 1

p )

q,p )

‖ f ‖θ
L p(0,T ;W 2,q)

,
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for some constant C depending only on Ω, p,q and

1 − θ

p
= 1

2
− 3

2q
.

Proof. First, we notice that (cf. Theorem 6.4.5 in [2])

(
B

1− 2
p − 3

q∞,∞ , B
1− 3

q∞,∞
)
θ,1 = B0

∞,1 with
1 − θ

p
= 1

2
− 3

2q
.

Also the embedding B0
∞,1 ↪→ L∞ holds due to Theorem 6.2.4 in [2]. Hence,

|∇ f |∞ � C‖∇ f ‖B0∞,1
� C‖∇ f ‖θ

B
1− 3

q∞,∞
‖∇ f ‖1−θ

B
1− 2

p − 3
q∞,∞
. (3.2)

We remark that (cf. Theorems 6.2.4 and 6.5.1 in [2])

B
2(1− 1

p )

q,p ↪→ B
2− 2

p − 3
q∞,∞ , W 1,q ↪→ B1

q,∞ ↪→ B
1− 3

q∞,∞.

Thus, according to (3.2) and by applying Hölder’s inequality, we deduce that

‖∇ f ‖L p(0,T ;L∞) � C

( T∫
0

‖∇ f ‖pθ

B
1− 3

q∞,∞
‖∇ f ‖p(1−θ)

B
1− 2

p − 3
q∞,∞

dt

) 1
p

� C

( T∫
0

‖ f ‖pθ

W 2,q‖ f ‖p(1−θ)

B
2− 2

p − 3
q

q,p

dt

) 1
p

� C

( T∫
0

‖ f ‖pθ

W 2,q‖ f ‖p(1−θ)

B
2(1− 1

p )

q,p

dt

) 1
p

� C T
1
2 − 3

2q ‖ f ‖1−θ

L∞(0,T ;B
2(1− 1

p )

q,p )

‖ f ‖θ
L p(0,T ;W 2,q)

.

The proof is complete. �
Remark 3.2. In this paper, we will use the following weaker result:

‖∇ f ‖L p(0,T ;L∞) � C T
1
2 − 3

2q ‖ f ‖1−θ

L∞(0,T ;B
3(1− 1

p )

q,p )

‖ f ‖θ
L p(0,T ;W 3,q)

.

Lemma 3.3. Let 1 < p,q < ∞ satisfy 0 <
p
3 − p

q < 1, then

‖� f ‖L p(0,T ;L∞) � C T
1
3 − 1

q ‖ f ‖1−θ

L∞(0,T ;B
3(1− 1

p )

q,p )

‖ f ‖θ
L p(0,T ;W 3,q)

,
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for some constant C depending only on Ω, p,q and

1 − θ

p
= 1

3
− 1

q
.

Proof. First, we notice that (cf. Theorem 6.4.5 in [2])

(
B

2− 3
p − 3

q∞,∞ , B
2− 3

q∞,∞
)
θ,1 = B1∞,1 with

1 − θ

p
= 1

3
− 1

q
.

Also the embedding B1∞,1 ↪→ W 1,∞ is true due to Theorem 6.2.4 in [2]. Hence,

‖� f ‖L∞ � C‖∇ f ‖W 1,∞ � C‖∇ f ‖B1∞,1
� C‖∇ f ‖θ

B
2− 3

q∞,∞
‖∇ f ‖1−θ

B
2− 3

p − 3
q∞,∞
. (3.3)

We remark that (cf. Theorems 6.2.4 and 6.5.1 in [2])

B
3(1− 1

p )

q,p ↪→ B
3− 3

p − 3
q∞,∞ , W 2,q ↪→ B2

q,∞ ↪→ B
2− 3

q∞,∞.

Thus, according to (3.3) and by applying Hölder’s inequality, we deduce that

‖� f ‖L p(0,T ;L∞) � C

( T∫
0

‖∇ f ‖pθ

B
2− 3

q∞,∞
‖∇ f ‖p(1−θ)

B
2− 3

p − 3
q∞,∞

dt

) 1
p

� C

( T∫
0

‖ f ‖pθ

W 3,q ‖ f ‖p(1−θ)

B
3(1− 1

p )

q,p

dt

) 1
p

� C T
1
3 − 1

q ‖ f ‖1−θ

L∞(0,T ;B
3(1− 1

p )

q,p )

‖ f ‖θ
L p(0,T ;W 3,q)

.

The proof is complete. �
4. Local existence

In this section, we prove the local existence and uniqueness of strong solution in Theorem 2.1. The
proof will be divided into several steps, including constructing the approximate solutions by iteration,
obtaining the uniform estimate, showing the convergence, consistency and uniqueness.

4.1. Construction of approximate solutions

We initialize the construction of approximate solutions by setting

d0 := d0, u0 := u0.

For given (un,dn, Pn), the Stokes equations (1.4a) and the parabolic equation (1.4b) enable us to define
(un+1,dn+1, Pn+1) as the global solution of
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂un+1

∂t
− �un+1 + ∇ Pn+1 = −un · ∇un − ∇ · ((∇dn)�∇dn),

∂dn+1

∂t
− �dn+1 = −un · ∇dn + ∣∣∇dn

∣∣2
dn,

∇ · un+1 = 0,

∫
Ω

Pn+1 dx = 0

(4.1)

with the initial–boundary conditions:

(
un+1,dn+1)∣∣

t=0 = (u0,d0),
(
un+1, ∂νdn+1)∣∣

∂Ω
= (0,0).

According to Theorems 3.1–3.2, an argument by induction yields a sequence

{(
un,dn, Pn)}

n∈N
⊂ M p,q

T

for all positive T .

4.2. Uniform estimate for some small fixed time T

We aim at finding a positive time T independent of n for which {(un,dn, Pn)}n∈N is uniformly
bounded in the space M p,q

T . Indeed, applying Theorem 3.2 to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂un+1

∂t
− �un+1 + ∇ Pn+1 = −un · ∇un − ∇ · ((∇dn)�∇dn),

∇ · un+1 = 0,

∫
Ω

Pn+1 dx = 0,

un+1
∣∣
t=0 = u0, un+1|∂Ω = 0

and Theorem 3.1 to

⎧⎪⎨
⎪⎩

∂dn+1

∂t
− �dn+1 = −un · ∇dn + ∣∣∇dn

∣∣2
dn,

dn+1
∣∣
t=0 = d0, ∂νdn+1

∣∣
∂Ω

= 0,

we obtain

∥∥un+1(T )
∥∥

D
1− 1

p ,p

Aq

+
( T∫

0

∥∥∥∥
(

∇ Pn+1,un+1,�un+1,
∂un+1

∂t

)∥∥∥∥
p

Lq
dt

) 1
p

� C

(
‖u0‖

D
1− 1

p ,p

Aq

+
( T∫

0

∥∥un · ∇un + ∇ · ((∇dn)�∇dn)∥∥p
Lq dt

) 1
p
)

, (4.2)

and
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∥∥dn+1(T )
∥∥

B
3(1− 1

p )

q,p

+ ∥∥dn+1
∥∥

W(0,T )

� C
(‖d0‖

B
3(1− 1

p )

q,p

+ ∥∥−un · ∇dn + ∣∣∇dn
∣∣2

dn
∥∥

L p(0,T ;Lq)

)
. (4.3)

Now define

Un(t) := ∥∥un
∥∥

L∞(0,t;D
1− 1

p ,p

Aq
)

+ ∥∥un
∥∥

L p(0,t;W 2,q)
+

∥∥∥∥∂un

∂t

∥∥∥∥
L p(0,t;Lq)

+ ∥∥dn
∥∥

L∞(0,t;B
3(1− 1

p )

q,p )

+ ∥∥dn
∥∥

W(0,t),

and

U 0 := ‖u0‖
D

1− 1
p ,p

Aq

+ ‖d0‖
B

3(1− 1
p )

q,p

.

Hence, from (4.2) and (4.3), we get, using Lemmas 3.1–3.3,

Un+1(t) � C
(
U 0 + ∥∥un

∥∥
L∞(0,t;Lq)

∥∥∇un
∥∥

L p(0,t;L∞)

+ 2
∥∥∇dn

∥∥
L∞(0,t;Lq)

∥∥�dn
∥∥

L p(0,t;L∞)

+ ∥∥un
∥∥

L∞(0,t;Lq)

∥∥∇dn
∥∥

L p(0,t;L∞)

+ ∥∥dn
∥∥

L∞(0,t;L∞)

∥∥∇dn
∥∥

L∞(0,t;Lq)

∥∥∇dn
∥∥

L p(0,t;L∞)

)
� C

(
U 0 + 2t

1
2 − 3

2q
(
Un(t)

)2 + 2t
1
3 − 1

q
(
Un(t)

)2 + t
1
2 − 3

2q
(
Un(t)

)3)
. (4.4)

Moreover, if we assume that Un(t) � 4C U 0 on [0, T ] with

0 < T �
(

3

64C2U 0 + 64C3(U 0)2

) 3q
q−3

� 1, or

1 < T �
(

3

64C2U 0 + 64C3(U 0)2

) 2q
q−3

, (4.5)

then a direct computation yields

Un+1(t) � 4C U 0 on [0, T ].

From (4.2)–(4.4), we conclude that the sequence {(un,dn, Pn)}∞n=1 is uniformly bounded in M p,q
T .

More precisely, we have:

Lemma 4.1. For all t ∈ [0, T ] with T satisfying (4.5),

Un(t) � 4C U 0.
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4.3. Convergence of the approximation sequence

Lemma 4.2. {(un,dn, Pn)}∞n=1 is a Cauchy sequence in M p,q
T0

and thus converges.

Proof. Let

ūn := un+1 − un, d̄n := dn+1 − dn, P̄ n := Pn+1 − Pn.

Then, the triplet (ūn, d̄n, P̄ n) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ūn

∂t
− �ūn + ∇ P̄ n = −ūn−1 · ∇un − un−1 · ∇ūn−1 − ∇ · ((∇d̄n−1)�∇dn)

− ∇ · ((∇dn−1)�∇d̄n−1),
∂d̄n

∂t
− �d̄n = −ūn−1 · ∇dn − un−1 · ∇d̄n−1 + ∣∣∇dn

∣∣2
d̄n−1

+ ((∇dn + ∇dn−1) : ∇d̄n−1)dn−1,

∇ · ūn = 0,

∫
Ω

P̄ ndx = 0

(4.6)

with the initial–boundary conditions:

(
ūn, d̄n)∣∣

t=0 = (0,0),
(
ūn, ∂ν d̄n)∣∣

∂Ω
= (0,0).

Define

Ūn(t) := ∥∥ūn
∥∥

L∞(0,t;D
1− 1

p ,p

Aq
)

+ ∥∥ūn
∥∥

L p(0,t;W 2,q)
+

∥∥∥∥∂ūn

∂t

∥∥∥∥
L p(0,t;Lq)

+ ∥∥∇ P̄ n
∥∥

L p(0,t;Lq)
+ ∥∥d̄n

∥∥
L∞(0,t;B

3(1− 1
p )

q,p )

+ ∥∥d̄n
∥∥

W(0,t).

By using Lemmas 3.1–3.3, we obtain the following estimates:

∥∥ūn−1 · ∇un + un−1 · ∇ūn−1
∥∥

L p(0,t;Lq)

�
∥∥ūn−1

∥∥
L∞(0,t;Lq)

∥∥∇un
∥∥

L p(0,t;L∞)
+ ∥∥un−1

∥∥
L∞(0,t;Lq)

∥∥∇ūn−1
∥∥

L p(0,t;L∞)

� 4C U 0(t
1
2 − 3

2q
∥∥ūn−1

∥∥
L∞(0,t;Lq)

+ ∥∥∇ūn−1
∥∥

L p(0,t;L∞)

)
, (4.7)

∥∥∇ · ((∇d̄n−1)�∇dn) + ∇ · ((∇dn−1)�∇d̄n−1)∥∥
L p(0,t;Lq)

�
∥∥∇dn

∥∥
L∞(0,t;Lq)

∥∥�d̄n−1
∥∥

L p(0,t;L∞)
+ ∥∥∇d̄n−1

∥∥
L∞(0,t;Lq)

∥∥�dn
∥∥

L p(0,t;L∞)

+ ∥∥∇d̄n−1
∥∥

L∞(0,t;Lq)

∥∥�dn−1
∥∥

L p(0,t;L∞)
+ ∥∥∇dn−1

∥∥
L∞(0,t;Lq)

∥∥�d̄n−1
∥∥

L p(0,t;L∞)

� 8C U 0(∥∥�d̄n−1
∥∥

p ∞ + t
1
3 − 1

q
∥∥∇d̄n−1

∥∥ ∞ q

)
, (4.8)
L (0,t;L ) L (0,t;L )
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∥∥ūn−1 · ∇dn + un−1 · ∇d̄n−1
∥∥

L p(0,t;Lq)

�
∥∥ūn−1

∥∥
L∞(0,t;Lq)

∥∥∇dn
∥∥

L p(0,t;L∞)
+ ∥∥un−1

∥∥
L∞(0,t;Lq)

∥∥∇d̄n−1
∥∥

L p(0,t;L∞)

� 4C U 0(t
1
2 − 3

2q
∥∥ūn−1

∥∥
L∞(0,t;Lq)

+ ∥∥∇d̄n−1
∥∥

L p(0,t;L∞)

)
, (4.9)

and

∥∥∣∣∇dn
∣∣2

d̄n−1 + ((∇dn + ∇dn−1) : ∇d̄n−1)dn−1
∥∥

L p(0,t;Lq)

�
(
4C U 0)2(

t
1
2 − 3

2q
∥∥d̄n−1

∥∥
L∞(0,t;L∞)

+ 2
∥∥∇d̄n−1

∥∥
L p(0,t;L∞)

)
. (4.10)

Applying Theorems 3.1–3.2 to (4.6), with the help of (4.7)–(4.10), we have

Ūn(t) � 4C U 0(2t
1
2 − 3

2q
∥∥ūn−1

∥∥
L∞(0,t;Lq)

+ ∥∥∇ūn−1
∥∥

L p(0,t;L∞)
+ 2

∥∥�d̄n−1
∥∥

L p(0,t;L∞)

+ 2t
1
3 − 1

q
∥∥∇d̄n−1

∥∥
L∞(0,t;Lq)

+ ∥∥∇d̄n−1
∥∥

L p(0,t;L∞)

+ 4C U 0(t
1
2 − 3

2q
∥∥d̄n−1

∥∥
L∞(0,t;L∞)

+ 2
∥∥∇d̄n−1

∥∥
L p(0,t;L∞)

))
. (4.11)

Combining (4.11) and Lemmas 3.1–3.3, one has

Ūn(t) � 16C U 0((1 + 3C U 0)t
1
2 − 3

2q + t
1
3 − 1

q
)
Ūn−1(t).

Thus, if we choose T0 satisfying (4.5) such that the condition

16C U 0(2 + 3C U 0)T0
1
3 − 1

q � 1

2
, or 16C U 0(2 + 3C U 0)T0

1
2 − 3

2q � 1

2

is fulfilled, it is clear that {(un,dn, Pn)}∞n=1 is a Cauchy sequence in M p,q
T0

and thus converges

in M p,q
T0

. �
4.4. The limit is a solution

Since {(un,dn, Pn)}∞n=1 is a Cauchy sequence in M p,q
T0

, then it converges. Let (u,d, P ) ∈ M p,q
T0

be the

limit of the sequence {(un,dn, Pn)}∞n=1 in M p,q
T0

. We claim all those nonlinear terms in (4.1) converge

to their corresponding terms in (1.1) in (L p(0, T0; Lq(Ω)))3. Indeed, due to the convergence of un to
u in M p,q

T0
, we have

∥∥un · ∇un − u · ∇u
∥∥

L p(0,T0;Lq)

= ∥∥(
un − u

) · ∇un + u · ∇(
un − u

)∥∥
L P (0,T0;Lq)

�
∥∥un − u

∥∥
L∞(0,T0;Lq)

∥∥∇un
∥∥

L p(0,T0;L∞)
+ ‖u‖L∞(0,T0;Lq)

∥∥∇un − ∇u
∥∥

L p(0,T0;L∞)

� 4C U 0T0
1
2 − 3

2q
∥∥un − u

∥∥
M p,q

T0
+ C T0

1
2 − 3

2q ‖u‖L∞(0,T0;Lq)

∥∥un − u
∥∥

M p,q
T0

→ 0.
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Hence,

un · ∇un → u · ∇u in
(
Lp(

0, T0; Lq(Ω)
))3

.

Similarly, we have

∇ · ((∇dn)�∇dn) → ∇ · ((∇d)�∇d
)

in
(
Lp(

0, T0; Lq(Ω)
))3

,

un · ∇dn → u · ∇d in
(
Lp(

0, T0; Lq(Ω)
))3

.

Since

∥∥∣∣∇dn
∣∣2

dn − |∇d|2d
∥∥

L p(0,T0;Lq)

�
∥∥∣∣∇dn

∣∣2
dn − ∣∣∇dn

∣∣2
d
∥∥

L p(0,T0;Lq)
+ ∥∥∣∣∇dn

∣∣2
d − |∇d|2d

∥∥
L p(0,T0;Lq)

�
∥∥dn − d

∥∥
L∞(0,T0;L∞)

∥∥∇dn
∥∥

L∞(0,T0;Lq)

∥∥∇dn
∥∥

L p(0,T0;L∞)

+ ‖d‖L∞(0,T0;L∞)

∥∥∇dn + ∇d
∥∥

L∞(0,T0;Lq)

∥∥∇dn − ∇d
∥∥

L p(0,T0;L∞)

�
((

4C U 0)2 + ‖d‖L∞(0,T0;L∞)

(
4C U 0 + ‖∇d‖L∞(0,T0;Lq)

))
T

1
2 − 3

2q

0

∥∥dn − d
∥∥

M p,q
T0

→ 0,

then

∣∣∇dn
∣∣2

dn → |∇d|2d in
(
Lp(

0, T0; Lq(Ω)
))3

.

Thus, taking the limit as n → ∞ in (4.1), we conclude that (1.1) holds in L p(0, T0; Lq(Ω)), and hence
almost everywhere in Ω × (0, T0).

Multiply the d-system, i.e., (1.1b) by d, we obtain

1

2

∂|d|2
∂t

+ 1

2
u · ∇(|d|2) = �d · d + |∇d|2|d|2.

Since

�
(|d|2) = 2|∇d|2 + 2d · (�d),

then it follows that

1

2

∂|d|2
∂t

+ 1

2
u · ∇(|d|2) = 1

2
�

(|d|2) − |∇d|2 + |∇d|2|d|2.

Therefore, it is easy to deduce that

∂(|d|2 − 1)

∂t
− �

(|d|2 − 1
) + u · ∇(|d|2 − 1

) − 2|∇d|2(|d|2 − 1
) = 0. (4.12)

Multiplying (4.12) by (|d|2 − 1) and then integrating over Ω , using (1.1c) and (1.3), we get the follow-
ing inequality:
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d

dt

∫
Ω

(|d|2 − 1
)2

dx � 4
∫
Ω

|∇d|2(|d|2 − 1
)2

dx

� 4‖∇d‖2
L∞

∫
Ω

(|d|2 − 1
)2

dx. (4.13)

Remark that interpolating between L∞(0, T0; W 1,q) and L p(0, T0; W 3,q) shows that for some positive
β > 1

2 , d belongs to L2(0, T0; H2+β) and that ‖∇d‖2
L∞ ∈ L1(0, T0). Notice that

∫
Ω

(|d|2 − 1
)2

dx = 0, at time t = 0.

Thus, using (4.13) together with Grönwall’s inequality, it yields |d| = 1 in Ω × (0, T0).

4.5. Uniqueness

Let (u1,d1, P1) and (u2,d2, P2) be two solutions to (1.1) with the initial–boundary conditions
(1.2)–(1.3). Denote

ū = u1 − u2, d̄ = d1 − d2, P̄ = P1 − P2.

Note that the triplet (ū, d̄, P̄ ) satisfies the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ū

∂t
− �ū + ∇ P̄ = −ū · ∇u1 − u2 · ∇ū − ∇·((∇d1)

�∇d̄
)−∇ · ((∇d̄)�∇d2

)
,

∂d̄

∂t
− �d̄ = −u1 · ∇d̄ − ū · ∇d2 + |∇d1|2d̄ + (

(∇d1 + ∇d2) : ∇d̄
)
d2,

∇ · ū = 0,

∫
Ω

P̄ dx = 0

with the initial–boundary conditions:

(ū, d̄)|t=0 = (0,0), (ū, ∂ν d̄)|∂Ω = (0,0).

Define

X(t) := ‖ū‖
L∞(0,t;D

1− 1
p ,p

Aq
)

+ ‖ū‖L p(0,t;W 2,q) +
∥∥∥∥∂ū

∂t

∥∥∥∥
L p(0,t;Lq)

+ ‖∇ P̄‖L p(0,t;Lq) + ‖d̄‖
L∞(0,t;B

3(1− 1
p )

q,p )

+ ‖d̄‖W(0,t).

Thus, repeating the arguments in (4.7)–(4.10), we have

X(t) � 16C U 0((1 + 3C U 0)t
1
2 − 3

2q + t
1
3 − 1

q
)

X(t)

� 1

2
X(t).

Hence, X(t) = 0 for all t ∈ [0, T0], which guarantees the uniqueness on the time interval [0, T0].
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5. Global existence

In this section, we prove that, if the initial data is sufficiently small, the local solution established
in the previous section is indeed global in time. To this end, we first denote by T ∗ the maximal time
of existence for (u,d, P ). Define the function H(t) as

H(t) := ‖u‖
L∞(0,t;D

1− 1
p ,p

Aq
)

+ ‖u‖L p(0,t;W 2,q) +
∥∥∥∥∂u

∂t

∥∥∥∥
L p(0,t;Lq)

+ ‖∇ P‖L p(0,t;Lq) + ‖d‖
L∞(0,t;B

3(1− 1
p )

q,p )

+ ‖d‖W(0,t).

To extend the local solution, we need to control the maximal time T ∗ only in terms of the initial
data. For this purpose, it is obvious to observe that H(t) is an increasing and continuous function in
[0, T ∗), and for all t ∈ [0, T ∗), we have, using Theorems 3.1–3.2,

H(t) � C
(
U 0 + ‖u · ∇u‖L p(0,t;Lq) + ∥∥∇ · ((∇d)�∇d

)∥∥
L p(0,t;Lq)

+ ‖u · ∇d‖L p(0,t;Lq) + ∥∥|∇d|2d
∥∥

L p(0,t;Lq)

)
. (5.1)

On the other hand, Lemmas 3.1–3.3 imply that

‖u · ∇u‖L p(0,t;Lq) � ‖u‖L∞(0,t;Lq)‖∇u‖L p(0,t;L∞)

� Ct
1
2 − 3

2q H2(t), (5.2)

∥∥∇ · ((∇d)�∇d
)∥∥

L p(0,t;Lq)
� C‖∇d‖L∞(0,t;Lq)‖�d‖L p(0,t;L∞)

� Ct
1
3 − 1

q H2(t), (5.3)

‖u · ∇d‖L p(0,t;Lq) � ‖u‖L∞(0,t;Lq)‖∇d‖L p(0,t;L∞)

� Ct
1
2 − 3

2q H2(t), (5.4)

and for the fact that |d| = 1, we have

∥∥|∇d|2d
∥∥

L p(0,t;Lq)
� ‖∇d‖L∞(0,t;Lq)‖∇d‖L p(0,t;L∞)

� Ct
1
2 − 3

2q H2(t). (5.5)

Substituting (5.2)–(5.5) into (5.1), we get

H(t) � C
(
U 0 + (

3t
1
2 − 3

2q + t
1
3 − 1

q
)

H2(t)
)
. (5.6)

Assume that T is the smallest number such that

H(T ) = 4C U 0.

This is possible because H(t) is an increasing and continuous function in time. Then,

H(t) < H(T ) = 4C U 0, for all t ∈ [0, T ),
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and from (5.6), we deduce that

16C2U 0(3T
1
2 − 3

2q + T
1
3 − 1

q
)
� 3.

This implies that the maximal time of existence T ∗ will go to infinity when the initial data approaches
zero. More precisely, we can show that, if the initial data is sufficiently small, the solution exists
globally in time. To this end, we need some other estimates for the terms on the right side of (5.1).
Indeed, by W 1,q ↪→ L∞ as q > 3, we have

‖u · ∇u‖L p(0,t;Lq) � ‖u‖L∞(0,t;Lq)‖∇u‖L p(0,t;L∞)

� C H2(t).

Similarly,

∥∥∇ · ((∇d)�∇d
)∥∥

L p(0,t;Lq)
, ‖u · ∇d‖L p(0,t;Lq),

∥∥|∇d|2d
∥∥

L p(0,t;Lq)
� C H2(t).

Thus, (5.1) turns out to be

H(t) � C
(
U 0 + H2(t)

)
. (5.7)

Now we take U 0 sufficiently small such that

U 0 � δ0 := 1

4C2
.

Then, we compute directly from (5.7) and the continuity of H(t) that

H(t) � 1 − √
1 − 4C2U 0

2C
� 1

2C

for all t ∈ [0, T ∗), which implies ‖(u,d, P )‖M p,q
T ∗ bounded. Hence, according to the local existence in

the previous section, we can extend the solution on [0, T ∗) to some larger interval [0, T ∗ + η) with
η > 0. This is impossible since T ∗ is already the maximal time of existence. Hence, when the initial
data are sufficiently small, the strong solution is indeed global in time.

The proof of Theorem 2.1 is complete.

6. Weak–strong uniqueness

The purpose of this section is to show Weak–Strong Uniqueness in Theorem 2.2. To this end, we
first formally deduce and obtain an energy estimate for the strong solution to (1.1)–(1.3).

Lemma 6.1. Let p,q satisfy the same conditions as Theorem 2.1 and (u,d, P ) ∈ M p,q
T be the unique solution

to (1.1) on Ω × [0, T ]. Then for any 0 < t � T , we have

∫
Ω

(∣∣u(t)
∣∣2 + ∣∣∇d(t)

∣∣2)
dx + 2

t∫
0

∫
Ω

(|∇u|2 + ∣∣�d + |∇d|2d
∣∣2)

dx ds

=
∫
Ω

(|u0|2 + |∇d0|2
)

dx.
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Proof. Note that

u ∈ C
([0, T ]; D

1− 1
p ,p

Aq

) ∩ Lp(
0, T ; W 2,q ∩ W 1,q

0

)
,

d ∈ C
([0, T ]; B

3(1− 1
p )

q,p
) ∩ Lp(

0, T ; W 3,q),
D

1− 1
p ,p

Aq
↪→ B

2(1− 1
p )

q,p ∩ Xq (see Proposition 2.5 in [4]),

where

Xq = {
z ∈ Lq(Ω)3

∣∣ ∇ · z = 0 in Ω and z · n = 0 on ∂Ω
}
,

for some positive β > 1
2 , it follows from the standard interpolation inequalities that

u ∈ C
([0, T ]; Hβ

) ∩ L2(0, T ; H1+β
)
, u ∈ L4(Ω × [0, T ]),

d ∈ C
([0, T ]; H1+β

) ∩ L2(0, T ; H2+β
)
, ∇d ∈ L4(Ω × [0, T ]).

This enables us to justify the following computations.
Multiplying (1.1a) by u, integrating over Ω , we get

1

2

d

dt

∫
Ω

|u|2 dx +
∫
Ω

|∇u|2 dx = −
∫
Ω

u · ((∇d)��d
)

dx. (6.1)

Here we have used the facts

∇ · (∇d � ∇d) = ∇
( |∇d|2

2

)
+ (∇d)��d,

and ∇ · u = 0 in Ω , u = 0 on ∂Ω , as well as

∫
Ω

u · ∇u · u dx =
∫
Ω

∇ P · u dx =
∫
Ω

∇
( |∇d|2

2

)
· u dx = 0.

Multiplying (1.1b) by −(�d + |∇d|2d) and integrating over Ω , we obtain

−
∫
Ω

∂d

∂t
· �d dx −

∫
Ω

(u · ∇d) · �d dx = −
∫
Ω

∣∣�d + |∇d|2d
∣∣2

dx.

Here we have used the fact that |d| = 1 to get

(
∂d

∂t
+ u · ∇d

)
· |∇d|2d = 1

2

(
|∇d|2 ∂|d|2

∂t
+ u · ∇|d|2|∇d|2

)
= 0.

Since ∂νd = 0 on ∂Ω , integrating by parts, we have

∫
∂d

∂t
· �d dx = −1

2

d

dt

∫
|∇d|2 dx.
Ω Ω
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Hence we obtain

1

2

d

dt

∫
Ω

|∇d|2 dx +
∫
Ω

∣∣�d + |∇d|2d
∣∣2

dx =
∫
Ω

(u · ∇d) · �d dx. (6.2)

By adding (6.1) and (6.2), we eventually get the identity:

1

2

d

dt

∫
Ω

(|u|2 + |∇d|2)dx +
∫
Ω

(|∇u|2 + ∣∣�d + |∇d|2d
∣∣2)

dx = 0, (6.3)

for all t ∈ (0, T ].
Integrating (6.3) over the time interval [0, t], we obtain the energy equality of this lemma. �
We remark that (6.3) is usually called the basic energy law governing the system (1.1)–(1.3). It re-

flects the energy dissipation property of the flow of liquid crystals.
Now we proceed to prove Weak–Strong Uniqueness. In view of the regularity of u, we deduce from

the weak formulation of (1.1a) that

∫
Ω

ũ · u dx +
t∫

0

∫
Ω

∇ũ : ∇u dx ds

=
∫
Ω

|u0|2 dx −
t∫

0

∫
Ω

(∇d̃)��d̃ · u dx ds +
t∫

0

∫
Ω

ũ ·
(

∂u

∂s
+ ũ · ∇u

)
dx ds. (6.4)

On the other hand, since u satisfies (1.1a), i.e.,

∂u

∂t
= �u − u · ∇u − ∇ P − ∇

( |∇d|2
2

)
− (∇d)��d,

then we have, from (6.4),

∫
Ω

ũ · u dx −
∫
Ω

|u0|2 dx = −2

t∫
0

∫
Ω

∇ũ : ∇u dx ds −
t∫

0

∫
Ω

(∇d̃)��d̃ · u dx ds

−
t∫

0

∫
Ω

ũ · (u · ∇u + (∇d)��d − ũ · ∇u
)

dx ds. (6.5)

Similarly, in view of the regularity of d, we have

∫
Ω

∇d̃ : ∇d dx −
∫
Ω

|∇d0|2 dx

=
t∫ ∫ (−d̃ · �ds + ũ · ∇d̃ · �d − �d̃ · �d − |∇d̃|2d̃ · �d

)
dx ds. (6.6)
0 Ω
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Taking advantage of (1.1b), we obtain, from (6.6),

∫
Ω

∇d̃ : ∇d dx −
∫
Ω

|∇d0|2 dx =
t∫

0

∫
Ω

(−2�d̃ · �d + u · ∇d · �d̃ + ũ · ∇d̃ · �d

− |∇d|2d · �d̃ − |∇d̃|2d̃ · �d
)

dx ds. (6.7)

From (2.1), (6.5), (6.7) and the fact that (u,d, P ) (resp. (ũ, d̃,Π)) is a strong solution (resp. weak so-
lution) to (1.1) with the initial–boundary conditions (1.2)–(1.3), we have the following energy estimate
of (u − ũ,d − d̃):

1

2

∫
Ω

(|u − ũ|2 + |∇d − ∇d̃|2)dx

� −
t∫

0

∫
Ω

(|∇u − ∇ũ|2 + |�d − �d̃|2)dx ds

−
t∫

0

∫
Ω

(
(u − ũ) · ∇u · (u − ũ) + (∇d − ∇d̃) · �d · (u − ũ)

− u · (∇d − ∇d̃) · (�d − �d̃)

+ (|∇d|2d − |∇d̃|2d̃
) · (�d − �d̃)

)
dx ds

= −
t∫

0

∫
Ω

(|∇u − ∇ũ|2 + |�d − �d̃|2)dx ds + I, (6.8)

where

I = −
t∫

0

∫
Ω

(
(u − ũ) · ∇u · (u − ũ) + (∇d − ∇d̃) · �d · (u − ũ)

− u · (∇d − ∇d̃) · (�d − �d̃)

+ (|∇d|2d − |∇d̃|2d̃
) · (�d − �d̃)

)
dx ds.

Next, we will estimate I term by term. By the zero boundary condition, we have

−
∫
Ω

(u − ũ) · ∇u · (u − ũ)dx =
∫
Ω

(u − ũ) · ∇ũ · u dx

=
∫
Ω

(u − ũ) · (∇u − ∇ũ) · u dx

� ‖u‖L∞‖∇u − ∇ũ‖L2‖u − ũ‖L2

� 1‖∇u − ∇ũ‖2
L2 + ‖u‖2

L∞ ‖u − ũ‖2
L2 , (6.9)
2 2
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−
∫
Ω

(∇d − ∇d̃) · �d · (u − ũ)dx � ‖�d‖L∞‖u − ũ‖L2‖∇d − ∇d̃‖L2

� ‖�d‖L∞

2

(‖u − ũ‖2
L2 + ‖∇d − ∇d̃‖2

L2

)
, (6.10)

∫
Ω

u · (∇d − ∇d̃) · (�d − �d̃)dx � ‖u‖L∞‖�d − �d̃‖L2‖∇d − ∇d̃‖L2

� 1

2
‖�d − �d̃‖2

L2 + ‖u‖2
L∞

2
‖∇d − ∇d̃‖2

L2 , (6.11)

−
∫
Ω

(|∇d|2d − |∇d̃|2d̃
) · (�d − �d̃)dx

� ‖∇d‖2
L∞‖d − d̃‖L2‖�d − �d̃‖L2

+ ‖∇d + ∇d̃‖L∞‖∇d − ∇d̃‖L2‖�d − �d̃‖L2

� 1

2
‖�d − �d̃‖2

L2 + ‖∇d‖4
L∞‖d − d̃‖2

L2 + ‖∇d + ∇d̃‖2
L∞‖∇d − ∇d̃‖2

L2 . (6.12)

Then, we eventually get from (6.9)–(6.12) that

I �
t∫

0

(
1

2
‖∇u − ∇ũ‖2

L2 + ‖�d − �d̃‖2
L2 + ‖u‖2

L∞ + ‖�d‖L∞

2
‖u − ũ‖2

L2

+
(

‖∇d + ∇d̃‖2
L∞ + ‖u‖2

L∞ + ‖�d‖L∞

2

)
‖∇d − ∇d̃‖2

L2 + ‖∇d‖4
L∞‖d − d̃‖2

L2

)
ds. (6.13)

Now, we wish to estimate ‖d − d̃‖L2 . We write

∂t(d − d̃) + u · ∇(d − d̃) + (u − ũ) · ∇d̃ = �d − �d̃ + |∇d|2d − |∇d̃|2d̃. (6.14)

Multiply (6.14) by d − d̃ and integrate over Ω × (0, t), we have

1

2

∫
Ω

|d − d̃|2 dx

= −
t∫

0

∫
Ω

(u − ũ) · ∇d̃ · (d − d̃)dx ds −
t∫

0

∫
Ω

|∇d − ∇d̃|2 dx ds

+
t∫

0

∫
Ω

|∇d|2|d − d̃|2 dx ds +
t∫

0

∫
Ω

(∇d + ∇d̃) : (∇d − ∇d̃) d̃ · (d − d̃)dx ds.

Using Sobolev’s inequality ‖u − ũ‖L6 � C‖∇u − ∇ũ‖L2 and for some ε > 0 small enough, it is easy to
get
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1

2

∫
Ω

|d − d̃|2 dx �
t∫

0

(
Cε‖∇d̃‖2

L3 + ‖∇d‖2
L∞ + 1

2

)∫
Ω

|d − d̃|2 dx ds + ε

t∫
0

∫
Ω

|∇u − ∇ũ|2 dx ds

+
t∫

0

(
1 + ‖∇d + ∇d̃‖2

L∞
2

)∫
Ω

|∇d − ∇d̃|2 dx ds. (6.15)

Now we have from (6.8), (6.13) and (6.15) that

1

2

∫
Ω

(|u − ũ|2 + |d − d̃|2 + |∇d − ∇d̃|2)dx

�
t∫

0

‖u‖2
L∞ + ‖�d‖L∞

2

∫
Ω

|u − ũ|2 dx ds

+
t∫

0

(
1

2
+ ‖∇d‖4

L∞ + C‖∇d̃‖2
L3 + ‖∇d‖2

L∞

)∫
Ω

|d − d̃|2 dx ds

+
t∫

0

(
1 + ‖u‖2

L∞ + ‖�d‖L∞

2
+ 3‖∇d + ∇d̃‖2

L∞
2

)∫
Ω

|∇d − ∇d̃|2 dx ds

� C

t∫
0

ϕ(s)

∫
Ω

(|u − ũ|2 + |d − d̃|2 + |∇d − ∇d̃|2)dx ds, (6.16)

where

ϕ(s) = 1 + ‖∇d‖4
L∞ + ‖∇d‖2

L∞ + ‖∇d̃‖2
L∞ + ‖u‖2

L∞ + ‖�d‖L∞ .

Notice that ‖∇d‖2
L∞ ,‖u‖2

L∞ ,‖�d‖L∞ ∈ L1(0, t). Moreover, by applying the quasi-linear equations

of parabolic type estimates (cf. [12], Chapter VI, Section 2) to (1.1b), we see d(·, t), d̃(·, t) ∈ C1,α with
respect to the space variables, for some α > 0, and its C1,α norm is independent of t . Then we have
ϕ(s) ∈ L1(0, t). Applying Grönwall’s inequality to (6.16), we obtain

∫
Ω

(|u − ũ|2 + |d − d̃|2 + |∇d − ∇d̃|2)dx = 0

for all t . Thus, u = ũ, d = d̃ a.e. and P = Π up to a constant in Ω × (0, T ).
The proof of Theorem 2.2 is now complete.
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